
Tasking Deadlocks in Programs
with the Full Ada 95

Yasushi Tojo Sinsuke Nara Yuichi Goto Jingde Cheng

Department of Information and Computer Sciences
Saitama University

Saitama 338-8570, Japan
{tojo, nara, gotoh, cheng}@aise.ics.saitama-u.ac.jp

Abstract

This article presents some examples of tasking deadlocks concerning tasking
synchronization waiting relations defined in Ada 95’s Real-Time Systems Annex.

1 Introduction

A tasking deadlock in a concurrent Ada program is a situation where some tasks
form a circular waiting relation, which cannot be resolved by the program itself, at
some synchronization and/or communication points and hence can never proceed with
their computation.

We have proposed a method for detecting tasking deadlocks at run-time in Ada 95
programs [5] and developed a run-time tasking deadlock detector based on the method
[8]. However, the detecting method did not take Ada 95’s annexes into account. Ada
95’s Real-Time Systems Annex provides a way for synchronization of tasks by suspen-
sion objects. Since the synchronization may involve waiting relations among tasks, a
program using the annex may have some tasking deadlocks that are not reported until
now.

In this article, we present some examples of tasking deadlocks concerning tasking
synchronization waiting relations defined in Ada 95’s Real-Time Systems Annex.



2 Tasking Synchronization Waiting Relations in Programs with the Full
Ada 95

The core Ada 95 defines 7 types of tasking synchronization waiting relations, i.e.,
activation waiting relation, finalization waiting relation, completion waiting relation,
acceptance waiting relation, entry-calling waiting relation, protection waiting relation,
and protected-entry-calling waiting relation [1, 5, 7].

Ada 95’s annexes define additional specialized facilities for 14 distinct application
areas, but there is no synchronization waiting relation except the suspension wait-
ing relation defined in Real-Times Systems Annex, i.e., Annex D [7]. Annex D.10
Synchronous Task Control defines a language-defined private semaphore (suspension
object), which can be used for two-stage suspend operations and as a simple building
block for implementing higher-level queues. Using a suspension object, it is possible
to achieve mutual exclusion between two tasks by simply encapsulating their critical
sections. Suspension objects can also be used inside protected objects to implement
condition synchronization [2].

Suspension waiting may result in tasking deadlocks in a program with the full Ada
95. A task that issues Suspend Until True operation on a suspension object is blocked
until the value of the suspension object becomes true. Some tasks which can make value
of suspension objects true can resolve suspension waiting. If no task has the possibility
to resolve suspension waiting, a task in suspension waiting state will be blocked forever
and may be involved a tasking deadlock.

3 Examples of Tasking Deadlocks in Programs with the Full Ada 95

Five example programs are presented in this section. We present each program by
its Ada 95 code and its Task-Wait-For Graph. Three programs have tasking deadlocks
with suspension waiting. A program has a temporary cycle of synchronization waiting
but it does not lead to a tasking deadlock. Another program has a tasking deadlock
and a tasking livelock simultaneously.

3.1 Task-Wait-For Graph

A Task-Wait-For Graph (TWFG for short) is a kind of arc-classified digraph to
represent tasking waiting state in an execution of an Ada program [4]. The TWFG
explicitly represents various types of waiting relations in an execution of an Ada pro-
gram. The notion of TWFG was originally proposed for classification and detection
of tasking deadlocks in Ada 83 programs [3, 4] and was extended to deal with tasking
deadlocks in Ada 95 programs [5]. In a TWFG, vertices indicate tasking objects. A
tasking object in an execution state of a concurrent Ada 95 program is any of the fol-



lowing: a task whose activation has been initiated and whose state is not terminated,
a block statement that is being executed by a task, a subprogram that is being called
by a task, a protected subprogram that is being called by a task, a protected object on
which a protected action is undergoing, and a suspension object that is being waited
by a task. Arcs indicate synchronization waiting relations which are binary relations
between tasking objects. In a TWFG of a programs with the full Ada 95, they are 8
types of arcs: activation waiting arc, finalization waiting arc, completion waiting arc,
acceptance waiting arc, entry-calling waiting arc, protection waiting arc, protected-
entry-calling waiting arc, and suspension waiting arc, respectively, corresponding to an
activation waiting relation, finalization waiting relation, completion waiting relation,
acceptance waiting relation, entry-calling waiting relation, protection waiting relation,
protected-entry-calling waiting relation, and suspension waiting relation.

3.2 Example Program 1: Tasking Deadlocks with all Types of Synchro-
nization Waiting Relations

This program has 8 types of synchronization waiting relations. These synchroniza-
tion waiting relations form three cycles that cannot be resolved by the program itself.
Therefore, threee tasking deadlocks must occur in this program. The three synchro-
nization waiting cycles in this program are as follows:

T3 →PEC V →Fin GET →EC T2 →Com T3

T1 →Acc T4 →Fin B →Fin T7 →Fin W →Pro V →Fin GET →EC T2 →Com T1

T1 →Acc T4 →Fin B →Fin T6 →EC T5 →Act T8 →Sus S →Sus T2 →Com T1

Here the affixing characters show types of arcs. →Act, →Fin, →Com, →Acc, →EC ,
→Pro, →PEC , and →Sus denote activation waiting arc, finalization waiting arc, comple-
tion waiting arc, acceptance waiting arc, entry-calling waiting arc, protection waiting
arc, protected-entry-calling waiting arc, and suspension waiting arc, respectively.



Example Program 1

with Ada.Synchronous_Task_Control;

use Ada.Synchronous_Task_Control;

procedure Main is

type ITEM is new Integer;

task T1 is entry E1; end T1;

task T2 is entry E2; end T2;

task T3;

S : Suspension_Object;

function GET return ITEM is

begin

T2.E2; return 0;

end GET;

protected V is

Procedure W(X: in ITEM);

entry R(X: out ITEM);

private Var: ITEM := 0;

end V;

protected body V is

procedure W(X: in ITEM) is

begin Var := X; end W;

entry R(X: out ITEM) when TRUE is

begin X := GET; end R;

end V;

task body T1 is

task T4;

task T5 is entry E5; end T5;

task body T4 is

begin

B:

declare

task T6;

task T7;

task body T6 is

begin T5.E5; end T6;

task body T7 is

Y: ITEM;

begin V.W(Y); end T7;

begin null; end B;

T1.E1;

end T4;

task body T5 is

task T8;

task body T8 is

begin

Set_False(S);

Suspend_Until_True(S);

end T8;

begin accept E5; end T5;

begin accept E1; end T1;

task body T2 is

begin

select

when FALSE => accept E2;

or

terminate;

end select;

Set_True(S);

end T2;

task body T3 is

Z: ITEM;

begin V.R(Z); T1.E1; end T3;

begin null; end Main;

Fig. 1: TWFG of example program 1



3.3 Example Program 2: A Tasking Deadlock with Only Suspension Wait-
ing

In this program some suspension waiting relations form a cycle and these is no task
that can resolve the suspension waiting relations. Therefore a tasking deadlock occurs
in this program. The synchronization waiting cycle in this program is as follows:

T1 →Sus S1 →Sus T3 →Sus S3 →Sus T2 →Sus S2 →Sus T1

Example Program 2

with Ada.Synchronous_Task_Control;
use Ada.Synchronous_Task_Control;
procedure Main is

task T1;
task T2;
task T3;
S1 : Suspension_Object;
S2 : Suspension_Object;
S3 : Suspension_Object;
task body T1 is
begin

Set_False(S1);
Suspend_Until_True(S1);
Set_True(S2);

end T1;
task body T2 is
begin

Set_False(S2);
Suspend_Until_True(S2);
Set_True(S3);

end T2;
task body T3 is
begin

Set_False(S3);
Suspend_Until_True(S3);
Set_True(S1);

end T3;
begin null; end Main;

Fig. 2: TWFG of example program 2



3.4 Example Program 3: A Cycle of Synchronization Waiting that is not
a Tasking Deadlock

This program shall form a cycle of synchronization waiting relations. However the cycle
is not a tasking deadlock, because suspension waiting is resolved by a task that is not
in the cycle. The synchronization waiting cycle in this program is as follows:

T1 →Act T3 →Fin A →Fin T4 →Sus S1 →Sus T2 →Com T1

Example Program 3

with Ada.Synchronous_Task_Control;

use Ada.Synchronous_Task_Control;

procedure Main is

task T1;

task T2 is entry E2; end T2;

S1 : Suspension_Object;

task body T1 is

task T3;

task body T3 is

begin

A:

declare

task T4 is entry E4; end T4;

task T5;

procedure GET is

begin

T4.E4;

end GET;

task body T4 is

begin

Set_False(S1);

Suspend_Until_True(S1);

accept E4;

end T4;

task body T5 is

begin

Set_True(S1);

GET;

end T5;

begin null; end A;

end T3;

begin null; end T1;

task body T2 is

begin

select

when FALSE => accept E2;

or

terminate;

end select;

Set_True(S1);

end T2;

begin null; end Main; Fig. 3: TWFG of example program 3



3.5 Example Program 4: Tasking Deadlocks by modifying Program 3

This program is just like Program 3 but tasking deadlocks will occur in this program.
These tasking deadlocks are caused by exchanging the order of two lines of code in T5
in the programs. The synchronization waiting cycles in this program are as follows:

T1 →Act T3 →Fin A →Fin T4 →Sus S1 →Sus T2 →Com T1

T5 →Fin GET →EC T4 →Sus S1 →Sus T5

Example Program 4

with Ada.Synchronous_Task_Control;

use Ada.Synchronous_Task_Control;

procedure Main is

task T1;

task T2 is entry E2; end T2;

S1 : Suspension_Object;

task body T1 is

task T3;

task body T3 is

begin

A:

declare

task T4 is entry E4; end T4;

task T5;

procedure GET is

begin

T4.E4;

end GET;

task body T4 is

begin

Set_False(S1);

Suspend_Until_True(S1);

accept E4;

end T4;

task body T5 is

begin

GET;

Set_True(S1);

end T5;

begin null; end A;

end T3;

begin null; end T1;

task body T2 is

begin

select

when FALSE => accept E2;

or

terminate;

end select;

Set_True(S1);

end T2;

begin null; end Main;

Fig. 4: TWFG of example program 4



3.6 Example Program 5: A Tasking Deadlock and a Tasking Livelock

This program has a tasking deadlock and a tasking livelock simultaneously. T1 and
T2 form a suspension waiting cycle. However all other tasks are involved in a tasking
livelock. The synchronization waiting cycle in this program is T1 →Sus S1 →Sus T2 →Sus

S2 →Sus T1. Livelocked tasks are T3 and T4. This type of tasking deadlock cannot be
detected by using the TWFG, because the TWFG cannot handle tasking livelocks.

Example Program 5

with Ada.Synchronous_Task_Control;
use Ada.Synchronous_Task_Control;
procedure Main is

task T1;
task T2;
task T3 is entry E3; end T3;
task T4 is entry E4; end T4;
S1 : Suspension_Object;
S2 : Suspension_Object;
task body T1 is
begin

Set_False(S1);
Suspend_Until_True(S1);
Set_True(S2);

end T1;
task body T2 is
begin

Set_False(S2);
Suspend_Until_True(S2);
Set_True(S1);

end T2;
task body T3 is
begin

loop
T4.E4;
accept E3;

end loop;
Set_True(S1);

end T3;
task body T4 is
begin

loop
accept E4;
T3.E3;

end loop;
end T4;

begin null; end Main;

Fig. 5: TWFG of example program 5



4 Concluding Remarks

We have presented some examples of tasking deadlocks concerning tasking synchro-
nization waiting relations defined in Ada 95’s Real-Time Systems Annex.

We have extended the method of detecting tasking deadlocks at run-time for the
core Ada 95 to the full Ada 95 by introducing suspension waiting arcs into the TWFG,
and developed a new tasking deadlock detector which can detect all types of tasking
deadlock. We will present our tasking deadlock detector in another paper.

References

[1] Barnes, J.: Programming in Ada 95 (2nd Edition), Addison-Wesley, 1998.

[2] Burns, A., Wellings, A.: Concurrency in Ada (2nd Edition), Cambridge, 1998.

[3] Cheng, J.: A Classification of Tasking Deadlocks, ACM Ada Letters, Vol.10, No.5,
pp.110-127, 1990.

[4] Cheng, J.: Task-Wait-For Graphs and Their Application to Handling Tasking
Deadlocks, Proc. 3rd ACM Annual TRI-Ada Conference, pp.376-390, 1990.

[5] Cheng, J., Ushijima, K.: Tasking Deadlocks in Ada 95 Programs and Their Detec-
tion, in A. Strohmeier (ed.), “Reliable Software Technologies - Ada-Europe ’96,”
Lecture Notes in Computer Science, Vol. 1088, pp.135-146, Springer-Verlag, 1996.

[6] Conn, R.: Software Version Description(SVD) and Software User’s Manual(SUM)
Source Code Analysis Tool Construction Domain-Specific Kit(SCATC DSK), Pub-
lic Ada Library, 1998.

[7] International Organization for Standardization Information Technology - Program-
ming Language - Ada, ISO/IEC 8652:1995(E), 1995.

[8] Nonaka, Y., Cheng, J., Ushijima, K.: A Tasking Deadlock Detector for Ada 95
Programs, Ada User Journal, Vol.20, No.1 pp.79-92, 1999.


