
GetMobile    July 2016 | Volume 20, Issue 312

[ARM’S LENGTH]

Ph
ot

o,
 b

ig
st

oc
kp

ho
to

.c
om

Luis Ceze University of Washington, Seattle, WA 
Adrian Sampson Cornell University, Ithaca, NY 

APPROXIMATE  
COMPUTING:  
Unlocking Efficiency with  
Hardware–Software Co-Design 

Editor: Matthai Philipose 

Generations of computer scientists and practitioners have worked under the assumption that computers 
will keep improving themselves: just wait a few years and Moore’s Law will solve your scaling problems. 
This reliable march of electrical-engineering progress has sparked revolutions in the ways humans use 
computers and interact with the world and each other. But growth in computing power has protected 
outdated abstractions and encouraged layering even more abstractions, whatever the cost.
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T he free lunch seems to be over: 
single-thread performance has 
stagnated, Dennard scaling 
has broken down, and Moore’s 
Law threatens to do the same. 

The shift to multi-core designs worked as 
a stopgap in the final years of frequency 
advancements, but physical limits have 
dashed hopes of long-term exponential 
gains through parallelism. 

The next phase of computing advances 
will need to leave old abstraction boundaries 
behind. Hardware designs will need to react 
to application needs, and software will need 
to cope with the limitations of hardware. 

The general idea of accuracy trade-
offs has been around for a long time: for 
example, floating point numbers and 
lossy image compression are ubiquitous. 
Over the past six years, the architecture, 
programming languages and systems 
communities have actively explored 
approximate computing, a new direction 
in hardware–software co-design research 
that exploits the same kinds of trade-offs 
in the way we design systems. The idea 
is that current abstractions in computer 
systems fail to incorporate an important 
dimension of the application design space: 
not every application needs the same degree 
of accuracy all the time. These applications 
span a wide range of domains including 
big-data analytics, web search, machine 
learning, cyber-physical systems, speech 
and pattern recognition, augmented reality, 
and many more. These kinds of programs 
can tolerate unreliable and inaccurate 
computation, and approximate computing 
research shows how to exploit this tolerance 
for gains in performance and efficiency [1], 
[5], [6], [7], [11], [12], [14], [16], [17]. 

Approximate computing is a classic 
cross-cutting concern: its full potential is 
not reachable through software or hardware 
alone, but only through changing the 
abstractions and contracts between hardware 
and software. Advances in approximation 
require co-design between architectures 
that expose accuracy – efficiency trade-offs 
and the programming systems that make 
those trade-offs useful for programmers. 

We have explored projects across the entire 
system stack – from programming languages 
and tools down through the hardware – 
that enable computer systems to trade off 
accuracy of computation, communication, 
and storage for gains in efficiency and 
performance. 

This article highlights two main 
challenges in approximate computing: 
we need hardware technologies that can 
smoothly trade off energy for accuracy, 
and we need ways to safely program these 
approximate computers. We then enumerate 
some remaining open challenges in 
approximation. 

EXPLOITING APPROXIMATION  
FOR EFFICIENCY
The first ingredient in approximate comput-
ing is a system that can trade off accuracy for 
efficiency in some resource. The efficiency 
can come in many flavors: performance, 
energy, storage density, network capacity, 
or any other constraint. We categorize some 
recent advantages into approximation for 
computation and for storage. 

Computation 
Approximation research has explored 
several approximate execution techniques 
with hardware support, among them: 
compiler-controlled voltage overscaling 
[8] and fine-grain control of bit-width 
via power gating [24]. The techniques 
with the largest efficiency gains work by 
replacing entire sections of precise code 
with approximate alternatives, such as 
hardware neural network accelerators [9] 
or even analog components [23]. Analog 
neural acceleration can make approximate 
applications use 6.3× less energy [23]. 

Storage 
A lot of hardware resources are devoted to 
storage, from DRAM to flash to spinning 
media. Approximation can also enable 
more effective use of storage resources. 
Some notable examples are Flikker [12], 
which reduces DRAM refresh rates to 
reduce energy consumption at the cost of 
potential data corruption of approximate 

date; approximate storage [21] in solid 
state memories to increase storage density 
and write performance by reusing worn 
blocks or more densely exploiting the 
available dynamic range; and extending 
the microarchitecture’s memory system 
with imprecise modes [13]. Approximating 
memory writes can even extend the usable 
lifetime of memories that wear out by  
23% [21]. 

A Case Study: Neural Acceleration 
with On-Chip FPGAs 
A powerful approach to approximate 
computing, neural acceleration, works by 
substituting entire regions of code in a 
program with machine learning models [9]. 
Neural acceleration trains neural networks 
to mimic and replace regions of approximate 
imperative code. Once the neural network 
is trained, the system no longer executes the 
original code and instead invokes the neural 
network model on a neural processing unit 
(NPU) accelerator. Neural networks have 
efficient hardware implementations, so 
this workflow can offer significant energy 
savings over traditional execution. 

Neural acceleration consists of three 
phases: programming, compilation, and 
execution. 

Programming: To use neural acceleration 
in ACCEPT, the programmer uses profiling 
information and type annotations to mark 
code that is amenable to approximation. 
For many applications, it is easy to identify 
the “core” approximate data, such as the 
pixel array in an image filter algorithm, that 
dominates the program’s execution. The 
programmer also provides a quality metric 
that measures the accuracy of the program’s 
overall output. 

Compilation: The compiler implements 
neural acceleration in four phases: region 
selection, execution observation, training, 
and code generation. ACCEPT first 
identifies large regions of code that are safe 
to approximate and nominates them as 
candidates for neural acceleration. Next, it 
executes the program with test cases and 
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records the inputs and outputs to each target 
code region. It then uses this input–output 
data to train a neural network that mimics 
the original code. Training can use standard 
techniques for neural networks: we use the 
standard backpropagation algorithm. Finally, 
the compiler generates an executable that 
replaces the original code with invocations 
of a special accelerator, the neural processing 
unit (NPU), that implements the trained 
neural network. 

Execution: During deployment, the 
transformed program begins execution 
on the main core and confi gures the NPU. 
Th roughout execution, the program invokes 
the NPU to perform a neural network 
evaluation in lieu of executing the code 
region it replaced. Invoking the NPU 
is faster and more energy-effi  cient than 
executing the original code region on the 
CPU, so the program as a whole runs faster. 

Our NPU implementation, SNNAP, runs 
on off -the-shelf fi eld-programmable gate 
arrays (FPGAs). Using existing, aff ordable 
hardware means that SNNAP can provide 
benefi t today, without waiting for new 
silicon. SNNAP uses an emerging class of 
heterogeneous computing devices called Pro-
grammable System-on-Chips (PSoCs). Th ese 
devices combine a set of hard processor 
cores with programmable logic on the same 

die. Compared to conventional FPGAs, this 
integration provides a higher-bandwidth and 
lower-latency interface between the main 
CPU and the programmable logic. 

Implementation on the Zynq: We have 
implemented SNNAP on a commercially 
available PSoC: the Xilinx Zynq-7020 on 
the ZC702 evaluation platform [25]. Th e 
Zynq includes a Dual Core ARM Cortex-A9 
and an FPGA fabric. Th e CPU–NPU 
interface composes three communication 
mechanisms on the Zynq PSoC [26] for 
high bandwidth and low latency. First, when 
the program starts, it confi gures SNNAP 
using the medium-throughput General 
Purpose I/Os (GPIOs) interface. Th en, to 
use SNNAP during execution, the program 
sends inputs using the high-throughput 
ARM Accelerator Coherency Port (ACP). 
Th e processor then uses the ARMv7 SEV/
WFE signaling instructions to invoke SNNAP 
and enter sleep mode. Finally, the accelerator 
writes outputs back to the processor’s cache 
via the ACP interface and, when fi nished, 
signals the processor to wake up. 

Microarchitecture: Our design, shown in 
Figure 1, consists of a cluster of Processing 
Units (PUs) connected through a bus. Each 
PU is composed of a control block, a chain 
of Processing Elements (PEs), and a sigmoid 

unit, denoted by the SIG block. Th e PEs 
form a one-dimensional systolic array 
that feeds into the sigmoid unit. Systolic 
arrays excel at exploiting the regular data-
parallelism found in neural networks, and 
are amenable to effi  cient implementation on 
modern FPGAs. When evaluating a layer 
of a neural network, PEs read the neuron 
weights from a local scratchpad memory 
where temporary results can also be stored. 
Th e sigmoid unit implements a nonlinear 
neuron-activation function using a lookup 
table. Th e PU control block contains a 
confi gurable sequencer that orchestrates 
communication between the PEs and the 
sigmoid unit. Th e PUs can be programmed 
to operate independently, so diff erent 
PUs can either be used to parallelize the 
invocations of a single neural network or 
used to evaluate diff erent neural networks 
concurrently. 

Results: Across seven approximate 
benchmarks, SNNAP off ers an average 
speedup of 3.8× within acceptable quality 
bounds [15]. Th e approach can outperform 
traditional high-level synthesis tools that 
produce precise FPGA confi gurations. 

SAFETY AND QUALITY 
OF RESULTS 
It is not enough to build approximate 
hardware components: using approximation 
has deep implications for the way we 
write soft ware. Th e second main thrust 
in approximate-computing research is on 
programming languages, compilers, and 
tools that make approximate programs 
safe accurate. 

First, programming models need to 
enforce safety: approximate components 
must not compromise safe execution (e.g., 
no uncontrolled jumps or critical data 
corruption) and must interact with precise 
components only in well-defi ned ways 
allowed by the programmer. Our work met 
this need with language support in the form 
of type qualifi ers for approximate data and 
type-based static information-fl ow tracking 
[19]. Other work from MIT consists of a 
proof system for deriving safety guarantees 
in the face of unreliable components [3]. 
Th ese crucial safety guarantees allow systems 
to prove at compile time that approximation 
cannot introduce catastrophic failures into 
otherwise good programs. 

FIGURE 1. SNNAP system diagram: Each Processing Unit (PU) contains a 
chain of Processing Elements (PE) feeding into a sigmoid unit (SIG). 
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Beyond safety, another key requirement 
is ways to specify and ensure acceptable 
quality of results (QoR). Languages must 
enable programmers to declare the 
magnitude of acceptable approximation 
in multiple forms and granularities. For 
example, QoR can be set for a specific value 
(X should be at most Y% from its value in a 
fully precise execution), or one could attach 
QoR to a set of values (at most N values in 
a set can be in error). One can provide a 
QoR specification only for the final output 
of a program or for intermediate values. 
QoR specifications can then guide the 
compiler and runtime to choose and control 
the optimal approximate execution engine 
from a variety of software and hardware 
approximation mechanisms. While quality 
constraints are more general and therefore 
more difficult to enforce statically than 
safety requirements, initial tactics have 
seen success by limiting the kinds of 
approximation they can work with [22], [4] 
or by relying on dynamic checks [18], [10]. 

A Case Study:  
An Approximate Compiler 
ACCEPT is compiler framework for 
approximate computing. It combines 
programmer annotations, code analysis, 
optimizations, and profiling feedback to 
make approximation safe and keep control 
in the hands of programmers. 

ACCEPT’s frontend, built atop the 
LLVM compiler infrastructure, extends 
the syntax of C and C++ to incorporate an 
APPROX keyword that programmers use 
to annotate data types. ACCEPT’s analysis 
identifies code that can affect only variables 
marked as APPROX. Optimizations use 
these analysis results to avoid transforming 
the precise parts of the program. An 
autotuning component measures 
program executions and uses heuristics to 

identify program variants that maximize 
performance and output quality. The final 
output is a set of Pareto-optimal versions of 
the input program that reflect its efficiency–
quality trade-off space. 

Safety constraints and feedback: 
Because program relaxations can have 
outsize effects on program behavior, 
programmers need visibility into — and 
control over — the transformations the 
compiler applies. To give the programmer 
fine-grained control over relaxations, 
ACCEPT extends an existing lightweight 
annotation system for approximate 
computing based on type qualifiers [19]. 
ACCEPT gives programmers visibility 
into the relaxation process via feedback 
that identifies which transfor- mations 
can be applied and which annotations are 
constraining it. Through annotation and 
feedback, the programmer iterates toward an 
annotation set that unlocks new performance 
benefits while relying on an assurance that 
critical computations are unaffected. 

Automatic program  
transformations: Based on programmer 
annotations, ACCEPT’s compiler passes 
apply program transformations that 
involve only approximate data. To this 
end, ACCEPT provides a compiler analysis 
library that finds regions of code that are 
amenable to transformations. An ensemble 
of optimization strategies transform these 
regions. One critical optimization targets 
SNNAP, our neural accelerator, which we 
describe in more detail below. 

Autotuning: While a set of annotations 
may permit many different safe program 
relaxations, not all of them are beneficial 
in the quality–performance trade-off they 
offer. A practical approximation mechanism 

must help programmers choose from 
among many candidate relaxations for 
a given program to strike an optimal 
balance between performance and quality. 
ACCEPT’s autotuner heuristically explores 
the space of possible relaxed programs to 
identify Pareto-optimal variants. 

Results: ACCEPT is an open-source proj-
ect available at https://sampa.cs.washington.
edu/accept/  By combining multiple approxi- 
mation strategies, ACCEPT can speed up 
applications by 2.3× on commodity x86 
hardware and by 4.8× on an off-the-shelf 
FPGA–CPU hybrid system [20]. 

NEXT STEPS IN APPROXIMATION 
Controlling quality
The community has allocated more attention 
to assuring safety of approximate programs 
than to controlling quality. Decoupling 
safety from quality has been crucial to en-
abling progress on that half of the equation 
[19], [3] but more nuanced quality prop-
erties have proven more challenging. We 
have initial ways to prove and reason about 
limited probabilistic quality properties [4], 
[2], [22], but we still lack techniques that can 
cope with arbitrary approximation strategies 
and still produce useful guarantees. 

We also need ways to measure quality at 
run time. If approximate programs could 
measure how accurate they are without 
too much overhead, they could offer 
better guarantees to programmers while 
simultaneously exploiting more aggressive 
optimizations [10], [18]. But there is not yet 
a general way to derive a cheap, dynamic 
quality check for an arbitrary program and 
arbitrary quality criterion. Even limited 
solutions to the dynamic-check problem 
will amplify the benefits of approximation. 

Defining quality
Any application of approximate computing 
rests on a quality metric. Even evaluations 
for papers on approximation need to 
measure their effectiveness with some 
accuracy criterion. Unlike traditional 
criteria — energy or performance, for 
example — the right metric for quality 
is not obvious. It varies per program, 
per deployment, and even per user. The 
community does not have a satisfactory way 
to decide on the right metric for a given 
scenario: we are so far stuck with guesses. 

[ARM’S LENGTH]

THE NEXT PHASE OF COMPUTING ADVANCES 
WILL NEED TO LEAVE OLD ABSTRACTION 
BOUNDARIES BEHIND. HARDWARE DESIGNS 
WILL NEED TO REACT TO APPLICATION 
NEEDS, AND SOFTWARE WILL NEED TO COPE 
WITH THE LIMITATIONS OF HARDWARE
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these trends. ACCEPT and SNNAP are 
two recent, open-source efforts to bring 
early-stage approximation research into 
the mainstream. Together, they can offer 
significant speedups on approximate 
applications while guaranteeing safety  
and enforcing high-quality output. n
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A next step in approximation research 
should help build confidence that we are 
using the right quality metrics. We should 
adopt techniques from software engineer-
ing, human-computer interaction, and 
application domains like graphics to help 
gather evidence for good quality metrics. 
Ultimately, programmers need a sound 
methodology for designing and evaluating 
quality metrics for new scenarios. 

The right accelerator 
Hardware approximation research has 
fallen into two categories: extensions to 
traditional architectures [8], [13] and new, 
discrete accelerators [24], [9]. The former 
category has yielded simpler programming 
models, but the fine-grained nature of the 
model means that efficiency gains have 
been limited. Coarser-grained, accelerator-
oriented approaches have yielded the best 
results to date. There are still opportunities 
for co-designing accelerators with 
programming models that capture the best 
of both approaches. The next generation 
of approximate hardware research should 
co-design an accelerator design with a 
software interface and compiler workflow 
that together attack the programmability 
challenges in approximation: safety and 
quality. By decoupling approximation from 
traditional processors, new accelerators 
could unlock new levels of efficiency while 
finally making approximate computing 
palatable hardware vendors. 

Tools
A final key component for making 
approximate programming practical is 
software-development tools. We need tools 
to help programmers identify approximation 
opportunities, understand the effect of 
approximation at the application level, assist 
with specifying QoR requirements, and help 
test and debug applications with approximate 
components. Our first steps in this direction 
are a debugger and a post-deployment 
monitoring framework for approximate 
programs [18]. 

CONCLUSION
Many applications can tolerate imprecision, 
and many systems can be far more efficient 
when we let them operate imprecisely. 
Approximate computing is a new hardware 
– software research direction that exploits 




