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Tung Thanh Hoang, Magnus Själander, Per Larsson-Edefors
Department of Computer Science and Engineering

Chalmers University of Technology
412 96 Gothenburg, Sweden

Email: {hoangt,hms,perla}@chalmers.se

Abstract—
As a simple five-stage General-Purpose Processor (GPP), the

baseline FlexCore processor has a limited set of datapath units.
By utilizing a flexible datapath interconnect and a wide control
word, a FlexCore processor is explicitly designed to support
integration of special units that, on demand, can accelerate
certain data-intensive applications. In this paper, we propose the
integration of a novel Double Throughput Multiply-Accumulate
(DTMAC) unit, whose different operating modes allow for on-the-
fly optimization of computational precision. For the two EEMBC
benchmarks considered, the FlexCore processor performance is
significantly enhanced when one DTMAC accelerator is included,
translating into reduced execution time and energy dissipation.
In comparison to the GPP reference, the accelerated FlexCore
processor shows a 4.37x improvement in execution time and a
3.92x reduction in energy dissipation, for a benchmark with many
consecutive MAC operations.

I. INTRODUCTION

General-Purpose Processors (GPPs) have been commonly
used at the core of System-on-Chip (SoC) designs, due to
the high post-fabrication flexibility that GPP programmabil-
ity offers. However, because of their generality, GPPs have
problems to satisfy strict demands on throughput and energy
dissipation in data-intensive computations.

From another aspect, a GPP configuration in an ASIC is not
flexible at all, in the sense that its hardware units are hardcoded
into the instruction set. Because of the need for instruction
standardization in GPPs, functional units are selected and log-
ically interconnected, before the implementation phase starts.
This makes it next to impossible to add or subtract functional
units in later development phases.

One of the primary goals of the FlexSoC scheme [1] is
to provide a relatively simple GPP—the baseline FlexCore
processor—that can be systematically and efficiently extended
with accelerators. The baseline FlexCore processor has the
datapath units of a simple five-stage GPP pipeline, but a
flexible datapath interconnect. During implementation, the
FlexCore interconnect can be designed to cover all communi-
cation paths—this is the baseline interconnect—or, better yet,
customized to a number of often used communication paths
(obtained from application profiling). Thanks to the instruction
scheduling that can make use of the flexible interconnect, a
baseline FlexCore datapath [1], [2] that uses a customized
interconnect has shorter execution time and lower energy
dissipation than more rigid architectures.

The Native-ISA (N-ISA) of the FlexSoC scheme makes
it possible to collocate several accelerators with the base-
line datapath. While our previous work assumed a baseline
FlexCore datapath configuration that, except for a multiplier
extension, lacked accelerators, this paper deals with accel-
erator integration in a FlexCore processor. The FlexCore
N-ISA also enables fine-grain control over datapath units.
In the FlexSoC scheme, the fine-grain control is used to
support post-fabrication on-the-fly optimization, on top of the
datapath and interconnect customization that can be done
during implementation. In this paper, on-the-fly optimization
refers to optimization of computational precision: We propose
the Double Throughput Multiply-ACcumulate (DTMAC) ac-
celerator, whose operating mode is under software control and
can be changed during run-time.

Our contributions are summarized as follows:
• We propose the microarchitecture and circuitry for the

DTMAC accelerator. With a limited overhead for flexibil-
ity, a DTMAC unit can operate on varying operand sizes,
depending on the need of the currently executed appli-
cation, increasing throughput and saving energy. For ex-
ample, many embedded programs operate on 16-bit data,
allowing the 32-bit FlexCore processor to optionally—
and with limited overhead—execute two simultaneous
16-bit computations on one 32-bit datapath.

• We suggest a design flow to integrate accelerators with
the baseline FlexCore processor to improve performance
and energy efficiency for certain applications.

• We evaluate the performance and energy enhancement
of the new DTMAC unit in the context of the FlexCore
processor, for two different EEMBC benchmarks [3].

The remainder of this paper is organized as follows: Sec. II
introduces the DTMAC microarchitecture and makes compar-
isons to a conventional MAC unit. Next, Sec. III discusses the
FlexSoC scheme and illustrates a design flow for integration of
any kind of accelerator into the FlexCore processor. In Sec. IV,
we not only provide the power, delay, and area evaluation
of the DTMAC unit itself, but use an EEMBC benchmark
evaluation to show the execution time and energy dissipation
advantages in the context of a FlexCore processor. Finally, we
conclude our paper in Sec. V.



II. DOUBLE THROUGHPUT MULTIPLY-ACCUMULATE
(DTMAC) UNIT

A. Implementation

Designers of embedded integrated circuits today have to
deal with strict requirements, especially in Digital Signal
Processing (DSP) applications. A general rule-of-thumb says
that about 10% of DSP-oriented program code belongs to inner
loops and that these loops, when run cyclically, occupy some
90% of the total execution time. To select and integrate an
appropriate set of accelerators to perform frequently executed
instructions can, thus, significantly increase the overall perfor-
mance of such embedded circuits. The impact of accelerators
on performance of various DSP programs was reported in [4],
and we incidently note that Multiply-ACcumulate (MAC) is
described as a frequently used operation.

Conventionally a MAC unit is made up of a chain of a
multiplier and an accumulate adder, with a pipeline register in
between, and an accumulate register for data feedback. Thus,
the output of the multiplier is stored in registers in each cycle
and is accumulatively added in next cycles. The MAC unit
has been widely used not only in modern DSP processors, but
also in GPPs to support efficient execution of some demanding
applications.
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Fig. 1. The general architecture of the proposed Double Throughput MAC
for a 32-bit datapath. In this paper, N=32 and Ng=8 denotes the input width
and the number of guarding bits, respectively.)

Many embedded applications are based on a 16-bit dynamic
range, while the FlexCore processor along with many other
embedded processors has a 32-bit datapath. Potentially a 32-bit
datapath could accommodate the execution of two simultane-
ous 16-bit operations. A MAC unit that can optionally switch

between N -bit operation and 2 × N /2-bit operation is here
referred to as a Double Throughput MAC (DTMAC). This
feature would be useful in many DSP-oriented applications,
e.g. when the dynamic range is lower or when there is a need
to simultaneously calculate real and imaginary values.

Obviously, a double throughput 32-bit MAC can be (logi-
cally) implemented by tying together two separate, single 16-
bit MACs [5]. In this case, two separate 16-bit multipliers
are required to support two parallel MAC operations but it
comes with a design complexity cost in that the full 32-bit
operation is difficult to implement, due to complex connections
of the individual multipliers’ outputs. FPGA technology offers
reconfigurability that can support double throughput MAC [6],
but FPGAs are still inefficient in terms of speed and power as
compared to ASIC solutions.

Our DTMAC unit in Fig. 1 is designed to support the
efficient execution of several operating modes in a 32-bit data-
path. The unit employs the twin-precision (TP) technique [7],
in terms of a modified 32-bit TP multiplier1 that contains a
Twin-Precision Partial-Product Reduction Tree (TP-PPRT) to
generate the partial product outputs, which in conventional
schemes are fed to a final adder2. Instead we insert a level
of adder cells (Combination unit) that combine the outputs of
the TP-PPRT with the result of the accumulate adder. In the
guarding bit positions of the combination unit, the half adder
cells add ’1’s with the accumulated result, to obtain the correct
logical function. The combination unit can be placed after or
before the pipeline registers depending on whether the TP-
PPRT or the accumulate adder block represents the dominant
delay of the DTMAC unit. The use of the combination unit
makes it possible to build a high-speed, but still flexible
DTMAC unit using only two pipeline stages, which limits the
clock load and makes for a power-efficient design.

The accumulate adder is a twin-precision version of a
Ladner-Fisher parallel-prefix adder [8] that contains 80 bits,
divided in two sections (high and low) each containing 32 data
and eight (8) extra guarding bits. Because each of the two
sections has eight guarding bits, this DTMAC unit supports
loops with 256 iterations without requiring any right shifting
of the output to avoid overflow.

The AND gate is inserted and controlled by one control
bit (CTRL2[0]) to set the XOR’s input at position 40, to
either zero or to the carry signal of the 32-bit data part of the
low section of the accumulate adder, depending on operation
modes.

The DTMAC unit operates on two’s complement data and
supports six operating modes (three for MAC operations and
three for multiplications), as determined by the value of the
3-bit control signal (CTRL):
• 000 : Full throughput 32-bit MAC (FM DTMAC).
• 001 : Single throughput 16-bit MAC (SM DTMAC).

1Here, the term ”modified” is used to describe a multiplier whose multipli-
cation is not complete until carry propagation is carried out in the accumulate
adder.

2A final adder is based on a high-speed carry propagate architecture to sum
the outputs of a PPRT and to generate the final product.



A[0]A[1]A[2]A[M-1]A[M]A[M+1]A[N-3]A[N-2]A[N-1]

B[0]B[1]B[2]B[M-1]B[M]B[M+1]B[N-3]B[N-2]B[N-1]

PP[0][0]PP[1][0]PP[2][0]PP[M-1][0]PP[M][0]PP[M+1][0]PP[N-3][0]PP[N-2][0]PP[N-1][0]

PP[0][1]PP[1][1]PP[2][1]PP[M-1][1]PP[M][1]PP[M+1][1]PP[N-3][1]PP[N-2][1]PP[N-1][1]

PP[0][2]PP[1][2]PP[2][2]PP[M-1][2]PP[M][2]PP[M+1][2]PP[N-3][2]PP[N-2][2]PP[N-1][2]

PP[0][M-1]PP[1][M-1]PP[2][M-1]PP[N-3][M-1]PP[N-2][M-1]PP[N-1][M-1] PP[M-1][M-1]PP[M+1][M-1]

PP[0][M]PP[1][M]PP[2][M]PP[N-3][M]PP[N-2][M]PP[N-1][M] PP[M-1][M]PP[M][M]PP[M+1][M]

PP[0][M+1]PP[1][M+1]PP[2][M+1]PP[N-3][M+1]PP[N-2][M+1]PP[N-1][M+1] PP[M-1][M+1]PP[M][M+1]PP[M+1][M+1]

PP[0][N-3]PP[1][N-3]PP[2][N-3]

PP[0][N-2]PP[1][N-2]PP[2][N-2]

PP[0][N-1]PP[1][N-1]PP[2][N-1]

PP[M-1][N-3]PP[M][N-3]PP[M+1][N-3]

PP[M-1][N-2]PP[M][N-2]PP[M+1][N-2]

PP[M-1][N-1]PP[M][N-1]PP[M+1][N-1]

PP[N-3][N-3]PP[N-2][N-3]PP[N-1][N-3]

PP[N-3][N-2]PP[N-2][N-2]PP[N-1][N-2]

PP[N-3][N-1]PP[N-2][N-1]PP[N-1][N-1]1

1/0

1/0

1/0

1/PP[M][M-1]

Set to '1' by Ctrl_0[1:0]  signals

for FM_DTMAC or FM_MULT

Set to '1' by Ctrl_0[1:0]  signals

for DM_DTMAC or TM_MULT
Set to '1' by Ctrl_0[1:0]  signals

for SM_DTMAC or SM_MULT

PP[0][0]PP[0][1]PP[1][0]PP[1][1]S[2N-4:0] C[2N-4:0]F[2N+2Ng-1:0]

(a) TP-PPRT using Baugh algorithm. (Here, M= N/2.)

FA HAFA FAFAHA FAHAFA FAFAHA FAXOR

F
[0
]

P
P
[0
][
0
]

F
[1
]

P
P
[0
][
1
]

P
P
[1
][
0
]

F
[2
]

P
P
[1
][
1
]

S
[0
]

F
[3
]

C
[0
]

S
[1
]

F
[N
-2
]

C
[N
-5
]

S
[N
-4
]

F
[N
-1
]

C
[N
-4
]

S
[N
-3
]

F
[N
]

'1
']

F
[N
+
N
g
-1
]

'1
']

F
[N
+
N
g
]

C
[N
-3
]

S
[N
-2
]

F
[N
+
N
g
+
1
]

C
[N
-2
]

S
[N
-1
]

F
[2
N
+
N
g
-2
]

C
[2
N
-5
]

S
[2
N
-4
]

F
[2
N
+
N
g
-1
]

C
[2
N
-4
]

C
tr
l_
2
[1
]

F
[2
N
+
N
g
]

'1
']

F
[2
N
+
2
N
g
-1
]

'1
']

C
tr
l_
2
[0
]

'0'

S
1
[2
N
+
2
N
g
-1
]

C
1
[2
N
+
2
N
g
-1
]

S
1
[2
N
+
2
N
g
-2
]

C
1
[0
]

C
1
[2
N
+
N
g
-1
]

S
1
[2
N
+
N
g
]

C
1
[2
N
+
N
g
-2
]

S
1
[2
N
+
N
g
-1
]

C
1
[2
N
+
N
g
-1
]

S
1
[2
N
+
N
g
-2
]

C
1
[2
N
+
N
g
-2
]

S
1
[2
N
+
N
g
-3
]

C
1
[N
+
N
g
]

S
1
[N
+
N
g
+
1
]

C
1
[N
+
N
g
-1
]

S
1
[N
+
N
g
]

C
1
[N
+
N
g
-2
]

S
1
[N
+
N
g
-1
]

C
1
[N
+
N
g
-3
]

S
1
[N
+
N
g
-2
]

C
1
[N
-1
]

S
1
[N
]

C
1
[1
]

S
1
[0
]

C
1
[N
-2
]

S
1
[N
-1
]

C
1
[N
-3
]

S
1
[N
-2
]

C
1
[N
-4
]

S
1
[N
-3
]

C
1
[4
]

S
1
[3
]

C
1
[3
]

S
1
[2
]

C
1
[2
]

S
1
[1
]

(b) Combination unit.
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(c) Accumulate adder.

Fig. 2. Structure of the DTMAC’s components: (a) TP-PPRT, (b) Combination unit and (c) Accumulate adder. (The cyan and white box denotes computation
in most-significant bits (MSB) and least-significant bits (LSB) part, respectively, while grey denotes full-precision computation.)

• 010 : Double throughput 2x16-bit MAC (DM DTMAC).
• 100 : Single-precision 16-bit multiplication

(SM MULT).
• 101 : Twin-precision 2x16-bit multiplication

(TM MULT).
• 110 : Full-precision 32-bit multiplication (FM MULT).

B. Evaluation

For the purpose of evaluation, we developed an RTL model
of a 32-bit DTMAC as well as conventional 2-cycle 16-bit and
32-bit MACs, for reference. All designs were simulated and
synthesized using the Design Compiler tool, for a commercial
1.1-V 65-nm standard-VT cell library and the same timing
constraints. PrimeTime was used to find the critical path delay.

In the proposed DTMAC unit, there exists no final adder.
This makes the critical path delay of our 2-cycle DTMAC
dominated by the delay of the TP-PPRT part. Our DTMAC
actually has the same critical delay as that of a conventional
3-cycle single 32-bit MAC, in which a pipeline register is
inserted between the PPRT block and the final adder to sever
the critical path of the multiplication. The result is that the
DTMAC unit, despite the operating mode flexibility, has small

area, low power dissipation and short critical path delays.
When the DTMAC unit operates in SP MULT mode, half

of the respective registers are de-activated to isolate the inputs
of half of the accumulate adder and the MSB input bits of
the multiplier are set to zero, to reduce switching activity and
dynamic power dissipation.

Fig. 3 presents both the delay of individual blocks and the
critical path delay for conventional 2-cycle 16-bit (MAC16)
and 32-bit MACs (MAC32) as well as a 32-bit DTMAC in
different operation modes (SM, DM, and FM). The short
critical path delay is an advantage of our DTMAC, as it
achieves around 28% shorter delay than MAC32 and around
10.4% shorter than MAC16. If high speed is a design target,
the DTMAC unit can be synthesized at 485 MHz, which is
10.2% and 25% faster than MAC16 and MAC32, respectively.

The power dissipation was obtained using 10K random test
vectors at the respective top operating frequency and results
are shown in Table I.

In terms of energy per cycle, the DTMAC unit operating in
single 16-bit MAC mode dissipates only around 2% more than
MAC16; the conventional, fixed-function 16-bit MAC. When
the DTMAC is performing full 32-bit MAC operations, it has
an energy dissipation that is 15.4% lower than MAC32. These
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TABLE I
DELAY, POWER AND ENERGY DISSIPATION OF 2-CYCLE SINGLE 16-BIT

MAC, 2-CYCLE SINGLE 32-BIT MAC AND 32-BIT DTMAC

Design Timing* Power Energy Cell area
(ns) (mW) (pJ) (µm2)

MAC16 2.294( 80.7%) 9.50( 27.0%) 21.79( 25.4%) 12256( 29.4%)
MAC32 2.749(100.0%) 31.18( 88.6%) 85.71(100.0%) 40594( 97.5%)
SM DTMAC32 2.060( 74.9%) 21.31( 32.1%) 23.30( 27.2%) 41624(100.0%)
DM DTMAC32 2.060( 74.9%) 20.58( 58.5%) 42.42( 49.5%) 41624(100.0%)
FM DTMAC32 2.060( 74.9%) 35.19(100.0%) 72.49( 84.6%) 41624(100.0%)
*: Here, timing is summation of critical path delay and propagation, setup
and hold time of in/out registers.

two comparisons reveal that the implementation of flexibility
in the DTMAC unit comes at a limited cost. In fact, energy
is saved for the larger operands, thanks to the new micro-
architecture and circuits.

The final point of comparison is when the DTMAC is in the
DM mode and performs two operations in one cycle. Here, the
DTMAC unit dissipates less energy per 16-bit MAC operation
than MAC16 does. As we will see in Sec. IV, in the context
of a processor, the execution time reduction offered by the
double throughput mode allows us to save substantial amounts
of energy at the processor level.

Our work is not only concerned with the performance of
a stand-alone DTMAC unit, but with the scalability of the
FlexCore processor. The flexible interconnect will have to
cater for more ports when an accelerator is added, which may
degrade performance. Because of the low delay of the DTMAC
accelerator, the critical delay of the FlexCore processor mainly
is defined by the extension of interconnect ports, not longer
from the accelerator delay. In Sec. IV, we will show that
the DTMAC integration does not cause any degradation of
the FlexCore processor speed, which is in contrast to using
for example a conventional 2-cycle 32-bit MAC. But first, in
the next section, we will review the FlexCore processor and
discuss accelerator integration.

III. FLEXSOC ACCELERATOR INTEGRATION

With the exception of the flexible datapath interconnect, a
32-bit FlexCore processor derives its datapath from a conven-

tional single-issue five-stage MIPS [9]: The baseline FlexCore
processor, thus, has a Load/Store (LS), a Register File (RF),
a Program Counter (PC) and an ALU unit. Instead of using
pipelined control signals, the horizontal Native-ISA (N-ISA)
is issued each cycle to control the units and the interconnect
of the datapath. The baseline FlexCore architecture as well as
some possible accelerators are shown in Fig. 4.

The FlexCore datapath interconnect is based on switch-
boxes, whose sizes depend on how many communication
paths are supported—a design decision taken during the in-
terconnect customization phase. In this paper, we will refer
to two different interconnect configurations resulting from the
customization phase:

• GPP: The communication paths found in a conventional,
rigid MIPS interconnect are used as template for cus-
tomization of the FlexCore interconnect. This has the
effect that the MIPS communication paths are—assuming
an ASIC implementation—hardcoded into the switchbox
connections and that instructions are scheduled and ex-
ecuted in the same way as in the conventional MIPS
datapath.

• BASELINE: At the expense of growing hardware, the
implementation of all communications paths allows each
datapath unit to receive inputs from the output of any
unit, including itself.

The two configurations above are defined for the purpose to
reason about how to optimize the communication paths in a
pipelined GPP architecture relating to, for example, bypass and
forwarding techniques in a conventional MIPS. The BASE-
LINE and the GPP interconnect configurations are considered
to be the nominal-case and worst-case configurations, respec-
tively, from an execution time point of view. From a power
and energy point of view, the best interconnect configuration
has fewer paths than BASELINE, but more paths than the
GPP configuration. This tailored interconnect configuration
would have higher computational efficiency than GPP, but
less hardware than BASELINE. As presented in [2], a very
energy-efficient tailored interconnect can be designed based
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Fig. 4. The baseline FlexCore processor with accelerators.

on statistics of which paths are frequently used, assuming an
application or an application domain. This work, however, is
not considering any tailored interconnect configurations at all.

To support a new accelerator, we need to extend the N-ISA
by extra bits. In the case of the DTMAC accelerator, the extra
bits are interconnect ports, DTMAC reset, DTMAC stall and
DTMAC operating mode bits, see Fig. 5.
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Fig. 5. The FlexCore Native-ISA that supports a DTMAC accelerator. (a)
To support the BASELINE interconnect 112 bits are required, (b) while the
GPP interconnect calls for 87 bits.

The N-ISA extension is straightforward: The application
code is analyzed to determine which accelerators are use-
ful [4]. The FlexSoC scheme stores compressed instructions
in memory, with a subsequent on-the-fly decompression in
an instruction decoder that is based on partitioned look-up
tables [10]. Thus, a wider N-ISA does not increase memory
footprint and instruction bandwidth linearly. Still, extending
the N-ISA does not come for free, so accelerators must
be critically selected and possible sharing of control signals
should be studied.

The evaluation platform that we use for integration of the
DTMAC or any suitable accelerator is presented in Fig. 6.
The FlexSoC VHDL generator and the cycle-accurate Flex-
SoC simulator are core functionalities of our platform: After
updating the IP library of the FlexSoC generator with a new
accelerator and its basic building blocks, such as the DTMAC,
it is possible to generate new FlexCore configurations simply
by selecting the datapath units and accelerators to be included
for this particular configuration and defining the available com-

FlexSoC Generator

FlexCore and Interconnect

configuration (RTL model)

Sim., Syn. and Place &

Route script files

EDA Tools
Performance/Power

Evaluation

FlexSoC Simulator

Define/Modify MIPS codes for

DTMAC operation

GCC Cross-MIPS Compiler

EEMBC Benchmarks
RTL model of accelerators

(DTMAC)

RTL models of functional

units (FUs)

Native ISA code

Fig. 6. Evaluation platform of FlexCore accelerator integration system.

munication paths. The FlexCore RTL code is then generated
given that each accelerator is available as RTL code. Finally,
scripts for simulation, synthesis, and (optionally) place and
route for the specified CMOS process technology are produced
for the back-end phase.

IV. EVALUATION USING EEMBC BENCHMARK

A. The Compared Designs

Before discussing evaluation results, we will describe the
three designs that we are comparing:

• GPP-MULT : This case is a MIPS-like GPP processor.
Since the FlexCore ALU unit only supports the elemen-
tary operations (comparison, logic, add/sub), this proces-
sor is equipped also with a conventional 32-bit multi-
plier pipelined in two stages, to execute multiplications.
This datapath uses the GPP interconnect configuration of
Sec. III.

• BASELINE-MULT : This is a baseline FlexCore datapath
extended, as above, with a 2-cycle 32-bit conventional



multiplier, using the BASELINE interconnect configura-
tion.

• BASELINE-DTMAC : This case is a baseline FlexCore
datapath extended with the DTMAC accelerator. Since
the DTMAC unit has a 32-bit multiplication mode, we
can remove the conventional multiplier of the two de-
signs above. This case uses the BASELINE interconnect
configuration of Sec. III.

B. Implementation

We synthesized the three different designs by using Design
Compiler with a commercial 1.1-V 65-nm standard-VT cell
library and one and the same timing constraint. The synthesis
results are reported in Table II.

As outlined in Sec. III, the interconnect configuration can
be customized to the communication path utilization. Since
BASELINE-MULT and BASELINE-DTMAC utilize the full
BASELINE interconnect configuration, the corresponding tim-
ing, power and area results that we present in Tables III
and IV thus are pessimistic. The execution time, however, is
not affected by interconnect customization, as the whole idea
of customization is to keep the communications paths that
enable efficient computing.

At this point, we can verify that BASELINE-DTMAC can
operate at a cycle time of 2.34 ns, which is shorter than
the cycle time of a stand alone 2-cycle single 32-bit MAC
(2.75 ns). When comparing to GPP-MULT and its cycle time
of 2.20 ns, we see that the integration of a flexible DTMAC
accelerator into a FlexCore processor does not significantly
degrade processor performance.

A 3-cycle solution of the MAC operation—possibly leading
to an even shorter critical path—is not considered in this work,
because that requires a different MAC operation schedule
for the comparison and because that leads to a large power
overhead (in the clock load of the extra pipeline registers).

C. Evaluation

Two EEMBC benchmarks, AutoCorrelation (AutoBench)
and FFT (FFTBench) [3], are selected to evaluate performance
and energy dissipation of the three processor designs, accord-
ing to the evaluation platform that was previously mentioned
in Sec. III. The two benchmarks represent two extremes of
computational length of MAC operations—in AutoBench there
are many consecutive MAC operations, while FFTBench has
short sequences of MAC operations. The evaluation phase is
performed as follows:

• Step 1: We re-organize the C benchmark code to support
double throughput MAC operations: We first locate the
sub-routines, where the MAC operations are executed,
then we pack two 16-bit operands into one 32-bit operand
by using an extra PACK3 instruction. Finally, we break
long loops into two equal and shorter loops to avoid

3The PACK instructions are represented by instruction groups of SHR,
AND, and OR.

overflow effect when accumulate additions are executed
inside the DTMAC unit.

• Step 2: The modified C code is compiled into MIPS
assembly code by a MIPS cross-compiler based on GNU-
GCC [11]. 2x16-bit operand packing instructions (PACK)
could be replaced by one load 32-bit instruction for the
DTMAC inputs, if two 16-bit values are consecutively
stored in memory. This feature can be efficiently ex-
ploited in many DSP applications, in which the input
values are accessed sequentially.

• Step 3: We identify MAC operations in the sub-routines
of the MIPS assembly code, and manually perform in-
struction scheduling to adapt to the FlexCore instruction
set.

• Step 4: We invoke the cycle-accurate FlexSoC simulator
using the modified MIPS assembly code as input. When
the benchmarks have been verified to be correct, cycle
count values are extracted for both the benchmark core
and the instructions inside the inner loop.

We evaluated AutoBench for the three different designs. The
results are reported in Table III. In comparison to GPP-MULT,
the execution time—the product of cycle count and timing—
of BASELINE-DTMAC is reduced 77.1% while BASELINE-
MULT ”only” achieves a reduction of 33.8%. Regarding
energy—the product of execution time and minimum clock cy-
cle time—BASELINE-DTMAC and BASELINE-MULT dissi-
pates 74.5% and 36.2%, respectively, less energy than GPP-
MULT. These improvements are very significant, and can be
explained by the fact that AutoBench is a highly parallel
application in which the 2x16-bit inputs of the DTMAC
unit are loaded without needing PACK instructions. With a
customized interconnect, the energy reduction would be even
more significant.

The results from the FFTBench evaluation are reported in
Table IV. Compared to BASELINE-MULT, our BASELINE-
DTMAC does not provide any significant reduction in cycle
count, execution time and energy. The reason for this is found
in the extra PACK instructions that are required for loading
FFT coefficients into the DTMAC unit. The computational
length of the MAC operations in FFTBench is quite short, so
the computational efficiency of a dedicated MAC accelerator is
limited. However, we should notice that BASELINE-DTMAC,
thanks to the flexible interconnect, still has an execution time
that is 45.1% shorter and an energy dissipation that is 38.9%
lower than that of GPP-MULT.

Fig. 7 summarizes the evaluation results, regarding speed
up of execution time and reduction of energy dissipation for
the two benchmarks.

V. CONCLUSION

In the framework of enhancing performance and reducing
energy dissipation of embedded processors, we have presented
the architectural integration of a new, low-complexity Double-



TABLE II
TIMING, POWER AND AREA OF GPP-MULT, BASELINE-MULT AND BASELINE-DTMAC ARCHITECTURES

Datapath Timing Power Cell area
configuration (ns) (mW) (µm2)

GPP-MULT 2.20(94.0%) 6.53(89.8%) 54916(86.5%)
BASELINE-MULT 2.34(100%) 6.29(86.5%) 62371(98.3%)
BASELINE-DTMAC 2.34(100%) 7.27(100%) 63458(100%)

TABLE III
CYCLE COUNT, EXECUTION TIME AND ENERGY DISSIPATION OF EEMBC - AUTOBENCH

EEMBC Benchmark
Datapath AutoBench Evaluation

configuration Cycle count Cycle count Execution time Execution time Energy diss. Energy diss. Cell area
(Core) (Loop) (µs- Core) (µs - Loop) (nJ-Core) (nJ-Loop) (µm2)

GPP-MULT 1534(100%) 1372(100%) 3.51(100%) 3.02(100%) 22.89(100%) 19.70(100%) 54916(86.5%)
BASELINE-MULT 992(62.2%) 784(57.1%) 2.32(66.2%) 1.83(60.8%) 14.60(63.8%) 11.54(58.6%) 62371(98.3%)
BASELINE-DTMAC 343(21.5%) 259(18.9%) 0.8(22.9%) 0.61(20.1%) 5.84(25.5%) 4.41(22.4%) 63458(100%)

TABLE IV
CYCLE COUNT, EXECUTION TIME AND ENERGY DISSIPATION OF EEMBC - FFTBENCH

EEMBC Benchmark
Datapath FFTBench Evaluation

configuration Cycle count Cycle count Execution time Execution time Energy diss. Energy diss. Cell area
(Core) (Loop) (µs- Core) (µs - Loop) (nJ-Core) (nJ-Loop) (µm2)

GPP-MULT 58149(100%) 44032(100%) 127.93(100%) 96.87(100%) 835.11(100%) 632.37(100%) 54916(86.5%)
BASELINE-MULT 36071(62.0%) 21504(48.8%) 84.41(66.0%) 50.32(51.9%) 530.96(63.6%) 316.51(50.1%) 62371(98.3%)
BASELINE-DTMAC 30000(51.6%) 18368(41.7%) 70.20(54.9%) 42.98(44.4%) 510.35(61.1%) 312.47(49.4%) 63458(100%)
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Fig. 7. Overview of speed improvement and reduction in energy dissipation.

Throughput MAC (DTMAC) unit in the FlexCore processor.
We showed that we can insert a highly flexible circuit such
as the DTMAC accelerator to enable run-time processor opti-
mizations, without any detrimental effect on the performance
of the FlexCore processor. Rather, for the applications that
can make use of MAC acceleration and run-time optimization
of computational precision, the execution time and energy
dissipation can be significantly reduced.
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