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Efficient Tracking of the
Cross-Correlation Coefficient

Ronald M. Aarts Senior Member, IEEERoy Irwan, and Augustus J. E. M. Janssen

Abstract—n many (audio) processing algorithms, involving field of architectural acoustics [5]—-[7], LPC analysis for speech
manipulation of discrete-time signals, the performance can vary coding [8], time delay of arrival (TDOA) [9], feature detector
strongly over the repertoire that is used. This may be the case [10], and system identification [11]. An overview of tracking

when the signals from the various channels are allowed to be - - . . . R
strongly positively or negatively correlated. We propose and applications in audio—video object localization is given by [12].

analyze a general formula for tracking the (time-dependent) Similar recursions as some of the ones we derive in this paper
correlation between two signals. Some special cases of this formulacan also be found in [13]-[19], while [20] gives an overview of
lead to classical results known from the literature, others are new. these methods.

This formula is recursive in nature, and uses only the instanta- However, we develop recursions for the cross-correlation co-

neous values of the two signals, in a low-cost and low-complexity fficient (instead of onlv th lati ithout utilizi
manner; in particular, there is no need to take square roots or to efficient (instead of only the cross-correlation) without utilizing

carry out divisions. Furthermore, this formula can be modified any models while striving for maximum efficiency, by avoiding
with respect to the occurrence of the two signals so as to further division, trigonometric operations such as FFT—which also ne-
decrease the complexity, and increase ease of implementation.cessitates the use of buffers—and the like. Furthermore we pay
The latter modification comes at the expense that not the actual special attention to the convergence behavior of the algorithm

correlation is tracked, but, rather, a somewhat deformed version f tati . | dthed ic behavior if th is at
of it. To overcome this problem, we propose, for a number of or stationary signals and the dynamic behavior rthere Is a tran-

instances of the tracking formu|a, a Simp|e Warping Operation on Sition to another Stationary State, the Iatter iS Considered to be
the deformed correlation. Now we obtain, at least for sinusoidal important to study the tracking abilities to nonstationary signals.
signals, the correct value of the correlation coefficient. Special ~ The standard formula for the cross-correlation coefficient be-

attention is paid to the convergence behavior of the algorithm ; _ _ it i imea i
for stationary signals and the dynamic behavior if there is a tween two signals: =z, y = y;, With integer time index

transition to another stationary state; the latter is considered to be

1 — _
important to study the tracking abilities to nonstationary signals. K+1 ZI: (w1 =) (w1 — )
We illustrate tracking algorithm by using it for stereo music p= )
; > : . 1 — 1 —
fragments, obtained from a number of digital audio recordings. ey ZI: (z1 — 37)21(—4-1 ZI: (g1 — 7)?

Index Terms—Audio, cross-correlation coefficient, real-time

tracking algorithm, stereophonic signals. L - . . .
with 7 andy denoting mean values and summations being taken

over a segment of length” + 1, suffers from the fact that it
I. INTRODUCTION requires the operations of division and taking a square root.
E PROPOSE to use the cross-correlation coefficieh€S€ two operations are unattractive from the point of view of
in digital audio as a means to acquire statistical ifeal-time (?omputati_on, and Iow—gost implementation. Further-
formation about the input signals with the aim to support tH80Te, (1) is not optimal for tracking purposes, where the rect-
development of audio processing algorithms, for which whgularwindow of lengttic + 1 is shifted one sample at a time,
envisage numerous applications. We believe that for thdgcause of the required administration at the beginning and at
algorithms, knowledge of the cross-correlation coefficient {§€ end of the segment. . _
essential to counteract the dependency of their performancd? Section Il, we define the correlation af andy at time
on the particular input audio signals. For example, in soufgStantk using an exponential window as
reproduction stereo-base widening systems [1], negative cor-

relation between the audio channels is introduced, while in plk) = 5oy (k) 7 integerk 2
multichannel audio systems the tracked correlation is used to (S (k) Syy (k)
mix the amount of ambient sounds to the surround channels [\%/]nere
Furthermore, correlation techniques are used in room acous-
tics as a measure for the diffuseness of a sound field [3], as a i
judgment of the quality of a sound field [4], as a tool in the Say(k) = ce Moy
=0
c=1—¢e7" (€))
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S,y can be considered as the output of a first-order low-passin order to study the difference equation of (4) we could
filter with » as the time constant andyy; as input signal. have used the-transform [21], however to avoid the cumber-
We have omitted in (3), as opposed to (1), the mean vatuesome back transformation and to gain insight in the conver-
and7y since these vanish in most audio applications, or simpdence behavior of the recursion we use a different approach.
measures can be taken ensuring that they do vanish. We pa&ingEection 1V, we consider the case of sinusoidal input signals
out, however, that many of the developments given in thisandy, and we compute explicitly the left-hand side of (5) for
paper apply to the more general case of nonzero, and evkee solution of (4) and its variants. It turns out that the unmod-
time-varying, mean values; see the end of Section Il for moifeed recursion [(4)] yields the correct valyefor the left-hand
details. Furthermore, for stationary signals, the limiting valugde of (5), while some of the aforementioned variants produce
for n | 0 of p as given in (2) equals the from the standard certain deformed versions pf The latter effect can be compen-
formulain (1) when the segment lengkh+ 1 tends to infinity; sated for by applying a simple warping operation on the quantity

see Appendix Il for the proof. at the left-hand side of (5). This warped quantity then gives the
We shall show in Section Il that thedefined in (2) satisfies correct value of the cross-correlation coefficient for the impor-
to a good approximation the recursion tant case of sinusoidal input signals, and it should be expected to
) yield a considerable enhancement of the performance of our al-
pk) = p(k = 1) + (6 — Arp(k = 1)],  integerk, gorithms for many other, nonsinusoidal, input signals. Section V
o1 =2x1Ys discusses this warping operation in details.
B =zt + o tyd (4) Section VI deals with measuring the step response which is

important to study the in-transition phenomenon of the algo-
wherea and~y are determined in a simple fashion fyand the rithms. This phenomenon occurs simply because the algorithms
average signal powers afandy. The actual influence of theseneed a certain time to adapt to sudden (statistical) changes in the
average signal powers on the limiting behaviop@¥) turns out input signals.
to be rather modest. For small valuesydbr, which isthe same,  The proposed algorithms are also tested for audio signals
small values of;) these signal powers manifest themselves ikoming from digital audio recordings, and the test results are
the convergence speed, and hence determine the trackinggresented in Section VII.
havior of 5(k), but not in the actual value difn ., 5(k) in the Finally, conclusions and future work are given in
stationary case. Furthermore, in many audio engineering api8ection VIIl.
cations, where: andy are, respectively, the sound signals from
the left and right channels, one can assume thanhdy have Il. DERIVATION OF TRACKING FORMULAS

equal average signal power, and in that case we have 1

as we shall see. Hence, in many cases actual knowledge of t l{‘ tThs sectlgnf,_wetcon&deéas defmgd '?. (2) and (.3)’ and”we
signal powers is not necessary since a rough estimate of iciew ajp satisfies to a good approximation (whe#s small)

sufficient for getting a good estimate of the limiting behavior otpe recursion in (4) witl and-y given by

p(k). _ YrRMS
Equation (4) is the basis for our approach of recursively =
tracking the cross-correlation coefficient. We shall also propose
variants of (4), in which thé; and g, are replaced by certain Y=
simple transforms, such as their sign and/or modulus. We thus 2rRMSYRMS
obtain tracking formulas that are even more attractive from,_rperec —1—e7asin (3), and the subscripts RMS refer to the
computational point of view. However, by these transformag mean-square values ofandy. Furthermore, we modify
tions of ¢ and 3, the tracking characteristics are changed 3¢ recursion in (4) by replacing. and3,. by computationally

well. It may even become an issue “what is being tracked” Byiore attractive quantities. More specifically, we consider the
the modified (4). In Section V, we propose certain warping,qdifications of (4) in which

operations to correct this situation.

TRMS

ce'

(6)

In Section 1ll, we shall analyze the solution of (4), starting 1, for ps
from an initial valuegy atk = 0, when~ | 0 (that is, when Br =< |url, for pr @)
7 | 0), and we shall indicate conditions under which |lzryn], for pu
_ o and
lin nggo p(k)} =p (5) sign{zrys}, for ps
ox = § wksign{zi}, forpr ®)

wherep is the true cross-correlation coefficient defined as in
(1) with segment length&” + 1 tending to infinity, andz, y
being stationary, zero-mean signals. The details of this analysish the subscript$, R, M representing the “sign,
are presented in Appendix | where we switch, solely for notaelation,” and “modulus,” respectively.

tional convenience, to the differential equation corresponding toEquation (4) will lead to the classic sign algorithm in the case
the difference equation in (4). The results of Section Ill appfpr ps, see, e.g., [14]-[16]. We conclude this section by pre-
equally well to the case tha}, and 3, are replaced by certain senting some observations for the case that we have signals
transforms [yielding the variants of (4) mentioned above]. andy that have nonzero mean values which need to be tracked

TrYk, for pas

relay cor-
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as well, and for the case that we use rectangular windows as shown in Section 1V, but this can be used to detect special
stead of exponentially decaying ones. effects in the music recording.

We now start to show that of (2) and (3) satisfies to a good We conclude this section with some notes and extensions of
approximation the recursion in (4) withh and~ given by (6). our methodology. The first comment deals with the matter of
To this end, we note that how to handle signals andy that have nonzero, and actually

] time-varying, mean values. In those cases, we still defiie
Sey(k) = €7"Szy(k = 1) + caryy, integerk  (9)  asin (3), however, with thé,, replaced by

while similar recursions hold fof., andS,,. Hence, from the o0
definition in (2) => ce

=0

—t —o(k))(yr— —y(k))  (14)
Sxy(k' — 1) + ce”a:kyk

k)= .
A0 = (b= + conf} (5, (—1) + o2 where
10 i
(10) z(k) = Z ce My,
Since we consider small valuesmpive have that = 1 —e " 1=0
is small as well. Expanding the right-hand side of (10) in powers _ e o
of ¢ and retaining only the constant and the linear term, we get y(k) = Z e Tkt (15)
after some calculations =0
ce” and thesS,., S,y changed accordingly. It can then be shown that
p(k) = p(k — 1) + =
Z(Sazaz(k - 1)Syy(k - 1)) f(l{}) :e—ﬁf(l{; ) + cxp,
1/2
2 — <w) 22 g(k) =e7g(k — 1) + cyy (16)
Sae (k= 1) and
Spe(k — 1)\ Spy(k) =718, (k— 1 T 17
+<S Ek_1§> yz] p(k—l)}+0(62). y( )=e y( ) + cprar (7)
v wherepy, =z, — Z(k — 1), qx = yr — 5(k — 1), while similar
(1) recursions as in (17) hold fdf,., Syy. This then yields
Then, deleting the(c?) term, we obtain the recursion in (4) Syl — 1) + cPrgr
with « and’y given by (6) when we |dent|fy p( ) [{Sacac( _ 1) 4 CP%}{Syy( 1) 4 Cq]%}]l/Q
2 —_ - acac
YrMs = Syy(k) (12) 1/2
.. 2 Syy 2
for a sufficiently largek. Prar — S Py

We observe at this point that we have obtained the recursion
in (4) by applying certain approximations [as in (12)] and ne- +< =(k — 1)) qz] p(k — 1)} +O(A)
glecting higher order terms. Therefore, it may very well be, that Syu(k—1) b ’
the actuap of (2) and (3) and the solutiof of the recursion in (18)

(4) do not have very much to do with one another anymore, cer-

tainly whenk is getting large. In Section Ill, however, we shalFrom this point onwards, comparing with (11), one can proceed

show thats shares some important properties with the uk  to give many, if not all, of the developments given in this paper

particular, for strictly stationary and ergodic signalandy the for this more general situation.

limiting values ofp andp for £ — oo coincide wheny | 0 (i.e., We have considered thus far exponential windows for the def-

7 | 0). As already said, it is shown in Appendix Il that undemition of p in (2) and (3). We shall now give some observations

these circumstances for the case that we use rectangular windows. With the starting
point of the signal segments fixedlat 0, we first consider the

lim p(k) = p (13) ,in (2) and (3) with
with p given by (1) (withz = 7 = 0) where the segment length k
K + 1 tends to infinity. Say Z o = Z(k)) (v —w(k))  (19)
Instead of thé;, and/; used in (4), we may use the modifica- =0
tions as given by (7) and (8). In all cases, we assumeithzatl, where
which is a reasonable assumption for audio signals, as will be L
shown in Section VII. This yieldgg, gar, andps, respectively. Z(k) = 1 Z -
The advantage of using (7) and (8) is that they are computa- k+1 P
tionally very efficient, while the limiting values for sinusoidal L
z andy are independent of their amplitude. The tracking be- 7(k) = 1 U (20)
havior, specifically their convergence speed, differs in all cases k+1 —~



394 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 10, NO. 6, SEPTEMBER 2002

and theS,..., S,, defined similarly. Now the recursions are  fork =0, 1, .. ..
i We compare the formula in (28) fgi(%) with the formula

(k) = I z(k—1)+ - Jlr - one gets for the solution of the differential equation
k 1 pe(t) +1B(8)pe(t) = ~6(t) (29)
y(k) == vk -1+ Yn CON . : : . -
k+1 k+1 with continuous time variable The solution of (29) with initial
and 1 1 value 5.(0) = po follows easily from basic calculus, and is
Szy(k) = Pl Say(k—1)+ o 1)z e (22) given by
t
wherepy, =z — T(k — 1), qx = yr — 5(k — 1), with similar ~ pc(t) = poe” 1A 4 ’7/ 8(s)e™(AM=4() 45, t>0
recursions as in (22) fd§,,, S,,. This then leads, as before, to 0 (30)
the conclusion thap(k) satisfies to a good approximation theyhere
recursion

AR) =k — 1) + 7 [200ae — (ap? + a"a2) p(k — 1) Alf) = / Als)ds, 120 (1)

(23)  while the analysis of the behavior @{k) in (26)—(28) and
that of 5(¢) in (29)—(31) proceed along the same lines, see

where Appendix | and the results (32)—(38), the analysisoOf) is
Syu(k = 1)\ much less cumbersome since we have the elegant framework
= <m) of integral calculus available here. Moreover, the quantities
1 M[6(t)], M[3(t)] that appear in (38) and further on throughout

= : - . (24) the paper, are given in integral form and thus more convenient
2k (e (k= 1)Syy (b = 1)1/ for computational purposes than the quantiigs; ], M[Gx].
Note that they in (24) has a decay liké/k while they of (6)is ~ In comparing the solutions in (28) and (30) and the corre-
approximately constant (at least whemndy are stationary). spondingA(k; ) and A(¢) in (27) and (31), we consider the
In the case that the starting point of the signal segmentsAs anddy. in the recursion (25) as sampled versions
allowed to vary as well, see (19) and (20), the recursion in 3, — (LT
(21)—(23) also involves sample values at these starting points, Pre = BRT)
and are thus more complicated in nature. b =6(KT3), I, =1 (32)

v

of the continuous-time signaf$(¢), 6(¢) in (29) with sample
epochZ, = 1. We observe that

In this section, we consider the basic recursion in (4), and we X
analyze its solutiorp(k), given an initial valuegy atk = 0,. lim A(k; 7) = Z 4. (33)
when~ | 0. Here, we allowé;, and/3; to be replaced by certain 710 =
simple transforms such as those required for the definitigi pf ) ] ]
r, andpy in Section I1. Thus, we shall consider the recursion !N Appendix |, we shall elaborate on the formulas given in

I1l. ANALYSIS OF THE SOLUTION OF THE BASIC RECURSION

in (4) which we rewrite as (28) and (30) so as to obtain the limiting _behaviorﬁ@k_) as
k — oo, and ofp.(t) ast — oo wheny > 0 is small. This we
p(k) = (1 —v8)pk — 1) + v6y (25) dounder an assumption (slightly stronger than required) that the
mean values
fork =1, 2, ..., with v a small positive parameter adag, 3 1
bounded sequences with< g;, < 1. By employing the re- bo(v) =M [— log(1 — fyﬁk)}
cursion in (25) withk, £ — 1, ..., 1, one easily obtains [using v X«
5(0) = ol m Ly !
= lim — — log(1 — vf)
& L L K—oo K IE:; Y
piR)y=po [J =80+~ > & [] -8 (26) &
=1 =1 j=i+1 do =M[6] = Blgréo 7 ; & (34)
Now set _ . -
i for the discrete-time case and
-1 T
. - - (1 — — 1
Alk; v) = ~ IEZ;IOQO Y81, k=1,2,... (27) bo =M[B(t)] = Tlgréof/o B(s)ds
T
andA(0; ) = 0. Then, we have do =M[6(t)] = lim % / 8(s)ds (35)
Ede ®) 0

k
pk) = poe AR 4 o Z SreVAEN=AGY) (28) for the continuous-time case, exist. [Because of the relations in
) (32) that exist betweefi;,, 6, andg(t), 6(t), we have that the
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two dyps in (34) and (35) are equal, while thgv) in (34) tends  In case the sample epo@h in (32) is not equal to 1, the for-

to bo in (35) wheny | 0.] We show in Appendix | that under mulas in (36) and (37) must be changed accordingly. Retaining
these assumptions for any numbet. by(+) we have ~ as in (29), they in (25)—(28) should be replaced b{’, and
(36) becomes [witth any number by (7 )]

i =2 L0 1. k20 (36) ;
bo(7) k)= 2 L0 e, k>0, (45)
for the discrete-time case, while for any numbet b, we have bo(+75)
d This shows that the time constant for the tracking behavior is
pe) =3+ 0() 4 20 (37) gvenby

for the continuous-time case. In (36) and (37),and ¢, are T = %(T) (46)
quantities that tend to 0 uniformly ih> 0, ¢ > 0 when~ | 0. T4s DAL

Thus formulas (36) and (37) show how the convergence spegadhe discrete-time case. With the above choice of retaining
can be traded off against accuracy by varying- 0, and this as in (29), the time-constant for the tracking behaviopdf)

translates naturally into an assessment of the capabilities of ugiven by

methods. 1
Sincebo(vy) — bo asy | 0 we see from (36) and (37) that = (47)
0
lim { lim ﬁ(/ﬂ)} — lim [lim ﬁc(t):| since the formula in (37) remains the same with this choice. We
710 [k—oo 710 Lt=co finally observe that, sinck(v) — by asy | 0, the formulas in

S M[B] b M[BO)] 38 T,) asymptotically asy | O.

_ M] _ do _ M[5(2)] (38) (46) and (47) for the time constants agree (apart from the factor

This result is basic for the further developments in this paper.

As a consequence of the basic result in (38), we show below V. SINUSOIDAL INPUT SIGNALS

that for the particular case In this section, we test the algorithms derived in Section II,
) L and analyzed in Section Il with respect to their steady state
B = axy, + oy behavior, for sinusoidal input signals. Hence, we take
Or =2x1Yys 39
bR (39) o3 = Ay sin(wk) (48)
see (4), with strictly stationary and ergodic signals v, the and
left-hand side double-limit in (38) has the correct value e = As sin(wk + ¢) (49)
Mlzys
p= % (40) wherew = 2« f, f is the frequency, ang is an arbitrary
(M[z£]M[yz]) phase-shift between the two sinusoids, andand A, are the
Indeed. we have in this case amplitudes of the two sinusoids with;, # A, in general.
' The recursion in (4), with®, given byaxs +a =142, involves
M[B] = aM[zi] 4+ o M[y] the ratioa of the RMS values of the input powers of and
M[6x] = 2M[zryx] (41) v For the audio applications we keep in mind that these input
powers are not known, but can be assumed to be equal to one an-
and since other. Therefore, we shall use in (4) with= 1. Evidently, when
i 1/2 a3, andyy, are as in (48) and (49) with; # A,, we then cannot
o = YRMS _ <M[?Jk] ) (42) expect the double limit in (38) to yield the true correlati@s ¢
TRMS M[wi] betweenz;, andy; anymore, and also the time constants for the
. . convergence behavior ¢f are affected by changing into 1.
we easily obtain Note that the other quantitigs;, pr, pas do not involvex at
M{Be] = 2 (M[xi]M[y,%])m ' (43) §1II, S0 ch_ang_inngintoAl isAonIy anissue fa# in (4), and not for
its modificationsgs, pr, pas-
Therefore To relate to the discrete-time signal sampledfhywe have
d MI84] M] ] noww = 2 f; /m, wherem (integer>2) is the number of sam-
lim [ lim ﬁ(k)} =2 kL _ Tk Yk 72 (44) ples in one period of the sine. Using this discrete-time signal,
110 [h—oo o M[Bk] (M[22]M[w2]) substituting (48) and (49) into (1), and averaging it over an in-
as required. tegeorb?:_?beM of periods of the sine wherE + 1 = mM,
Similar double-limit relations as in (44) can be obtained fof :
the case that formula in (4) is modified, and in Section IV we p=cos¢ (50)

shall work this out for sinusoidal signals and y, and with
modified recursion in (4) yieldinghs, pr, pas introduced in which obviously does not depend oty and A,, but on the
Section II. phase difference only.
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A. Behavior ofj.(t) at Sinusoidal Input 1.0
If the sinusoidal input signals given by (48) and (49) are used
in (29), we have by using (38) with = 1 0.5
. A 2A;As cos ¢ —
- 2R ©
lim thgo pc(t)} A3 (51) 200 y \
/! .
Clearly, in the casel; = A,, this simplifies tocos ¢ which is /// R\
the same result as in (50). -0.5 :
As (36) and (37) show, the deviation from the steady state
value depends on. Using (47) andyy = (A? + A3%)/2, it ap- -1.0
pears that the time constant of the tracking behavior is equal to -z —n/2 0 m/2

¢

_ 2 2
7=2/(v(A1 + 43)) (52) Fig. 1. Solid line (square marker); pr, andcos ¢, dashed line (triangular

. ) ker):ps, and dashed-dotted line (pl ken); .
for the continuous-time case, and marker):p.s, and dashed-dotted line (plus markgr;

a1 = 201, /(v(A? + A3)) (53) Using (7) and (8), (35), and (47), we gat = 2Astw, and
therefore

for the discrete-time case.
TR = 7(/(2142’7) (61)

) _ ) _ for the continuous-time case, and
The approach in Section Il can be applied to the stationary

B. Behavior ofgs, .(¢) at Sinusoidal Input

solution ofps yielding Tar = 715 /(2A27) (62)
. L _ M[és(1)] for the discrete-time case.
1%% Lh_{glo Ps,c(t)} = MBs(0)] (54)

D. Behavior ofgys, .(t) at Sinusoidal Input
If the sinusoidal input signals given by (48) and (49) are applied

0 (7). (8), we get using (54) For the stationary solution gfy; .(¢), we have

. . M[6ar(t)]
: in A e — 1 1 )| = ——=. 63
lim nggo pS,c(t):| = ps = H(¢) (55) Yo LEZ}O Pa e )} M[Bar ()] (63)
where If the sinusoidal input signals given by (48) and (49) are applied
to (7) and (8), we get using (63)
H(g) =1-2l¢l/m, |¢| < (56) cos b
lim | im ppr (8)| = = 64
is a periodic function with perior and is shown as the dashed 710 [t—m Pa, el )} - f(#) 64
line in Fig. 1. where
Using (7), (8), (35), and (47), it appears that the time constant .
of the tracking behavior is equal to f(¢) = (m —2|¢|)cos ¢ 4 2sm |91 (65)
Qo Qo
s =1/ (57) The functionf(¢) is a smooth cosine-like function gf with

periodw, and is shown in Fig. 2. It appears that; behaves

for the continuous-time case, and L : S
similarly as the various othess as can be seen in Fig. 1, where

Tas = Ts /v (58) (64) is plotted (dashed-dotted line) together with the various
otherps.
for the discrete-time case, which is clearly independendof  Using (7), (8), (31), (47), and (65), we gély =
and Ay, as opposed to (53). A1 Ay f(¢)t/2, and therefore (for an average valuefof 0.8)
C. Behavior ofpg, .(¢) at Sinusoidal Input v = 2.5/(vA1 Ag) (66)
For the stationary solution gfg, we have from Section Il ¢, the continuous-time. and

} M[or(t)] (59) ran = 2,515/ (vAL As) (67)

= M[Ba(8)]

If the sinusoidal input signals given by (48) and (49) are applie]:c
to (7) and (8), we get using (59)

li [1‘ pr ot
lirp | lim Pr, (1)

— 00

8r the discrete-time case.

V. WARPING OF ps AND pas

lin(} Lhm PR, c(t)} =cos¢ (60) As Fig. 1 showspy; andps are similar but not identical to
" = p andpgr. We propose to correct this by warping, where gne
which is the same result as (50). is mapped to another. As an example we was@ndp,; to p.
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Fig. 2. Smooth cosine-like functiofi¢). Fig. 4. Error(A = cos¢ — p.u(9)) for n = 3 (solid line) andn = 5
(dashed line) using (70).
2-107
zero. Fig. 4 shows the errdl\ = cos¢ — p.(¢)) for n = 3
110 _ (solid line) andn = 5 (dashed line) using (70).

We give now some comments on the influence of warping
on a step response @f and p,,. If we assume a rising step

< 010° 5 / response ops as
\ _ e—t/‘rs (71)

-0 ps=1
-1-107*

and apply the warping of (68), we get another time constant

2107 given by
0.00 0.25 0.50 0.75 1.00

2
Ps Tesr = —Tg In <1 — — arcsin (1 - e_1)> ~ 0.5727s. (72)
7r

Fig. 3. Error(& = sin(7ps/2) = pes) using (69). If we assume a decaying step responsgas

A simple polynomial mapping is used fpg andp,;. We want ps = e /s (73)
to determine a functiop such thatg(ps(¢)) = cos(¢). Using ) )
(56) we get for the correcteek and apply the warping of (68) we get yet another time constant
given by
. s
pes = sin (5 ps) (69)

Tesd = —Ts In <z arcsin (el)> ~1.437s.  (74)

where the subscriptsS denotes the corrected versiongf. T
This relation was first reported by Van Vleck [22], later inNote that the ratia.sq/7.s ~ 2.5, or in other words the rising

[19], [14]; and Sullivan [20] where Sullivan calls the warpingzurve becomes steeper while the decaying curve becomes less

function f in his Table I. For efficiency reasons, the sine funcsteep.

tion can be approximated [23] yielding to a good approximation

VI. MEASURING STEP RESPONSE

Pes = Z aip's (69) The algorithms for the variouss were tested by the signals
i=1 given by (48) and (49) with the following data:
where forn = 5: a1 = 1.570626 8, a3 = —0.6432292, a5 = 0, t<100ms
0.0727102 andas, = a4 = 0. Fig. 3 shows the error in this ¢ = { TS 100 (75)
approximation A = sin(mps/2) — pes)- 5 7 ms
For the correction o, the following polynomial is used: and
port = Z aip'y (70) Ar=A4A=1; p(0)=0; f,=44.1kHz. (76)
i=1

The values fory were chosen such that the rise times were ap-
where the subscripteM denotes the corrected version ofproximately equal, as shown in Fig. 5.
pa- TO maintain the even symmetry @f.,;, and to ensure Itappeared thatthe time constants (the time to reach the value
that p.ar(7) = 1, we requirea,, = E;:ll a;. By means of 1 —e™! & 0.632) arer = 22.5 mS, 7.y = 26.8 MS, 7,5 =
a least square method we find far = 3: a; = 0.448 and 21.8 ms, andrp = 18.2 ms. These values correspond well with
az = 1— ay. Forn = 5 we geta; = 0.7574, a3 = —0.5259 the values predicted by the formula in Section IV-A. Clearly, we
anda; = —0.7685, while theas with even index are equal tosee the slower decay pfs as discussed in Section V.
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Fig. 5. Step response of the various algorithmsf¢f, = 44.1 kHz). Fig. 7. Difference between the tryegiven in (10) and the approximated
shown in Fig. 6. The time constantin (10) was 5.16°°. The time constants
1.00 and labeling for the other foyrs are the same as in Fig. 6. For the readability,
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Fig. 6. Tracked cross-correlation coefficients obtained from “The Great

Pretender,” by Freddy Mercury( = 44.1 kHz, « is set to one). Here we see tls]
typical behavior of the variougs, they are all very similar. There are clear

stereo effects audible, but there is made only modest use of anti-phase signaig. 8. Tracked cross-correlation coefficients obtained from “Live to Tell,”
by Madonna. The “Madonna Immaculate Collection” is recorded with special

effects which basically widen a degree of stereo. Lower correlations are
VIl. APPLICATION TOAUDIO SIGNALS noticeable in the first 20 s, and even a few negative correlations occur.

To demonstrate the behavior of the proposed techniques, c%n-t tthis i lot there i ic plavi t | ianal
sider the following stereo music fragments coming from digité atatthis ime siotthere 1S music playing at a very low signa

audio signals. evel with a strongly varying interchannel phase and balance

Figs. 6 and 8 show some measurements of the cross—corr%féqh that the other three algorithms cannot track these changes.

tion coefficient using the four different algorithms presented i these cases, it might be beneficial for certain apphcatl_ons o
the previous sections. The measurements are shown in squ cédhe difference betwe_em and one of the three_ othes, in
(0), triangle puas), plus-sign p.s), and cross-signpe), respec- order to detect such special effects in the recording.
tively. Furthermore, the measurements are performed within a
time frame of 50 s. The length of 50 s is chosen such that the al-
gorithms can demonstrate various audio mixes which have beefhis paper has presented a formula for tracking the cross-cor-
done in a studio sufficiently. The variations in the audio mix carelation coefficient in real-time, and its modifications to increase
then be seen in the computed correlation coefficients. The Emse of implementation. The proposed methods aim at lowering
rametery is set to 103, 3 x 1073, 2 x 107, and 3x 10—, the computational complexity of the formal expression of the
for the respectivep, which are determined experimentally tacross-correlation coefficient. It has been shown that the pro-
achieve similar tracking behavior as discussed in Section VI.posed methods contain only a few arithmetic operations, and
Fig. 7 shows the error in the approximations for the same fragre insensitive to the initial values.
ment and parameters as used for Fig. 6. Comparing each curvid/e have formulated necessary and sufficient conditions to
in Fig. 7, it can be seen that the difference betweeptia (10) examine the behavior of the algorithms using differential equa-
and the approximategobtained using (4) is the smallest. Howtions where the validity of the algorithms have been shown for
ever, for some particular a-typical cases the results differ slightipy nonstationary stochastic input signal. This behavior evalu-
more although these are rather sparse; see Fig. 8. It is waatton has been shown to provide satisfactory accuracy for sinu-
mentioning here that the differences between the algorithms eaidal inputs. Furthermore, the algorithms have also been tested
be used to detect some special effects in the recording. For Bxsome music fragments. The derived tracking algorithms for
ample in Fig. 8 we see thats behaves quite differently from the cross-correlation coefficient give results that strongly agree
other three algorithms in the first 10 s. Listening test confirmsith what the standard formujawould give.

VIIl. CONCLUSIONS
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Future research will be directed toward extension to highexist. In fact, we shall require somewhat more, i.e., the existence
order-statistics where more than two input signals are used. of ¢ € [0, 1) andB > 0 such that

t
APPENDIX | / (B(uw) — bg) du| < Bs*
STEADY -STATE BEHAVIOR OF THE SOLUTION OF (29)As~v | 0 tf
In this Appendix, we consider the difference equation / (6(u) — do) du| < Bs® 5,2 0. (83)
t—s

pk) = (1 = v8)p(k — 1) + 6y, keZ (77 The assumptions embodied by (81)—(83) are satisfied in case
that3(¢) andé(¢) are bounded periodic functions. In that case,
bo andd are the DC-values ¢f(t) andé(t), and (83) is satisfied

and the associated differential equation .
with ¢ = 0 and

Pe(t) +B()pe(t) = v6(t), teER (78) B= / 18(w) — bo| du
where we considefl, = fA(k), & = (k) as sampled ver- B= /|5(u) — do| du (84)
sions of the continuous-time signalét) andé(t). We are par-

ticularly interested in the behavior @fk), p.(t) ask — o, \here the integrals are taken over one periog,of. Further-

¢t — oo for smally > 0. In the analysis that follows, we shallmore, the assumptions are satisfied by realizatigfns §(¢) of
restrict ourselves to the differential equation (78). The derivg-jarge class of ergodic, strictly stationary processes, in which
tions for the difference equation (77) follow the same plan, buhse one should expect the parametér (83) to be positive,
due to the discretization the developments for (77) have a mgically 0.5 or slightly larger.

cumbersome presentation than those for (78). In the latter casex the end of this Appendix, we present a connection between
we can use the elegant framework of integral calculus; this cgfir results proven below, and Wiener's Tauberian theorem. For
be mimicked throughout for the discrete-time case without bighpjication of the latter theorem it is sufficient to only assume
problems but with awkward presentation. A less trivial differe existence of the two limits in (81) and (82). However, for
ence between the treatment of (77) and (78) is that the bagigidity of the double limit relation in (38), a certain control of
representations in (28) and (30) involve the quantitié; v)  the deviation ofa(t) from do /b, is necessary, and this is guar-
and A(t) in (27) and (31), respectively. In particulat(k; v)  anteed when (83) is satisfied.

depends on while A(t) does not. Accordingly, one should re- \ne now show that

place the bound in (83) on the deviationg#t) from its mean

valuebo by a bound p(t) = / §(t—s)e™ 7 ds+0 (e7 ") +0 (') (85)
0
k _q whereb is any number between 0 ag, and the lasD-term
Z <7 log(1 —~3;) — bo(’V)) is uniform in¢ > 0. Furthermore, we show that, uniformly in
j=k=1 t>0

<B(+1)°  k1>0 (79) i

fy/ 6(t _ S)e_"/bos ds — b + O (,71—(1,) (86)
0

onthe deviation of-y~! log(1—v3;) from its mean valuéy () 0
with aB > 0 anda € [0, 1) that do not depend on > 0. Asa Which establishes the results required in Section IIl.
consequence, the results for (77) take a somewhat different fornf he proof of these results are now presented. The solution
as those for (78), and this is carried through in the presentatieft) of (80) is given explicitly by
of the results for (77) in Section IlI. t

For notational simplicity, we omit the symbéland the p(t) = poe ) —|—’y/ §(s)e A=A 45 teR.
subscripte from 5.(¢), and we thus consider the differential 0 (87)

equation Here, we denote, = p(0) and

P(t) +B(H)p(t) = v6(t), teR. (80) A(t) = / t B(s)ds, teR. (88)
0

In (80), the functiongi(¢) andé(¢) are of the type as those con- e analyze the right-hand side of (87)#as— oc. By the
sidered in Section Il. In particular, we assume th&t) and assumptions og¥, we have that

6(t) are well-behaved (smooth) bounded functions for which
the mean values A(t) > bot — Bt®, t>0. (89)

Hence, sinc® < ¢ < 1, we have that

1 T
bo :=M[B(#)] = lim — 3(s)ds >0 81
o= M) = Jim [0 (61) 0] < e — 0o @0

et ‘Poe_
do :=M[6(t)] = lim —/0 8(s)ds (82)

Tooo T foranyb € (0, bo).
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As to the second term at the right-hand side of (87), we writend thus we see that the second term in the right-hand side of
(95) isO(y*~2). Combining (94) and (95) we then obtain (85).

t
,y/ 5($)efw(A<t)fA<s))d3 We finally show the validity of (86) by fixingy > 0, and
0 computing
- St — s)e YA —AF—3)) g4 oo oo
7/0 ( ) fy/ S(t—s)e 07 ds = %—i—’y/ (6(t—s)—do)e™""* ds.
e 0 0 0
— / §(t — s)e Y A®=AE=) g5 (91) (98)
t For the integral at the right-hand side of (98) we have by partial

For the second term at the right-hand side of (91) we obseMegration

that o
t ’y/ (6(t — 5) — do)e "% ds
A(H) — At — 5) = / B(u) du o t
= -t = ’Y/ e bosq |:/ (6(u) — do) du:|
=bos + / (B(w) — b)) du 0 . t=s -
t—s _ —bgs B
> bOS _ BSa, s>t (92) = ye /t_s(é(u) do) du .
oo t
Therefore, again sindeé < a < 1 +72b0/ e—bos [/ (8(u) — do)du} ds
0 t—s

‘,y / St — s)eAD-AG-) g
t

= 2B, /0 ~ mtos [ /t ts(é(u) - do)du} ds.  (99)

< ymax 6| /t e et ds = O (e_wbt) (93) To estimate the integral expression at the far right-hand side
of (99) we use (83) to obtain uniformly ih> 0

v2bo /OOO e bos [/t;(é(u) - do)du} ds

< B’beo/ e YPsg s
0

foranyb € (0, by), andt > 0.
Combining (90) and (93), we have now established that

o(t) :7/ 5(t — S)e—“/(A(t)—A(t—s)) ds+0O (e—'ybs) ’
0

t>0 94
= ®4) = Bby (1 4+ a)y' . (100)
foranyb € (0, bp). Next, we consider the first term at the ) , .
right-hand side of (94). From (92), we have Hence, from (98)—(100) we obtain uniformly #r> 0, that
oo i — s d —a
,y/ §(t — 5)e~1AD=A1=) g fy/o 8t —s)e M0 ds = b—s +0 (179 (101)
0

_ = 5t — s)e‘”bos ds which finally establishes (86).
=7 o In Appendix Il we show, using Wiener’'s Tauberian theorem,
oo |t (ac , the following. Leth(s) be a bounded integrable function defined
—~bgs 7S, (Blu)bo) du an
+’7/0 6(t—s)e™" {e Jes - 1} ds. for s > 0. If one of the limits

(95) 1 /T
lim —/ h(s)ds
The second term at the right-hand side of (95) can be estimated T=eo TOOO
s hfge / h(s)e™**ds (102)
=9} € 0
—~vbgs Bys®
7 max |6|/0 e {e - 1} ds (96)  exists, then so does the other with the same value. WithO

] o ) ~andh(s) = 6(t — s) it follows from
by the assumptions gfi. By partial integration and the substi-

tutionv = vbys we have 1/
v = 7%8 lim = / §(t — s)ds = do (103)
(a9} . T—oo 1 0
[ fe
0 that
= ;_1 {eB’Ysa _ ]_} d (677008) hIn,y /oo 6(t 3 S)e_r\/bgs ds = @ (104)
0o o0 710 0 bO

= D'Vlia“/o v Tle e dy (97) The result in (101) gives somewhat more since we have uni-

formity in ¢ > 0 and more precise information as to how fast
whereD = Bbgl_“ ande = By!%b5*. Since0 < a < 1, the the limit in (104) is approached. This comes at the expense of
integral on the last line of (97) remains bounded whef 0, the additional assumption given in (83) that we had to make.
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APPENDIX I
EXPONENTIAL WINDOWING, RECTANGULAR WINDOWING, AND
WIENER'S TAUBERIAN THEOREM

In this Appendix, we show that for two bounded, strictly st
tionary, and ergodic discrete-time processgsindy; the defi-
nition in (1) of p, based on rectangular windowing with segment
lengthK + 1 tending to infinity, and the definition in (2) and (3)
of p(k), based on exponential windowing with decay parameter
7 | 0, gives the same value for the cross-correlation coefficient.
Evidently, by stationarity we may assume tfiat 77 = 0. Also,
in (3), we may assume that= 0, and we may replace thel
in z_;y_; by . Thus the equivalence of either definition will be
proved when we can show the following. Liet, k = 0, 1, ...
be a bounded sequence. If one of the limits
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while substitutings = e¥, we see that the two limits in (106)
turn into the limits in (102). Hence we only have to show that
the K; and K in (107) and (108) have Fourier transforms that
a<jo not vanish for real argument. We compute

e 2™ I (2)de = ———
1+ 2miva

ade o)

/ 672771"qu2 (.T) dr = F(l + 27riv.1’) (110)

and none of these functions vanish for a real value. of
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[1]

exists, then so does the other, and it has the same value. Indeeg;
when we takéy; = zyy, |21]?, |:|?, we see that any of the three
gquantities in the denominator and numerator of (1) has the samey
limit as K — oo as the corresponding quantity in (3)ag 0,

and vice versa.

The result concerning the two limits in (105) is a well-known 4]
example of a Tauberian theorem. It is a consequence of the con-
tinuous-time Tauberian theorem that we already announced at
the end of Appendix I. Indeed, when we choose in (102) for 5]
h(s)the step function that assumes the valyen[l, I4+1), =
0, 1, ... and letT” — oo through integer values we easily get [6]
the result concerning the two limits in (105). Here it should also 7]
be noted that — e~ 7 = 5 + O(n?).

The proof concerning the two limits in (102) can be given by
using Wiener's Tauberian theorem, see [24, Th. 4, pp. 73—74]18]
Given two absolutely integrable functiods; (x), K»(x) de-
fined onR with unit integral and with Fourier transforms that
do not vanish for real argument, [24, Th. 4] states the following. [
When f(y), v € R, is a bounded function and if one of the [10]
limits
[11]

lim
00

[%Km»mﬂm@

(12]

lim

Z—00

/fzq@—yﬁ@my (106)

(23]

exists, then so does the other with the same value. Taking
(14]

e >0
Kﬂ@={e = (107)
0, z <0 [15]
Ky(z)=e"*", zeR (108)
[16]
in [24, Th. 4], and
fly) =h(e), [17]
x =logT,
z=—loge (109)

discussions and E. Larsen for writing the C programs and im-
proving the readability of this paper.
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