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Efficient Tracking of the
Cross-Correlation Coefficient
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Abstract—In many (audio) processing algorithms, involving
manipulation of discrete-time signals, the performance can vary
strongly over the repertoire that is used. This may be the case
when the signals from the various channels are allowed to be
strongly positively or negatively correlated. We propose and
analyze a general formula for tracking the (time-dependent)
correlation between two signals. Some special cases of this formula
lead to classical results known from the literature, others are new.
This formula is recursive in nature, and uses only the instanta-
neous values of the two signals, in a low-cost and low-complexity
manner; in particular, there is no need to take square roots or to
carry out divisions. Furthermore, this formula can be modified
with respect to the occurrence of the two signals so as to further
decrease the complexity, and increase ease of implementation.
The latter modification comes at the expense that not the actual
correlation is tracked, but, rather, a somewhat deformed version
of it. To overcome this problem, we propose, for a number of
instances of the tracking formula, a simple warping operation on
the deformed correlation. Now we obtain, at least for sinusoidal
signals, the correct value of the correlation coefficient. Special
attention is paid to the convergence behavior of the algorithm
for stationary signals and the dynamic behavior if there is a
transition to another stationary state; the latter is considered to be
important to study the tracking abilities to nonstationary signals.
We illustrate tracking algorithm by using it for stereo music
fragments, obtained from a number of digital audio recordings.

Index Terms—Audio, cross-correlation coefficient, real-time
tracking algorithm, stereophonic signals.

I. INTRODUCTION

WE PROPOSE to use the cross-correlation coefficient
in digital audio as a means to acquire statistical in-

formation about the input signals with the aim to support the
development of audio processing algorithms, for which we
envisage numerous applications. We believe that for these
algorithms, knowledge of the cross-correlation coefficient is
essential to counteract the dependency of their performance
on the particular input audio signals. For example, in sound
reproduction stereo-base widening systems [1], negative cor-
relation between the audio channels is introduced, while in
multichannel audio systems the tracked correlation is used to
mix the amount of ambient sounds to the surround channels [2].

Furthermore, correlation techniques are used in room acous-
tics as a measure for the diffuseness of a sound field [3], as a
judgment of the quality of a sound field [4], as a tool in the
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field of architectural acoustics [5]–[7], LPC analysis for speech
coding [8], time delay of arrival (TDOA) [9], feature detector
[10], and system identification [11]. An overview of tracking
applications in audio–video object localization is given by [12].
Similar recursions as some of the ones we derive in this paper
can also be found in [13]–[19], while [20] gives an overview of
these methods.

However, we develop recursions for the cross-correlation co-
efficient (instead of only the cross-correlation) without utilizing
any models while striving for maximum efficiency, by avoiding
division, trigonometric operations such as FFT—which also ne-
cessitates the use of buffers—and the like. Furthermore we pay
special attention to the convergence behavior of the algorithm
for stationary signals and the dynamic behavior if there is a tran-
sition to another stationary state, the latter is considered to be
important to study the tracking abilities to nonstationary signals.

The standard formula for the cross-correlation coefficient be-
tween two signals , , with integer time index

(1)

with and denoting mean values and summations being taken
over a segment of length , suffers from the fact that it
requires the operations of division and taking a square root.
These two operations are unattractive from the point of view of
real-time computation, and low-cost implementation. Further-
more, (1) is not optimal for tracking purposes, where the rect-
angular window of length is shifted one sample at a time,
because of the required administration at the beginning and at
the end of the segment.

In Section II, we define the correlation of and at time
instant using an exponential window as

integer (2)

where

(3)

and , are defined similarly. In (3), we have taken fora
small but positive number that should be adjusted to the partic-
ular circumstances for which tracking of the cross-correlation
coefficient is required.
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can be considered as the output of a first-order low-pass
filter with as the time constant and as input signal.
We have omitted in (3), as opposed to (1), the mean values
and since these vanish in most audio applications, or simple
measures can be taken ensuring that they do vanish. We point
out, however, that many of the developments given in this
paper apply to the more general case of nonzero, and even
time-varying, mean values; see the end of Section II for more
details. Furthermore, for stationary signals, the limiting value
for of as given in (2) equals the from the standard
formula in (1) when the segment length tends to infinity;
see Appendix II for the proof.

We shall show in Section II that thedefined in (2) satisfies
to a good approximation the recursion

integer

(4)

where and are determined in a simple fashion byand the
average signal powers ofand . The actual influence of these
average signal powers on the limiting behavior of turns out
to be rather modest. For small values of(or, which is the same,
small values of ) these signal powers manifest themselves in
the convergence speed, and hence determine the tracking be-
havior of , but not in the actual value of in the
stationary case. Furthermore, in many audio engineering appli-
cations, where and are, respectively, the sound signals from
the left and right channels, one can assume thatand have
equal average signal power, and in that case we have
as we shall see. Hence, in many cases actual knowledge of the
signal powers is not necessary since a rough estimate of it is
sufficient for getting a good estimate of the limiting behavior of

.
Equation (4) is the basis for our approach of recursively

tracking the cross-correlation coefficient. We shall also propose
variants of (4), in which the and are replaced by certain
simple transforms, such as their sign and/or modulus. We thus
obtain tracking formulas that are even more attractive from a
computational point of view. However, by these transforma-
tions of and , the tracking characteristics are changed as
well. It may even become an issue “what is being tracked” by
the modified (4). In Section V, we propose certain warping
operations to correct this situation.

In Section III, we shall analyze the solution of (4), starting
from an initial value at , when (that is, when

), and we shall indicate conditions under which

(5)

where is the true cross-correlation coefficient defined as in
(1) with segment lengths tending to infinity, and
being stationary, zero-mean signals. The details of this analysis
are presented in Appendix I where we switch, solely for nota-
tional convenience, to the differential equation corresponding to
the difference equation in (4). The results of Section III apply
equally well to the case that and are replaced by certain
transforms [yielding the variants of (4) mentioned above].

In order to study the difference equation of (4) we could
have used the-transform [21], however to avoid the cumber-
some back transformation and to gain insight in the conver-
gence behavior of the recursion we use a different approach.
In Section IV, we consider the case of sinusoidal input signals

and , and we compute explicitly the left-hand side of (5) for
the solution of (4) and its variants. It turns out that the unmod-
ified recursion [(4)] yields the correct valuefor the left-hand
side of (5), while some of the aforementioned variants produce
certain deformed versions of. The latter effect can be compen-
sated for by applying a simple warping operation on the quantity
at the left-hand side of (5). This warped quantity then gives the
correct value of the cross-correlation coefficient for the impor-
tant case of sinusoidal input signals, and it should be expected to
yield a considerable enhancement of the performance of our al-
gorithms for many other, nonsinusoidal, input signals. Section V
discusses this warping operation in details.

Section VI deals with measuring the step response which is
important to study the in-transition phenomenon of the algo-
rithms. This phenomenon occurs simply because the algorithms
need a certain time to adapt to sudden (statistical) changes in the
input signals.

The proposed algorithms are also tested for audio signals
coming from digital audio recordings, and the test results are
presented in Section VII.

Finally, conclusions and future work are given in
Section VIII.

II. DERIVATION OF TRACKING FORMULAS

In this section, we consideras defined in (2) and (3), and we
show that satisfies to a good approximation (whenis small)
the recursion in (4) with and given by

(6)

Here as in (3), and the subscripts RMS refer to the
root mean-square values ofand . Furthermore, we modify
the recursion in (4) by replacing and by computationally
more attractive quantities. More specifically, we consider the
modifications of (4) in which

for

for

for
(7)

and
for

for

for

(8)

with the subscripts representing the “sign,” “relay cor-
relation,” and “modulus,” respectively.

Equation (4) will lead to the classic sign algorithm in the case
for , see, e.g., [14]–[16]. We conclude this section by pre-
senting some observations for the case that we have signals
and that have nonzero mean values which need to be tracked
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as well, and for the case that we use rectangular windows in-
stead of exponentially decaying ones.

We now start to show that of (2) and (3) satisfies to a good
approximation the recursion in (4) with and given by (6).
To this end, we note that

integer (9)

while similar recursions hold for and . Hence, from the
definition in (2)

(10)

Since we consider small values ofwe have that
is small as well. Expanding the right-hand side of (10) in powers
of and retaining only the constant and the linear term, we get
after some calculations

(11)

Then, deleting the term, we obtain the recursion in (4)
with and given by (6) when we identify

(12)

for a sufficiently large .
We observe at this point that we have obtained the recursion

in (4) by applying certain approximations [as in (12)] and ne-
glecting higher order terms. Therefore, it may very well be, that
the actual of (2) and (3) and the solutionof the recursion in
(4) do not have very much to do with one another anymore, cer-
tainly when is getting large. In Section III, however, we shall
show that shares some important properties with the true. In
particular, for strictly stationary and ergodic signalsand the
limiting values of and for coincide when (i.e.,

). As already said, it is shown in Appendix II that under
these circumstances

(13)

with given by (1) (with ) where the segment length
tends to infinity.

Instead of the and used in (4), we may use the modifica-
tions as given by (7) and (8). In all cases, we assume that ,
which is a reasonable assumption for audio signals, as will be
shown in Section VII. This yields , , and , respectively.
The advantage of using (7) and (8) is that they are computa-
tionally very efficient, while the limiting values for sinusoidal

and are independent of their amplitude. The tracking be-
havior, specifically their convergence speed, differs in all cases

as shown in Section IV, but this can be used to detect special
effects in the music recording.

We conclude this section with some notes and extensions of
our methodology. The first comment deals with the matter of
how to handle signals and that have nonzero, and actually
time-varying, mean values. In those cases, we still define
as in (3), however, with the replaced by

(14)

where

(15)

and the changed accordingly. It can then be shown that

(16)

and

(17)

where , , while similar
recursions as in (17) hold for . This then yields

(18)

From this point onwards, comparing with (11), one can proceed
to give many, if not all, of the developments given in this paper
for this more general situation.

We have considered thus far exponential windows for the def-
inition of in (2) and (3). We shall now give some observations
for the case that we use rectangular windows. With the starting
point of the signal segments fixed at , we first consider the

in (2) and (3) with

(19)

where

(20)
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and the defined similarly. Now the recursions are

(21)

and

(22)

where , , with similar
recursions as in (22) for . This then leads, as before, to
the conclusion that satisfies to a good approximation the
recursion

(23)

where

(24)

Note that the in (24) has a decay like while the of (6) is
approximately constant (at least whenand are stationary).

In the case that the starting point of the signal segments is
allowed to vary as well, see (19) and (20), the recursion in
(21)–(23) also involves sample values at these starting points,
and are thus more complicated in nature.

III. A NALYSIS OF THESOLUTION OF THEBASIC RECURSION

In this section, we consider the basic recursion in (4), and we
analyze its solution , given an initial value at ,
when . Here, we allow and to be replaced by certain
simple transforms such as those required for the definition of,

, and in Section II. Thus, we shall consider the recursion
in (4) which we rewrite as

(25)

for , with a small positive parameter and
bounded sequences with . By employing the re-
cursion in (25) with , one easily obtains [using

]

(26)

Now set

(27)

and . Then, we have

(28)

for .
We compare the formula in (28) for with the formula

one gets for the solution of the differential equation

(29)

with continuous time variable. The solution of (29) with initial
value follows easily from basic calculus, and is
given by

(30)
where

(31)

While the analysis of the behavior of in (26)–(28) and
that of in (29)–(31) proceed along the same lines, see
Appendix I and the results (32)–(38), the analysis of is
much less cumbersome since we have the elegant framework
of integral calculus available here. Moreover, the quantities

, that appear in (38) and further on throughout
the paper, are given in integral form and thus more convenient
for computational purposes than the quantities , .

In comparing the solutions in (28) and (30) and the corre-
sponding and in (27) and (31), we consider the

and in the recursion (25) as sampled versions

(32)

of the continuous-time signals in (29) with sample
epoch . We observe that

(33)

In Appendix I, we shall elaborate on the formulas given in
(28) and (30) so as to obtain the limiting behavior of as

, and of as when is small. This we
do under an assumption (slightly stronger than required) that the
mean values

(34)

for the discrete-time case and

(35)

for the continuous-time case, exist. [Because of the relations in
(32) that exist between and , we have that the
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two s in (34) and (35) are equal, while the in (34) tends
to in (35) when .] We show in Appendix I that under
these assumptions for any number we have

(36)

for the discrete-time case, while for any number we have

(37)

for the continuous-time case. In (36) and (37),and are
quantities that tend to 0 uniformly in , when .
Thus formulas (36) and (37) show how the convergence speed
can be traded off against accuracy by varying , and this
translates naturally into an assessment of the capabilities of our
methods.

Since as we see from (36) and (37) that

(38)

This result is basic for the further developments in this paper.
As a consequence of the basic result in (38), we show below

that for the particular case

(39)

see (4), with strictly stationary and ergodic signals , the
left-hand side double-limit in (38) has the correct value

(40)

Indeed, we have in this case

(41)

and since

(42)

we easily obtain

(43)

Therefore

(44)

as required.
Similar double-limit relations as in (44) can be obtained for

the case that formula in (4) is modified, and in Section IV we
shall work this out for sinusoidal signals and , and with
modified recursion in (4) yielding , , introduced in
Section II.

In case the sample epoch in (32) is not equal to 1, the for-
mulas in (36) and (37) must be changed accordingly. Retaining

as in (29), the in (25)–(28) should be replaced by , and
(36) becomes [with any number ]

(45)

This shows that the time constant for the tracking behavior is
given by

(46)

in the discrete-time case. With the above choice of retaining
as in (29), the time-constant for the tracking behavior of
is given by

(47)

since the formula in (37) remains the same with this choice. We
finally observe that, since as , the formulas in
(46) and (47) for the time constants agree (apart from the factor

) asymptotically as .

IV. SINUSOIDAL INPUT SIGNALS

In this section, we test the algorithms derived in Section II,
and analyzed in Section III with respect to their steady state
behavior, for sinusoidal input signals. Hence, we take

(48)

and

(49)

where , is the frequency, and is an arbitrary
phase-shift between the two sinusoids, andand are the
amplitudes of the two sinusoids with in general.

The recursion in (4), with given by , involves
the ratio of the RMS values of the input powers of and

. For the audio applications we keep in mind that these input
powers are not known, but can be assumed to be equal to one an-
other. Therefore, we shall use in (4) with . Evidently, when

and are as in (48) and (49) with , we then cannot
expect the double limit in (38) to yield the true correlation
between and anymore, and also the time constants for the
convergence behavior of are affected by changing into 1.
Note that the other quantities , , do not involve at
all, so changing into 1 is only an issue for in (4), and not for
its modifications , , .

To relate to the discrete-time signal sampled by, we have
now , where (integer 2) is the number of sam-
ples in one period of the sine. Using this discrete-time signal,
substituting (48) and (49) into (1), and averaging it over an in-
teger number of periods of the sine where ,
we obtain

(50)

which obviously does not depend on and , but on the
phase difference only.
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A. Behavior of at Sinusoidal Input

If the sinusoidal input signals given by (48) and (49) are used
in (29), we have by using (38) with

(51)

Clearly, in the case , this simplifies to which is
the same result as in (50).

As (36) and (37) show, the deviation from the steady state
value depends on. Using (47) and , it ap-
pears that the time constant of the tracking behavior is equal to

(52)

for the continuous-time case, and

(53)

for the discrete-time case.

B. Behavior of at Sinusoidal Input

The approach in Section II can be applied to the stationary
solution of yielding

(54)

If the sinusoidal input signals given by (48) and (49) are applied
to (7), (8), we get using (54)

(55)

where

(56)

is a periodic function with period and is shown as the dashed
line in Fig. 1.

Using (7), (8), (35), and (47), it appears that the time constant
of the tracking behavior is equal to

(57)

for the continuous-time case, and

(58)

for the discrete-time case, which is clearly independent of
and , as opposed to (53).

C. Behavior of at Sinusoidal Input

For the stationary solution of , we have from Section II

(59)

If the sinusoidal input signals given by (48) and (49) are applied
to (7) and (8), we get using (59)

(60)

which is the same result as (50).

Fig. 1. Solid line (square marker):�, � , andcos�, dashed line (triangular
marker):� , and dashed-dotted line (plus marker):� .

Using (7) and (8), (35), and (47), we get , and
therefore

(61)

for the continuous-time case, and

(62)

for the discrete-time case.

D. Behavior of at Sinusoidal Input

For the stationary solution of , we have

(63)

If the sinusoidal input signals given by (48) and (49) are applied
to (7) and (8), we get using (63)

(64)

where

(65)

The function is a smooth cosine-like function of, with
period , and is shown in Fig. 2. It appears that behaves
similarly as the various others as can be seen in Fig. 1, where
(64) is plotted (dashed-dotted line) together with the various
other s.

Using (7), (8), (31), (47), and (65), we get
, and therefore (for an average value of 0.8)

(66)

for the continuous-time, and

(67)

for the discrete-time case.

V. WARPING OF AND

As Fig. 1 shows, and are similar but not identical to
and . We propose to correct this by warping, where one

is mapped to another. As an example we warpand to .



AARTS et al.: EFFICIENT TRACKING OF THE CROSS-CORRELATION COEFFICIENT 397

Fig. 2. Smooth cosine-like functionf(�).

Fig. 3. Error(� = sin(�� =2)� � ) using (69).

A simple polynomial mapping is used for and . We want
to determine a function such that . Using
(56) we get for the corrected

(68)

where the subscripts denotes the corrected version of.
This relation was first reported by Van Vleck [22], later in

[19], [14]; and Sullivan [20] where Sullivan calls the warping
function in his Table I. For efficiency reasons, the sine func-
tion can be approximated [23] yielding to a good approximation

(69)

where for : , ,
and . Fig. 3 shows the error in this

approximation .
For the correction of the following polynomial is used:

(70)

where the subscripts denotes the corrected version of
. To maintain the even symmetry of , and to ensure

that , we require . By means of
a least square method we find for : and

. For we get ,
and , while the s with even index are equal to

Fig. 4. Error(� = cos� � � (�)) for n = 3 (solid line) andn = 5
(dashed line) using (70).

zero. Fig. 4 shows the error for
(solid line) and (dashed line) using (70).

We give now some comments on the influence of warping
on a step response of and . If we assume a rising step
response of as

(71)

and apply the warping of (68), we get another time constant
given by

(72)

If we assume a decaying step response ofas

(73)

and apply the warping of (68) we get yet another time constant
given by

(74)

Note that the ratio , or in other words the rising
curve becomes steeper while the decaying curve becomes less
steep.

VI. M EASURING STEP RESPONSE

The algorithms for the variouss were tested by the signals
given by (48) and (49) with the following data:

ms

ms
(75)

and

kHz (76)

The values for were chosen such that the rise times were ap-
proximately equal, as shown in Fig. 5.

It appeared that the time constants (the time to reach the value
) are ms, ms,

ms, and ms. These values correspond well with
the values predicted by the formula in Section IV-A. Clearly, we
see the slower decay of as discussed in Section V.
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Fig. 5. Step response of the various algorithms for� (f = 44:1 kHz).

Fig. 6. Tracked cross-correlation coefficients obtained from “The Great
Pretender,” by Freddy Mercury (f = 44:1 kHz,� is set to one). Here we see
typical behavior of the various�s, they are all very similar. There are clear
stereo effects audible, but there is made only modest use of anti-phase signals.

VII. A PPLICATION TO AUDIO SIGNALS

To demonstrate the behavior of the proposed techniques, con-
sider the following stereo music fragments coming from digital
audio signals.

Figs. 6 and 8 show some measurements of the cross-correla-
tion coefficient using the four different algorithms presented in
the previous sections. The measurements are shown in squares
( ), triangle ( ), plus-sign ( ), and cross-sign ( ), respec-
tively. Furthermore, the measurements are performed within a
time frame of 50 s. The length of 50 s is chosen such that the al-
gorithms can demonstrate various audio mixes which have been
done in a studio sufficiently. The variations in the audio mix can
then be seen in the computed correlation coefficients. The pa-
rameter is set to 10 , 3 10 , 2 10 , and 3 10 ,
for the respective , which are determined experimentally to
achieve similar tracking behavior as discussed in Section VI.

Fig. 7 shows the error in the approximations for the same frag-
ment and parameters as used for Fig. 6. Comparing each curve
in Fig. 7, it can be seen that the difference between thevia (10)
and the approximatedobtained using (4) is the smallest. How-
ever, for some particular a-typical cases the results differ slightly
more although these are rather sparse; see Fig. 8. It is worth
mentioning here that the differences between the algorithms can
be used to detect some special effects in the recording. For ex-
ample in Fig. 8 we see that behaves quite differently from
other three algorithms in the first 10 s. Listening test confirms

Fig. 7. Difference between the true� given in (10) and the approximated�s
shown in Fig. 6. The time constant� in (10) was 5.10 . The time constants
and labeling for the other four�s are the same as in Fig. 6. For the readability,
the curves of� and� are shifted vertically by 0.075 and�0.075, respectively.

Fig. 8. Tracked cross-correlation coefficients obtained from “Live to Tell,”
by Madonna. The “Madonna Immaculate Collection” is recorded with special
effects which basically widen a degree of stereo. Lower correlations are
noticeable in the first 20 s, and even a few negative correlations occur.

that at this time slot there is music playing at a very low signal
level with a strongly varying interchannel phase and balance
such that the other three algorithms cannot track these changes.
In these cases, it might be beneficial for certain applications to
track the difference between and one of the three others, in
order to detect such special effects in the recording.

VIII. C ONCLUSIONS

This paper has presented a formula for tracking the cross-cor-
relation coefficient in real-time, and its modifications to increase
ease of implementation. The proposed methods aim at lowering
the computational complexity of the formal expression of the
cross-correlation coefficient. It has been shown that the pro-
posed methods contain only a few arithmetic operations, and
are insensitive to the initial values.

We have formulated necessary and sufficient conditions to
examine the behavior of the algorithms using differential equa-
tions where the validity of the algorithms have been shown for
any nonstationary stochastic input signal. This behavior evalu-
ation has been shown to provide satisfactory accuracy for sinu-
soidal inputs. Furthermore, the algorithms have also been tested
in some music fragments. The derived tracking algorithms for
the cross-correlation coefficient give results that strongly agree
with what the standard formulawould give.
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Future research will be directed toward extension to higher-
order-statistics where more than two input signals are used.

APPENDIX I
STEADY-STATE BEHAVIOR OF THESOLUTION OF (29) AS

In this Appendix, we consider the difference equation

(77)

and the associated differential equation

(78)

where we consider , as sampled ver-
sions of the continuous-time signals and . We are par-
ticularly interested in the behavior of , as ,

for small . In the analysis that follows, we shall
restrict ourselves to the differential equation (78). The deriva-
tions for the difference equation (77) follow the same plan, but
due to the discretization the developments for (77) have a more
cumbersome presentation than those for (78). In the latter case,
we can use the elegant framework of integral calculus; this can
be mimicked throughout for the discrete-time case without big
problems but with awkward presentation. A less trivial differ-
ence between the treatment of (77) and (78) is that the basic
representations in (28) and (30) involve the quantities
and in (27) and (31), respectively. In particular,
depends on while does not. Accordingly, one should re-
place the bound in (83) on the deviations of from its mean
value by a bound

(79)

on the deviation of from its mean value
with and that do not depend on . As a
consequence, the results for (77) take a somewhat different form
as those for (78), and this is carried through in the presentation
of the results for (77) in Section II.

For notational simplicity, we omit the symbol and the
subscript from , and we thus consider the differential
equation

(80)

In (80), the functions and are of the type as those con-
sidered in Section II. In particular, we assume that and

are well-behaved (smooth) bounded functions for which
the mean values

(81)

(82)

exist. In fact, we shall require somewhat more, i.e., the existence
of and such that

(83)

The assumptions embodied by (81)–(83) are satisfied in case
that and are bounded periodic functions. In that case,

and are the DC-values of and , and (83) is satisfied
with and

(84)

where the integrals are taken over one period of, . Further-
more, the assumptions are satisfied by realizations, of
a large class of ergodic, strictly stationary processes, in which
case one should expect the parameterin (83) to be positive,
typically 0.5 or slightly larger.

At the end of this Appendix, we present a connection between
our results proven below, and Wiener’s Tauberian theorem. For
application of the latter theorem it is sufficient to only assume
the existence of the two limits in (81) and (82). However, for
validity of the double limit relation in (38), a certain control of
the deviation of from is necessary, and this is guar-
anteed when (83) is satisfied.

We now show that

(85)

where is any number between 0 and, and the last -term
is uniform in . Furthermore, we show that, uniformly in

(86)

which establishes the results required in Section III.
The proof of these results are now presented. The solution

of (80) is given explicitly by

(87)
Here, we denote and

(88)

We analyze the right-hand side of (87) as . By the
assumptions on , we have that

(89)

Hence, since , we have that

(90)

for any .
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As to the second term at the right-hand side of (87), we write

(91)

For the second term at the right-hand side of (91) we observe
that

(92)

Therefore, again since

(93)

for any , and .
Combining (90) and (93), we have now established that

(94)

for any . Next, we consider the first term at the
right-hand side of (94). From (92), we have

(95)

The second term at the right-hand side of (95) can be estimated
as

(96)

by the assumptions on. By partial integration and the substi-
tution we have

(97)

where and . Since , the
integral on the last line of (97) remains bounded when ,

and thus we see that the second term in the right-hand side of
(95) is . Combining (94) and (95) we then obtain (85).

We finally show the validity of (86) by fixing , and
computing

(98)
For the integral at the right-hand side of (98) we have by partial
integration

(99)

To estimate the integral expression at the far right-hand side
of (99) we use (83) to obtain uniformly in

(100)

Hence, from (98)–(100) we obtain uniformly in , that

(101)

which finally establishes (86).
In Appendix II we show, using Wiener’s Tauberian theorem,

the following. Let be a bounded integrable function defined
for . If one of the limits

(102)

exists, then so does the other with the same value. With
and it follows from

(103)

that

(104)

The result in (101) gives somewhat more since we have uni-
formity in and more precise information as to how fast
the limit in (104) is approached. This comes at the expense of
the additional assumption given in (83) that we had to make.
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APPENDIX II
EXPONENTIAL WINDOWING, RECTANGULAR WINDOWING, AND

WIENER’S TAUBERIAN THEOREM

In this Appendix, we show that for two bounded, strictly sta-
tionary, and ergodic discrete-time processesand the defi-
nition in (1) of , based on rectangular windowing with segment
length tending to infinity, and the definition in (2) and (3)
of , based on exponential windowing with decay parameter

, gives the same value for the cross-correlation coefficient.
Evidently, by stationarity we may assume that . Also,
in (3), we may assume that , and we may replace the
in by . Thus the equivalence of either definition will be
proved when we can show the following. Let,
be a bounded sequence. If one of the limits

(105)

exists, then so does the other, and it has the same value. Indeed,
when we take , , , we see that any of the three
quantities in the denominator and numerator of (1) has the same
limit as as the corresponding quantity in (3) as ,
and vice versa.

The result concerning the two limits in (105) is a well-known
example of a Tauberian theorem. It is a consequence of the con-
tinuous-time Tauberian theorem that we already announced at
the end of Appendix I. Indeed, when we choose in (102) for

the step function that assumes the valueon
and let through integer values we easily get

the result concerning the two limits in (105). Here it should also
be noted that .

The proof concerning the two limits in (102) can be given by
using Wiener’s Tauberian theorem, see [24, Th. 4, pp. 73–74].
Given two absolutely integrable functions de-
fined on with unit integral and with Fourier transforms that
do not vanish for real argument, [24, Th. 4] states the following.
When , is a bounded function and if one of the
limits

(106)

exists, then so does the other with the same value. Taking

(107)

(108)

in [24, Th. 4], and

(109)

while substituting , we see that the two limits in (106)
turn into the limits in (102). Hence we only have to show that
the and in (107) and (108) have Fourier transforms that
do not vanish for real argument. We compute

(110)

and none of these functions vanish for a real value of.
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