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Abstract

We previously proposed the use of MLLR transforms derived
from a speech recognition system as speaker features in a
speaker verification system [1]. In this paper we report recent
improvements to this approach. First, we noticed a fundamen-
tal problem in our previous implementation that stemmed from
a mismatch between male and female recognition models, and
the model transforms they produce. Although it affects onlya
small percentage of verification trials (those in which the gen-
der detector commits errors), this mismatch has a large effect on
average system performance. We solve this problem by consis-
tently using only one recognition model (either male or female)
in computing speaker adaptation transforms regardless of esti-
mated speaker gender. A further accuracy boost is obtained by
combining feature vectors derived from male and female vec-
tors into one larger feature vector. Using 1-conversation-side
training, the final system has about 27% lower decision cost
than a state-of-the-art cepstral GMM speaker system, and 53%
lower decision cost when trained on 8 conversation sides per
speaker.

1. Introduction
A fundamental problem in speaker recognition is feature vari-
ability due to factors other than the speaker’s identity. Inthe
case of cepstral features, this includes the choice of spoken
words, which is not modeled in standard bag-of-frame type
speaker models. In an approach we proposed recently [1], text
dependency is largely removed by using the adaptation trans-
form employed by a large-vocabulary speech recognition sys-
tem as the speaker feature. These transforms map the Gaussian
means of speaker-independent recognition models to speaker-
dependent values, estimated by maximum likelihood linear re-
gression (MLLR) [2]. Since triphones are approximately in-
variant to the words in which they occur, text dependency in the
cepstral domain is normalized out. Also, since many triphones
share the same transform, the problem of data fragmentation
(common to word- or phone-conditioned modeling approaches)
is avoided. The model can be refined by using several phone re-
gression classes, which are defined linguistically in our system.

A key element in using MLLR transform features success-
fully in speaker verification is appropriate feature normalization
and modeling. We found rank normalization in combination
with support vector machine models to give excellent results on
standard NIST speaker recognition evaluation (SRE) test data.

After the last NIST SRE we found that our MLLR feature
extraction procedure had a major flaw, due to a possible mis-
match in recognition models used in training and test conver-
sations. The present paper updates our earlier results after we
fixed this flaw, and introduces an additional enhancement that
suggested itself in the process. The new results are greatlyim-

proved; they substantially and consistently improve on those
obtained with state-of-the-art cepstral models.

Section 2 reviews the MLLR feature computation and mod-
eling. Section 3 describes how our previous implementation
was improved. Experiments and results appear in Section 4,
followed by conclusions.

2. Method
2.1. Speech recognition system

Our speech recognition system is a fast, two-stage version of
SRI’s conversational telephone speech (CTS) system, as origi-
nally developed for the 2003 DARPA Rich Transcription evalu-
ation [3] and later modified for the NIST 2004 speaker recogni-
tion evaluation [4]. The system performs a first decoding using
Mel frequency cepstral coefficient (MFCC) acoustic models and
a bigram language model (LM), generating lattices that are then
rescored with a higher-order LM. The resulting hypotheses are
used to adapt a second set of models based on perceptual lin-
ear prediction (PLP) acoustic features. The adapted modelsare
used in a second decoding pass that is constrained by trigram
lattices, which generates N-best lists. These are then rescored
by a 4-gram LM and prosodic models to arrive at the final word
hypotheses. The whole system runs in about 3 times real time
on a hyperthreaded 3.4 GHz Intel Xeon processor.

2.2. Speaker adaptation transforms

In maximum likelihood linear regression (MLLR) [2], an affine
transform(A; b) is applied to the Gaussian mean vectors to map
from speaker-independent (�) to speaker-dependent (�0) means:�0 = A�+b, whereA is a full matrix andb a vector. In unsuper-
vised adaptation mode, the transform parameters (coefficients)
are estimated so as to maximize the likelihood of the recognized
speech under a preliminary recognition hypothesis. For a more
detailed adaptation, the set of phone models can be partitioned
or clustered by similarity, and a separate transform is applied to
each cluster.

In our system, MLLR is applied in both recognition passes.
The first pass is based on a phone-loop model as reference,
and uses three transforms, for nonspeech, obstruent, and nonob-
struent phones, respectively. The second decoding pass uses a
more detailed MLLR scheme, based on word references gener-
ated by the first pass, and nine different transforms correspond-
ing to phone classes for nonspeech, voiced/unvoiced stops,
voiced/unvoiced fricatives, high/low vowels, retroflex phones,
and nasals. Also, in the second pass, a single feature-leveltrans-
form is used to effect speaker-adaptive training [5]. In previous
work [1] we found that these transforms are helpful in normal-
izing out corpus and channel differences, but should not be used
for speaker modeling.



2.3. Feature extraction and SVM modeling

The coefficients from one or more adaptation transforms are
concatenated into a single feature vector and modeled using
support vector machines. The data used is from conversational
telephone speech, and each conversation side is processed as
a unit by the speech recognition system. Consequently, each
conversation side produces a single set of adaptation transforms
pertaining to the same speaker, and hence a single feature vec-
tor. Since our acoustic features (after dimensionality reduction)
contain 39 components, the number of SVM feature compo-
nents will equal the number of transforms�39�40. The trans-
form for nonspeech (pause) models is left out of the feature vec-
tor, since it cannot be expected to help in speaker recognition.

An SVM is trained for each target speaker using the feature
vectors from a background training set as negative examples(of
which there are many, typically in the thousands), and the tar-
get speaker training data as positive examples (of which there
are few, typically 1 or 8). To compensate for the severe imbal-
ance between the target and background data, we adopted a cost
model [6] to weight the positive examples 500-fold with respect
to the negative examples. Throughout, a linear inner-product
kernel function was used for SVM training.

Prior to SVM training or testing, features need to be nor-
malized to equate their dynamic ranges. To this end, we ap-
ply rank normalization, replacing each feature value by itsrank
among all the background data samples on a given dimension,
and then scaling ranks to a value between 0 and 1. Rank normal-
ization not only scales the feature distribution to a fixed interval,
it also warps the distribution to be approximately uniform.This
has the intuitive effect that the distance between two datapoints
(along a single dimension) becomes proportional to the percent-
age of the population that lies between them.

An alternative to feature normalization is to optimize the
kernel function explicitly for minimal classification error. This
can be done in a number of ways, for example, by applying scal-
ing factors to subfeature-vectors [7], or by introducing a scaling
matrix derived from the within-speaker variances [8]. However,
neither of these methods was used here.

2.4. Baseline systems

In evaluating MLLR-feature-based speaker recognition sys-
tems, we compared results to two state-of-the-art cepstralfea-
ture systems. The first baseline system is a Gaussian mixture
model (GMM) with universal background model (UBM) [9],
based on 13 MFCCs (without C0) and first-, second-, and third-
order difference features. The features are mean-subtracted and
modeled by 2048 mixture components. Gender-handset models
are adapted from this model and used for feature transforma-
tion [10]. The final features are mean and variance normalized
at the utterance level. The detection score is the target/UBM
likelihood ratio after TNORM [11].

The second baseline system is also based on MFCCs (with
first- and second-order differences), followed by the same fea-
ture transformation and normalization steps. The final features
are then modeled with SVMs utilizing the polynomial sequence
kernel proposed by [12], with some recently developed en-
hancements [13]. Principal component analysis is performed
on the polynomial feature space, and the features are projected
onto the subspace spanned by the background speaker set, as
well as its orthogonal complement (there are more feature di-
mensions than background speakers). This process is then car-
ried out twice, for two different feature normalization variants,
and four separate SVM models are trained. The overall system

score is the sum of the four SVM scores, after TNORM. This
enhanced cepstral SVM system was the single best-performing
component of SRI’s NIST 2005 speaker recognition system
[14].

3. Improvements
3.1. Gender issues

The adaptation transforms are dependent on the recognition
models relative to which they are computed. Features derived
from the transforms can be compared meaningfully only if they
were computed relative to the same recognition models. This
becomes an issue if a recognition system uses multiple mod-
els, for example, if recognition models are gender dependent,
as is the case for our recognizer. Still, in principle genderde-
pendency should not be a problem because of the special way
in which trials in the NIST SRE data sets (as well as our own
development data) are constructed. NIST SRE trials always
have the same speaker gender (either all male or all female)
in target training and test conversations. Presumably, gender
mismatches between training and test data are considered un-
interesting, since they would be too easy to classify as speaker
mismatches.

Unfortunately, the automatic gender classification per-
formed by our recognizer makes a nonnegligible number of er-
rors. After the 2005 NIST SRE, we realized that this led to a
significant number of trials (on the order of 20%) in which at
least one of the conversation sides had incorrect gender, and
hence mismatched MLLR transform features. In the following,
we refer to such trials as “gender mismatched”, even though
this refers only to the automatically detected gender according
to our speech recognition system.1

Table 1 shows the average target and impostor trial scores,
as well as equal error rates (EERs) for trials in which a gender
mismatch occurs, and compares them to the statistics for trials
overall. These statistics are given for a standard cepstralGMM
system as well as the MLLR SVM system described in [1]. The
data is drawn from the Fisher collection, and has one training
conversation side per target speaker. The table shows that the
MLLR system scores drop dramatically for trials with gender
mismatch, unlike for the cepstral GMM. As a result, the MLLR
system performs almost at chance level (46% equal error) for
gender-mismatched cases.

3.2. Fixing MLLR gender mismatch

One solution to the problem of gender-mismatched trials is
to compute MLLR transforms with gender-independent mod-
els. However, in our case this would have meant retraining the
recognition system from scratch, a rather involved process. In-
stead, we decided to simply use one of the gender-dependent
models (male or female) for all speaker samples. This means
that gender-dependent processing steps (vocal tract length nor-
malization and adaptation) are rerun with the opposite gender
for about half the conversation sides. The recognition hypothe-
ses used to compute the second, more detailed MLLR trans-
forms, were kept unchanged from the original system, so no
additional decoding was necessary relative to the originalsys-
tem.

1It should be pointed out that the gender identification subsystem of
our recognizer has been developed independently of the speaker verifi-
cation system, and works reasonably well for its intended purpose. In
particular, we found that reducing the gender detection error rate does
not improve word recognition accuracy.



Table 1: System output (scores and EER) comparison depending on whether the target training speaker and the test speakerare
mismatched in automatic gender detection.

Target trial scores Impostor trial scores EER
Gender outputs all mismatched all mismatched all mismatched
GMM system 7.00 7.62 0.133 0.168 3.99% 2.32%
MLLR system 6.35 0.11 0.065 0.089 5.19% 46.2%

Table 2: Data sets used in experiments

Test set SWB-II Fisher SRE-04 English-only SRE-05 Common Condition
Training 1-side 8-side 1-side 1-side 8-side 1-side 8-side
Conv. sides 3642 3058 734 1384 2695
Models 578 546 734 479 225 506 384
Trials 9765 4911 16578 15317 7336 20907 15947

As reported in the next section, we tried using both male
and female recognition models for all speakers. Furthermore,
we explored the possibility of combining the two sets of trans-
forms thus obtained. After both “male” and “female” trans-
forms are computed, the corresponding feature vectors can be
concatenated and again modeled by SVMs. Since the gender-
dependent recognition models are not just linear transforms of
each other, we can expect the two sets of MLLR features to af-
ford two different, not entirely redundant “views” of the obser-
vation space, and the resulting combined system to have higher
accuracy.

4. Experiments and Results
4.1. Datasets

We tested our baseline and MLLR-based systems on four
databases: a subset of the NIST SRE-03 (Switchboard-II phase
2 and 3) data set, a selection of Fisher collection conversations,
the NIST SRE-04 database, and the NIST SRE-05 data set. For
all but Fisher, two data sets were available, for training on1 and
8 conversation sides, respectively. The NIST SRE-04 and SRE-
05 data sets were drawn from the Mixer data collection [15],
which included telephone conversations in English as well as
other languages. Since our method relies on a speech recognizer
for English, we report on trials that involve only English conver-
sations. For SRE-05 we chose the primary evaluation (Common
Condition) subset, which is English only. Table 2 summarizes
the statistics of these data sets. Note that the Switchboard-II
trials were a subset of those used in the NIST SRE-03 evalua-
tion, but had difficulty comparable to the full evaluation set, as
measured by the performance of our baseline system.

The background training set consisted of 1553 conversation
sides from Switchboard-II and Fisher that did not occur in (and
did not share speakers with) any of the test sets, and that had
duplicate speakers removed.

All data was processed identically by SRI’s speech recogni-
tion system as described in Section 2. None of the test or back-
ground data were used in training or tuning of the recognition
system.

In addition to feature-level normalization, we performed
TNORM score-level normalization [11] in all experiments and
for all systems, using speaker models drawn from a separate
Fisher data set.

Table 3: Speaker verification results using MLLR features from
2nd adaptation stage (8 transforms). The top number (in italics)
in each table cell is the EER (%). The bottom number is the
minimum DCF value.

Fisher SRE-04
MLLR gender 1-side 1-side 8-side

Mixed 5.57 9.49 4.96
(old system) .08281 .33182 .18249
Male 2.92 6.25 3.21

.06095 .28812 .12053
Female 2.98 6.54 3.21

.05362 .29092 .14568
Male + Female 2.85 5.34 2.62

.05493 .25640 .11767

Systems were optimized using the Fisher and SRE-04 data
sets, and we give results on these to illustrate certain contrasts
that guided our development. Final systems are then tested on
all data sets.

4.2. MLLR system results

MLLR systems based on the more detailed (8) transforms from
the second adaptation step give the best results, based on our
previous experiments. Table 3 summarizes results on the data
sets used for development, in terms of both minimum detection
cost function (DCF)2 and EER. The four rows of results corre-
spond to the original MLLR system that is affected by the gen-
der mismatch problem, a system based on “male” transforms,
a system based on “female” transforms, and one in which both
kinds of features are concatenated.

It is clear that fixing the gender mismatch problem reduces
overall equal error rates substantially, by 31% to 35% for the
SRE-04 data sets. (The mismatch problem is more severe on
Mixer data than on Fisher, due to higher gender classification
error rates.) DCFs are reduced by 12% to 33% relative on SRE-
04. Male and female transforms give approximately equal re-
sults. Combining the two sets of transforms yields an additional
gain. EERs on SRE-04 are reduced by an additional 12% to

2DCF is the Bayes risk function defined by NIST withPtarget =0:1, Cfa = 1, andCmiss = 10.



Table 5: Speaker verification results using baseline, MLLR,and combined systems. The MLLR SVM systems uses 8+8 transforms
(same as last row in Table 3) or 2+2 transforms (last row in Table 4). The last row represents a three-way combined system.

SWB-II Fisher SRE-04 SRE-05
System 1-side 8-side 1-side 1-side 8-side 1-side 8-side

MFCC GMM 4.63 1.92 4.57 7.77 4.95 7.17 4.91
.17857 .08353 .10259 .31126 .21146 .24781 .16886

MFCC SVM 4.38 1.06 4.31 8.01 3.33 7.26 3.05
.15610 .04470 .11051 .31339 .12629 .26839 .10333

MLLR (2+2) SVM 4.72 1.12 2.95 8.22 4.37 7.91 4.49
.18130 .0.6387 .05756 .33962 .16283 .29533 .15774

MLLR (8+8) SVM 3.00 0.48 2.85 5.34 2.62 5.91 2.45
.10759 .02419 .05493 .25640 .11767 .17950 .07918

MFCC GMM 6.43 4.01
+MLLR (2+2) SVM .22931 .13056

MFCC GMM 5.73 3.11
+ MFCC SVM .21485 .10279
MFCC GMM 4.84 2.45
+MLLR (8+8) SVM .15209 .07095
MFCC SVM 4.47 2.15
+MLLR (8+8) SVM .1578 .06591
MFCC (GMM+SVM) 4.61 2.21
+MLLR (8+8) SVM .15044 .06332

Table 4: Speaker verification results using MLLR features from
1st adaptation stage (2 transforms). The top number (in italics)
in each table cell is the EER (%). The bottom number is the
minimum DCF value.

Fisher SRE-04
MLLR gender 1-side 1-side 8-side

Mixed 6.37 12.38 6.12
(old system) .09934 .41594 .19934
Male 3.45 9.70 4.66

.06820 .37794 .18342
Female 3.12 9.07 5.10

.06153 .38666 .17158
Male + Female 2.98 8.22 4.37

.05756 .33962 .16283

21% relative, and DCFs by 2% to 20%.
We also ran a similar set of experiments using the two trans-

forms used in the first adaptation step of the recognizer. Note
that computing these transforms does not require a full recog-
nition (decoding) step and is therefore computationally inex-
pensive. Results, shown in Table 4, are qualitatively similar
to those found with the more detailed MLLR system. It is re-
markable that on the Fisher set (which is better matched to the
background set), the simpler MLLR system does almost as well.
Under mismatched conditions (SRE-04), however, the simpler
MLLR system shows about 50% higher EERs.

In [1] we had reported that additional gains could be ob-
tained by combining the MLLR transforms from the first and
second adaptation step into a single extended feature vector.
This is no longer true in our revised system after the male
and female transforms are combined. Consequently, the step-2
MLLR system with 8+8 transforms is the system of choice for
now, assuming a full recognizer can be run. The step-1 MLLR
system is still of interest, for example, when a full recognizer is

too costly to run, or for mixed-language speaker verification.

4.3. Baseline system comparison and combination

The top part of Table 5 gives complete results for our two cep-
stral baseline systems, as well as the MLLR systems using 2+2
or 8+8 transforms. We observe that the results across all data
sets are quite consistent, and, in particular, SRE-05 results are
very similar to those on SRE-04. The cepstral GMM is com-
petitive with the cepstral SVM in the 1-side training condition,
but falls significantly behind the two SVM systems in the 8-
side condition. Interestingly, the 2+2-transform MLLR system
is competitive with the MFCC GMM system, and beats it in the
8-side condition.

The middle and bottom parts of Table 5 shows results
with combinations of the two MFCC baseline systems with the
MLLR systems, using a neural network for combining the sys-
tem output scores. The combiner is trained to minimize DCF on
the SRE-04 data sets. Figures 1 and 2 plot the detection error
tradeoffs for the two baselines, the 8+8 MLLR system, as well
as for the best combined system.

As shown in the bottom part of the table, combining the
8+8-transform MLLR system with one of the cepstral systems
generally yields sizeable improvements over the MLLR system
by itself. By contrast, a combination of the two baseline systems
yields a much smaller error reduction over the individual base-
lines, showing that system combinationper se is not sufficient
to obtain good results, and that the MLLR system contributes
information that complements the baselines. A three-way com-
bination does, however, improve over the best two-way system,
yielding 22% (for 1-side training) and 10% (for 8-side training)
relative EER reduction over the MLLR system by itself.

The middle row in Table 5 shows that even the 2+2-
transform MLLR systems can boost the accuracy of a GMM
baseline system signficantly when combine with the latter. This
might be of interest if full word recognition is not an option, as
transforms here are computed using only a simple phone-loop
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Figure 1: Detection error tradeoff (DET) curves for baseline, 8+8-transform MLLR, and combined systems, SRE-05 1-conversation-
side condition.

decoding pass.

5. Conclusions and Future Work

We have discovered and corrected a major problem in our previ-
ous implementation of MLLR-transform-based speaker recog-
nition, which was the result of gender classification errorsin the
speech recognition system. We fixed the resulting gender mis-
match in speaker trials, and came upon a further improvement
by combining transforms relative to multiple recognition mod-
els (male and female, in our case). Our improved MLLR-based
SVM speaker verification system now gives markedly better re-
sults than our current cepstral GMM and SVM systems. Com-
bining the MLLR systems with these baseline systems gives a
significant further error reduction.

We plan to investigate MLLR for speech recognition in
other languages, including the case where a trial involves amix
of several languages.
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