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ABSTRACT 
 
This paper describes our recent efforts in exploring longer-
range features and their statistical modeling techniques for 
speaker recognition.  In particular, we describe a system that 
uses discriminant features from cepstral coefficients, and 
systems that use discriminant models from word n-grams and 
syllable-based NERF n-grams.  These systems together with a 
cepstral baseline system are evaluated on the 2004 NIST 
speaker recognition evaluation dataset. The effect of the 
development set is measured using two different datasets, one 
from Switchboard databases and another from the FISHER 
database. Results show that the difference between the 
development and evaluation sets affects the performance of the 
systems only when more training data is available. Results also 
show that systems using longer-range features combined with 
the baseline result in about a 31% improvement with 1-side 
training over the baseline system and about a 61% improvement 
with 8-side training over the baseline system. 
 

1. INTRODUCTION 
 
Automatic speaker recognition is the task of identiying a speaker 
based on his or her voice. Conventional systems for this task use 
features extracted from very short time segments of speech, and 
model spectral information using Gaussian mixture models 
(GMM) [1]. This approach, while successful in matched acoustic 
conditions, suffers significant performance degradation in the 
presence of handset variability.  Furthermore, since spectral 
information is not modeled as a sequence, the approach fails to 
capture longer-range stylistic features of a person’s speaking 
behavior, such as lexical, rhythmic, and intonational patterns. 
Recently, it has been shown that systems based on longer-range 
stylistic features provide significant complementary speaker 
information to the conventional system [2, 3]. 

The National Institute of Standards in Technology (NIST) 
conducts annual speaker recognition evaluations (SREs) to allow 
for meaningful comparisons of different approaches and to 
assess their performance relative to state-of-the-art systems. In 
this paper, we describe SRI’s submission to the 2004 SRE. This 
system uses a number of long-range features and has one of the 
lowest error rates of all official submissions on the NIST scoring 
metric for the core condition (1-conversation training, 1-
conversation test).  We also describe the effects of using 
different types of development sets and significant post-
submission improvements. Performance is measured using equal 
error rate (EER) and decision cost function (DCF). EER assumes 

that false acceptance is as important as false rejection, and target 
and impostor priors are equal. DCF is a NIST-specific measure 
described in [4]. 
 
 

2. EVALUATION SETUP 
 
The 2004 NIST SRE dataset (referred to as EVAL2004) is part 
of the conversation speech data recorded in the Mixer Project. 
The speech was mostly in English and was recorded over 
telephone (landline and cellular) channel. The evaluation 
consists of twenty-eight conditions differing in the amount of 
training and test data [4]. The core condition is defined as the 
one where one conversation side (about 5 min including silence) 
was used as training and test data.  The primary evaluation 
subset is defined as that data recorded in English and over 
telephone channel with a handheld instrument (excluding 
cordless handsets).  

We submitted results for two conditions – 1-side training, 1-
side testing, and 8-side training, 1-side testing. The stylistic 
features are estimated using an automatic speech recognition 
(ASR) system, which is trained only on English language data. 
We submitted results for the primary evaluation subset. Table 1 
shows the number of trials for each condition. In this paper, we 
report results for trials satisfying the primary evaluation 
criterion.  

Table 1 Trials for different conditions in EVAL2004  

Data length 
English-English 

trials 
Training Test Primary Other 

Other  
trials 

Total 

1-side 1-side 5202 10596 10423 26224 
8-side 1-side 2433 8851 5696 16980 

 
 

3. DEVELOPMENT SETS  
 

The systems described in this paper were developed using two 
different devsets: Switchboard (SWB) and FISHER.  
 
3.1. SWB devset 
The NIST 2003 evaluation dataset (EVAL2003) was divided 
into two halves – one set using splits 1-5 and a second set using 
splits 6-10. For the baseline cepstral system, the background 
model is trained using equal amount of landline (NIST 2001 
extended evaluation data) and cell data (NIST 2001 cellular 
development data). The same background model is used for both 



halves. For the other systems, the background model for one set 
is trained using the speakers from the other set. In each set, 
scores for each system are normalized using TNORM, and 
TNORM speakers are also obtained from the other set. From this 
data, we trained systems with 1 conversation side and 8 
conversation sides.  

The same background model from the baseline development 
system is used for the EVAL2004 set. For the other systems, the 
background model trained on split 6-10 is used. A combiner [5] 
trained on splits 1-5 is used to combine the scores from different 
evaluation systems. Different combiners are trained for 1 and 8 
conversation side training conditions. 
 
3.2. FISHER devset 
The FISHER devset is created from the FISHER database, which 
is collected and distributed by the LDC for the DARPA EARS 
program. We selected two nonoverlapping sets of speakers from 
this data. In one set, speakers participated in only one recording; 
in the other set, speakers participated in multiple recordings. 
Each set is balanced with respect to different genders and 
handsets. The first set was used to create the background models. 
The second set was divided into two equal splits. For 1-side 
training, we created development sets that were used as devsets 
for the evaluation. Table 2 shows the statistics for target models 
and trials for the two splits. 

As with SWB devset, two sets of development systems are 
trained on these splits. For each split, TNORM speakers from the 
other split are used.  The system combination strategy is similar 
to that described in Section 3.1. The difference is that for the 
FISHER devset we have used a single combiner, trained with 1-
conversation side, for both evaluation conditions. 

Table 2 Model and trial statistics for FISHER devset  

Split 1 Split 2 
Models Trials Models Trials 

734 14488 617 10665 
 
For the EVAL2004 set, the background model and TNORM 

speakers are obtained from split 2, and the combiner is trained 
on split 1. 
 

4. ACOUSTIC-FEATURE-BASED SYSTEMS 
 

We used two acoustic features sets derived from 13 Mel 
frequency cepstral coefficients (MFCCs) with delta and double-
delta coefficients. These features were preprocessed via mean 
normalization and feature transformation [6]. 

 
4.1 Cepstral-GMM System (Baseline)  

This system uses the 2048-component GMM and is 
described in detail in [7]. Table 3 shows baseline results for 
different devsets and the EVAL2004 set. It shows that the 
FISHER devset is more difficult than the SWBD devset, and the 
EVAL2004 set is the most difficult for the baseline system. It 
also shows that the improvement using more training 
conversation sides falls from 67% on the SWBD set to 41% on 
the EVAL2004 set. We observe that EVAL2004 baseline 
performance is similar across two devsets for 1-side training. For 
8-side training, however, systems trained on the FISHER devset 

give significantly better performance than those trained on the 
SWB devset. 

 
4.2 HLDA Cepstral-GMM System 
The HLDA cepstral-GMM system applies an additional 
heteroscedastic linear discriminant analysis (HLDA) transform 
to the channel-normalized features, projecting the original 39-
dimension feature onto 25 dimensions. The HLDA transform is 
estimated using the baseline background GMM as a reference 
model, with individual Gaussians as classes and modeling the 14 
nuisance dimensions with a global Gaussian distribution [8]. The 
transformed features are used to train a new background GMM. 
The target model estimation and verification is performed as in 
the baseline system. On the devsets, this system performs 
slightly worse than the baseline system and shows improvement 
in combination with it. However, the improvement does not hold 
for the EVAL2004 set. 

Table 3 Performance of Cepstral GMM system 

%EER /DCF Dataset 
1-side 8-side 

SWBD 6.87 / 0.247 2.25 / 0.092 
FISHER 8.06 / 0.321 - 

SWBD 11.61 / 0.445 9.09 / 0.337 
EVAL2004 

FISHER 11.27 / 0.449 6.54 / 0.234 

 
5. STYLISTIC-FEATURE-BASED SYSTEMS 

 
Stylistic features used in this work are based on pitch, pause, 
word usage, and other statistics estimated from the data. We 
describe first the ASR system and follow with a brief description 
of the individual systems. 
 
5.1. ASR System for Decoding SWB Devset 
The long-term, higher-level features used in the SWB devset are 
generated using the first pass of SRI’s conversational telephone 
speech recognition (CTS) system [9]. The acoustic models are 
those developed for the NIST RT-03 CTS evaluation, trained on 
SWB1 and CallHome data. The language model was a bigram 
trained on those sources, as well as broadcast and web data. The 
word-level 1-best recognition output, as well as word-, phone-, 
and state-level time alignments, was then used in the speaker ID 
systems.  For transcribed portions of SWB2 phase 2 made 
available for RT-03 (but not used in our speaker ID system), the 
word error rate (WER) is about 38%. 

 
5.2. ASR System for FISHER and EVAL 2004 Data 

For the FISHER and EVAL2004 data, transcriptions were 
generated with SRI's 5xRT CTS recognition system, using 
improved models developed for the NIST RT-03F evaluation. 
Additional training material was drawn from transcribed SWB2 
phase 2 and 3 data; no Fisher data was used in training the ASR 
system. Two different versions of ASR hypotheses and 
alignments were produced and used for speaker modeling. The 
first one corresponds to the output of the first-pass bigram 
decoding, similar to the decoder used on the SWB devset. The 
second recognition pass incorporated more global constraints, 
such as a 4-gram language model, word-level duration models, 



and self-supervised speaker-level acoustic adaptation The WER 
on RT-03 evaluation data was 29% and 21%, respectively, for 
the two passes. 

 
5.3. Word N-gram Language Modeling System 

Our N-gram-based language model systems are based on the 
technique first used by Doddington [3].  The vocabulary (set of 
bigrams) is drawn from the same set of conversation sides used 
to estimate the background model. The model is a simple bag of 
N-grams. The score is calculated as the difference between the 
log-likelihood of the trial with respect to the target and the 
background models.    

Table 4 shows the performance of the word N-gram LM 
system (Row 1) and its combination with the baseline (Row 2). 
The system (Row 1) gives about a 12% improvement over the 
baseline on the FISHER devset. However, it does not improve 
over the baseline on 1-side training from the EVAL2004 set. Our 
preliminary investigation shows that this disparity is due to a 
mismatch in the vocabulary. However, on 8-side training from 
the EVAL2004 set, the word N-gram system gives about a 20% 
improvement over the baseline.  

 
5.4 Word N-gram Support Vector Machine system 

This system uses a support vector machine (SVM) with a 
linear kernel [10] to separate true and imposter speakers.  A 
training or test conversation side provides a single feature vector 
of the raw relative frequencies of word N-grams.  In contrast to 
the language model system, the relative frequencies are 
unsmoothed and unboosted.  We used first-, second-, and third-
order N-gram counts as features with a minimum cutoff of 2. The 
bias against false positives was set to 500. 

Table 4 shows the performance of the N-gram SVM system 
(Row 2). Results show that this system gives significantly better 
performance than the N-gram LM system (Section 5.3). This 
improvement is also observed when the SVM system is 
combined with the baseline (Row 4). Thus, the SVM-based 
approach is more efficient than the LM approach in modeling 
speaker information from N-grams. 

Table 4 %EER of LM and SVM N-gram systems 

 System FISHER EVAL 1-side EVAL 8-side 
1) LM 18.07 27.81 16.36 
2) SVM 14.68 23.06 12.36 
3) Baseline + 1 7.08 11.44 5.09 
4) Baseline + 2 6.62 10.03 3.27 

 
5.5 Duration Feature System  

Three duration features – state, phone, and word level – are 
used in this system [7]. Phone and state features are obtained 
using the noncrossword alignments from the recognizer, while 
the word features are obtained using both the crossword and the 
noncrossword versions. (Note: the crossword version is available 
only for the FISHER-dev systems.) This choice is based on 
previous results that showed better performance for both phone 
and state models using noncrossword alignments, and better 
performance for word models using the crossword alignments. 

Table 5 shows the performance of different duration systems 
and of their combination with the baseline system. Of the three 
duration systems, the system using durations of the three states 

within a phone gives the best performance.  The combination of 
duration systems with the baseline system gives about a 27% 
improvement with 1-side training and about a 44% improvement 
with 8-side training from the EVAL2004 set.  

Table 5 %EER of different duration systems 

System FISHER EVAL 1-side EVAL 8-side 
1) State (S) 12.65 15.14 9.09 
2) Phone (P) 18.07 19.01 13.45 
3) Word (W) 20.48 21.30 10.18 
4) Baseline + 1 
+ 2 + 3 

6.47 8.27 3.63 

 
5.6 Pause-to-pause Feature System  
This system includes a sample subtype of a large set of 
nonuniform extraction region features (NERFs) [11].  This 
particular system uses regions between pauses of 500 ms or 
more. A feature vector comprising various F0, energy, and 
duration features is extracted for each region.  Features are 
modeled using GMMs.  Due to the undefined features present, 
statistical modeling is modified as explained in [11]. 

Table 6 shows the performance of the pause-to-pause NERF 
system alone (Row 1) and in combination with the baseline 
system (Row 3). The performance of this system degrades 
significantly from the devset to the EVAL2004 set and also gives 
a smaller improvement when combined with the baseline system. 
Our primary investigation shows that the degradation in 
performance is related to the pitch features, and we are 
investigating this further. 

 
5.7 Syllable NERFs 

This system uses a type of NERFs where the extraction 
region is defined by automatically estimated syllable boundaries. 
These features are described in detail in [12]. For each syllable 
in the utterance, several duration-based, F0, and energy features 
are extracted. These features are then quantized to create 
sequences of different lengths (unigrams, bigrams and trigrams). 
Features can also include quantized pauses. The final features 
are then computed as the N-gram counts for a particular 
sequence normalized by the total number of syllables in that 
conversation side. These features are modeled using SVMs as 
for the word N-gram SVM system.  

Table 6 %EER of pause-to-pause and syllable NERFs  

System FISHER EVAL 1-side EVAL 8-side 
1) PAU 16.04 27.46 22.56 
2) SYL 14.60 20.10 12.00 
3) Baseline + 1 7.00 10.74 6.54 
4) Baseline + 2  7.30 8.98 4.00 

 
Table 6 shows the performance of the SNERF-based system 

(Row 2) and its combination with the baseline system (Row 4). 
This system gives a significant improvement – around 20% for 
1-side training and around 40% for 8-side training. These 
features are similar to duration features and might have similar 
speaker information. However, our experiments show that a 
system using these features provides significant improvements 
when combined with both the duration and baseline systems.  
 



6. SYSTEM COMBINATION RESULTS 
 

Twelve individual systems are used for score-level combination. 
These include two acoustic-feature-based systems and seven 
stylistic-feature-based systems using either noncrossword (NC) 
or crossword (C) alignments. As mentioned earlier, these 
systems are combined at the score level, using the Neural 
Network classifier [5]. Table 7 shows results for different system 
combinations. Combinations 1 and 2 compare the effect of 
devsets on the combination of acoustic-feature-based systems 
(baseline and HLDA) with duration- and N-gram-based systems. 
Results show that the choice of devsets does not have a 
significant effect with 1-side training. With 8-side training, 
however, systems trained on the FISHER devset perform 
significantly better than those trained on the SWB devset. This 
result is consistent with the baseline result (Table 3). This 
combined performance is further improved by adding NERF 
systems. Combination 3 shows about a 31% improvement with 
1-side training and about a 61% improvement with 8-side 
training over the baseline. 
 

7. SUMMARY AND CONCLUSIONS  
 
We have described twelve different speaker recognition systems. 
Two of them are based on commonly used cepstral features, and 
others are based on stylistic features. Apart from baseline and 
duration systems, we used three new systems: HLDA cepstrum, 
SVM N-grams, and SNERFs. These systems were developed on 
two development sets from the Switchboard and FISHER 
databases. The HLDA system gave significant improvements in 
combination with the baseline on the devset but did not improve 
performance on the EVAL2004 set. We described an SVM 
framework for modeling N-grams, which performed better than 
the LM framework. Finally the SNERF system also gave a 
significant improvement in combination with the baseline.  

We extended the NERF system by modeling the undefined 
NERFs efficiently in a single model. This system did not give 
significant improvement in combination with the baseline.  

Our experiments with different alignments (crossword and 
noncrossword) for stylistic features showed that these systems 
give better performance with less accurate transcription. This 
shows that speaker-specific errors in the transcription made by 
the ASR system are useful for stylistic features. 

Some open issues remain regarding exact differences between 
the devset and EVAL 2004 set, and the generalizability of a 
system combination. However, the significant improvements 
from stylistic features – 31% with 1-side training and 61% with 
8-side training – show the importance of stylistic features for 
robust speaker recognition performance.   
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Table 7 Combination of stylistic-feature-based systems with two acoustic-feature-based (baseline and HLDA) 
systems. NC=noncrossword alignments, C=crossword alignments and * = systems without TNORM. 

(Acoustic +) Stylistic Results (%EER/DCF) 
Duration Word-based NERFs 

Combination 
(devset) 

S P W LM SVM PAU SYL 
EVAL  
1-side 

EVAL 
8-sides 

1 (SWB) NC NC NC NC NC*   8.2 / 0.358 5.4 / 0.226 
2 (FISHER) NC NC NC NC NC*   8.2 / 0.346 2.9 / 0.119 
3 (FISHER) NC NC C NC & C NC & C C C 7.7 / 0.325 2.5 / 0.100 

 


