
Capturing the Long-Term Impact of Changes

Kim Sebastian Herzig
Saarland University

Saarbrücken, Germany
kim@cs.uni-saarland.de

ABSTRACT

Developers change source code to add new functionality, fix
bugs, or refactor their code. Many of these changes have im-
mediate impact on quality or stability. However, some im-
pact of changes may become evident only in the long term.
The goal of this thesis is to explore the long-term impact
of changes by detecting dependencies between code changes
and by measuring their influence on software quality, soft-
ware maintainability, and development effort. Being able to
identify the changes with the greatest long-term impact will
strengthen our understanding of a project’s history and thus
shape future code changes and decisions.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—impact measures,
effort measures, maintainability measures

Keywords

Software engineering, metrics, long-term impact of changes,
change dependencies

1. INTRODUCTION
Software development is an incremental process that uses
earlier stages of the software product to build newer ver-
sions. During software development, source code is added,
changed and removed. Directly after applying the code
change, the software structure and execution behavior may
have changed [9, 10]. Some code changes will also have an
additional long-term impact on the software project that is
difficult to estimate.

Consider the following example: Your development team
maintains a plug-in based image processing framework; one
of the image algorithms is hidden by design and has to be ac-
cessed using a wrapper object; to increase performance and
accessibility, your team is about to declare the internal algo-
rithm interface public. But what will be the consequences
of this design decision? How will this change impact the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

T1 T4T3

time

T2 T5

Figure 1: Sample TDG derived from method opera-

tions shown in Figure 2. An arrow T1→ T2 indicates

that T2 depends on T1.

quality and stability of this project in the long term? How
much development effort is necessary to maintain the new
member of the API?

Influencing the development process over a period of time
implies having influence on later decisions. Thus, measur-
ing the long-term impact requires recording or reconstruct-
ing the dependencies between code changes. The higher the
number of later code changes that depend on Ti, the greater
the long term impact of Ti. Figure 1 shows a sample depen-
dency graph. The vertices T1 to T5 represent applied code
changes, an edge between two vertices represents a depen-
dency between the corresponding changes. The long-term
impact of code change T2 is small since only one of the three
later applied code changes depends on it. Collecting qual-
ity and effort data for code change T4 allows us to conclude
about the impact of T2 on quality and effort of the later
development process.

The goal of this thesis is to detect and investigate de-
pendencies between code changes. Similar to earlier ap-
proaches [2, 6], this thesis will use transaction dependency
graphs (TDGs) to model cause-and-effect chains between
sets of code changes and to analyze their impact on soft-
ware quality, maintenance and development effort.

2. BACKGROUND
The difference between two (consecutive) source code revi-
sions can be determined using a simple diff algorithm. But
identifying the consequences of code changes requires more
detailed analysis. Zimmermann [13] determined fine-grained
differences between revisions on token level. Fluri et al. [5]
extracted hierarchically structured changes on statement level
along with change type information. Later, they used their
own tool to describe development activities using change
patterns derived from change type combinations [4]. On
method level, Kim et al. [8] presented an approach that
represents structural changes as a set of high-level change
rules, automatically infers likely change rules, and deter-
mines method-level matches based on these rules.

F
ile
 3

F
ile
 1

F
ile
 2

Transaction T1 Transaction T3 Transaction T4 Transaction T5

Added

definition

Interf.alg(p1)

Added

definition

Wrap.w1(p1)

Transaction T2

Changed

definition

Interf.alg(p1)

Added

call

Wrap.alg(p1)

F
ile
 4

Added

call

Interf.alg(p1)

Changed

call

Interf.alg(p1)

p
a
c
k
a
g
e
 A

p
a
c
k
a
g
e
 B Added

call

Interf.alg(p1)

Added

call

Interf.alg(p1)

Figure 2: Sample method operation dependencies

Impact analysis techniques such as CoverageImpact [10]
and PathImpact [9] determine the immediate impact of code
changes on program executions. Ren et al. [11] presented a
tool that decomposes program version differences into sets of
atomic changes and reports test cases, whose execution be-
havior may have been changed. However, these approaches
only consider the immediate impact of code changes on pro-
gram structure and behavior.

Hassan and Holt [7] used source sticky notes to provide
historical records of system structures and its evolution. Di-
rectly related to this thesis is the concept of change ge-
nealogies [2] and change impact graphs [6]. Both model the
dependency structure between code changes in a directed
acyclic graph. In contrast to change genealogy graphs [2],
German et al. [6] extract time dependency information di-
rectly from revision repositories and lift time dependency
information to source code entity level (e.g. classes). Later,
Alam et al. [1] used change impact graphs to determine the
fraction of new changes that are built on older, stable code.

3. CHANGE DEPENDENCIES
Many code changes applied to a software project are based
on other code changes applied before. More precisely:

Code change C2 depends on code change C1 if and only if
C2 cannot be applied without applying C1 before.

Detecting all possible dependencies between atomic code
changes on method level requires full type and cross-reference
resolution over the complete project history. As an example:
adding the statement y = x + 10 depends on those changes
that added the statements declaring the two variables x and
y. It is desirable to have a dependency detection that is al-
most complete but also includes a large number of possible
inter-change dependencies.

To ease the concept of code change dependencies, I sepa-
rate code changes into sets of method definition and method
call operations: added method definition (AD), changed
method definition (CD), removed method definition (RD),
added method call (AC), changed method call (CC) and
removed method call (RC). This reduction of code changes
will disregard many inter-change dependencies that will not
add additional method calls or change any method interface.
But concentrating on code changes that cross the natural
method border implies focusing on changes that are more
likely to have a wider impact. Additionally, the reduction
eases the definition of code change dependencies dramati-
cally.

CDs and RDs depend on transactions that previously
added or changed the definition of the very same method.
AC s, CC s and RC s depend on those transactions that added
or changed the definition of the called method. Addition-
ally, CC s and RC s depend on the changes that added the
changed or deleted method call. Given the definition of
code change dependencies and given type information based
on source code [3], it is possible to detect and model code
change dependencies.

Figure 2 shows a revision history that corresponds to the
example given in the introduction. The change turning the
interface public (T3) depends on the previous definition of
the interface in T1. All new calls to the now public interface
depend on T3. So do all changes that replace old wrapper
calls with new direct calls. At the same time these replace-
ment changes also depend on the changes that added or
changed the wrapper class. The set of changes depending
on T3 determines the set of development activities influenced
by making the interface public and can be used to measure
the impact on the later development process.

4. TRANSACTION DEPENDENCY GRAPH
Brudaru and Zeller [2] and German et al. [6] used directed,
acyclic graphs to model code change dependencies. These
graphs contain edges A→ B if and only if change B can be
applied only if change A was applied before.

Instead of modeling change dependencies on atomic code
changes, transaction dependency graphs (TDGs) used in this
thesis are based on dependencies between sets of simultane-
ously applied code changes: so called transactions. The un-
derlying assumption is that code changes applied within the
same transactions are dependent on each other. Thus, any
such inter-transaction dependency will not refer to a long
term impact. But lifting the granularity to transaction level
reduces the size and complexity of the dependency graphs.

The TDG corresponding to our example from the intro-
duction (see Figure 1) contains no edge from T3 to itself,
even though transaction T2 applied two changes depending
on each other (see Figure 2). TDG vertices are annotated
with an exact description of all changes committed within
the corresponding revision control transaction, the transac-
tion id, the author and the timestamp of the commit. These
annotations provide enough information to compute change
dependencies within a transaction, if necessary. Each edge
in a TDG represent a temporal dependency — dependency
between two sets of code changes applied across multiple
project revisions. Each edge is annotated with a rationale —
the precise information which method definition or method
call is responsible for adding this edge. If there are multiple
methods responsible, the rationale comprises them all.

TDGs described in this thesis are based on Java source
code and use change dependencies determined on method
level using partial program analysis [3]. But adapting them
to other object-oriented programming languages and to sup-
port more fine grained granularity levels is possible.

5. TRANSACTION IMPACT
The definition of an impact highly depends on the target
domain (impact on what?). The goal of this thesis is to
measure the long-term impact of code changes on the quality
and maintainability of the software project as well as on
development efforts. In particular, we raise the following

research question:

Q1 Is it possible to detect and analyze major design/de-
velopment decisions using TDGs (e.g. refactorings and
their effectiveness)?

Q2 Can we use TDGs to define and measure software de-
velopment process metrics that will correlate with soft-
ware quality and maintainability?

Q3 Can TDGs be used to extract development process
models that will help to estimate future development
efforts and to estimate the risk of future development
decisions?

The answer to Q3 highly depends on the answers to Q1
and Q2. If TDGs cannot be used to detect major develop-
ment process changes and if TDGs cannot be used to detect
quality or stability issues, it will not be possible to extract
useful decision models from TDGs. Since TDGs are too big
to be analyzed manually, I will use software development
process metrics based on the properties of TDGs to find an
answer to Q1 and Q2.

5.1 Dependency Metrics

InDegree and OutDegree

Similar to the code complexity metrics FanIn1 and FanOut2,
the InDegree3 and OutDegree4 of a TDG vertex will indicate
it’s impact. Having a high number of outgoing edges indi-
cates a high direct impact on many later changes. A high
number of edges ending in a vertex means that this change
depends on many other previous changes. Vertices having a
high InDegree and a high OutDegree are expected to detect
refactorings and thus may be useful to answer Q1.

Long-Term Impact

The relation between the number of dependent transactions
and the number of transactions committed later determines
the impact of a single transaction on the later development
process. But different than the out degree of a vertex, it is
necessary to consider indirect dependencies, too. Of course
impact should decrease with increasing path length.

Impact(Ti) =

P

i∈depend(i)
1

depth2(i,j)

#later(i)

where depend(i) is the set of transactions dependent on Ti,
depth(i,j) is the length of the shortest path from Ti to Tj ,
and later(i) is the set of all transactions committed later
than Ti.

The impact of transaction T3 from our example (see Fig-
ure 1) is one — all later applied transactions directly depend
on it. In contrast, the impact measurement of T1 is only
three third since not all transactions depend directly on it.

1FanIn is the number of functions calling a given function.
2FanOut is the number of functions being called from a given
function.
3InDegree is the number of directed edges pointing to a ver-
tex.
4OutDegree is the number of directed edges leaving a vertex.

Long-Term Negative Impact

The above notion of impact does not state weather the im-
pact was positive or negative. Code changes that have to
be revised or undone later might have large impact but it
is likely that a developer would consider such impact as
negative. Measuring the fraction of dependent transactions
whose dependencies are only based on code changes revised
or undone later determine the negative impact of a transac-
tion. Of course, not all development effort put in revised or
undone changes can be classified as unnecessary or negative
but the identification of “bad” transaction helps to identify
and prevent future critical decisions and unstable code frag-
ments.

Long-Term Impact on Quality

Quality refers to the number of bugs introduced by the code
changes committed within a transaction. Sliwerski et al. [12]
describe an approach that determines fix-inducing changes
— changes that had to be revised in order to fix a bug. They
map bug reports to revision transactions that contain those
code changes to be applied in order to fix a bug. Those
transactions that committed the lines to be fixed are iden-
tified as fix-inducing.

DefectRate(ti) =
#fixind(ti)

#delta(ti)

where fixind(ti) is the set of fix inducing changes ti commit-
ted and delta(ti) is the set of code changes applied within
ti.

The quality of a transaction might influence the quality of
later, dependent transactions, e.g. by changing return val-
ues or exception handling. The lower the quality of preced-
ing transactions, the higher the defect risk. Vice versa, low
quality of dependent transactions might indicate low quality
of the common predecessor. Quality feedback might expose
quality issues of transactions unknown so far. In order to
find an answer to research question Q2, I want to investi-
gate which such defect rates propagate along TDG edges
and which factors of a transaction lower the defect risk.

Long-Term Impact on Stability

The more changes a code entity gets applied (in a specified
period of time), the more unstable the code entity. Instabil-
ity often refers to low quality and is often used as an indica-
tor for quality. On code change level, a transaction Ti is un-
stable if the number of transactions applying code changes
that revise changes applied within Ti is large. Similar to
code entities, transactions whose code changes had to be re-
vised are of poor quality. Unstable transactions with high
impact are likely to cause further instability (on transaction
and code entity level) and cause unnecessary development
effort.

Graph Measurements

The above described impact measurements are determined
by examination of single transactions. But they do not de-
scribe the overall graph status, such as the average quality
or average impact over all transactions. Trends in transac-
tion impact measurements captured over time can describe
the evolution of the overall project health. For this pur-
pose, all transaction impact measurements are averaged to
the overall graph level considering a specific time frame (e.g.

two weeks). Limiting the considered time frame puts the av-
erage value into temporal context and prevents the average
numbers to converge. The result is time lines that show
transaction impact trends over the project’s history. Using
such trends it should be possible to identify effective refac-
torings (sudden drop in the average transaction impact) or
software architecture decay (slow but steady increase in the
average transaction impact).

Q1: To determine weather TDGs are suitable to detect
and analyze major design and development decisions re-
quires the prior knowledge of such decisions. Mining soft-
ware archives such as version repositories, ticket systems and
mailing lists, and using techniques like specification mining
and reverse engineering makes it possible to extract such
information about performed refactorings and major code
changes. Knowing approximate time frames of major code
changes, it will be possible to see if impact measurements
such as InDegree and OutDegree will reflect the importance
and impact of these development phases.

Q2: To determine the usefulness and predictive power of
development process metrics, I will investigate weather these
measurements will correlate with quality, stability and ef-
fort figures of the software project. If some of these metrics
show significant correlation I will use these metrics to predict
the correspondent system health measurement (e.g. bugs).
Comparing prediction models based on TDG metrics with
prediction models based on code metrics and mixed sets of
metrics will show the predictive power of TDG measure-
ments.

Q3: Similar to the evaluation of Q2, I need to show that de-
rived change process models are capable of estimating future
changes. For this purpose, I will split up the development
history of a project into a two third training period and a one
third testing period. Models extracted from the two third
training period should be able to estimate risks and effort
for changes applied in the test period. But this would imply
that changes in both periods are similar to each other. If
such models are really helpful for managers and developers
to understand past changes and to learn from them would
have to be evaluated in a large scale survey.

6. CONCLUSION
Constant changes in requirements induce constant code changes.
It is more than natural that code changes depend on each
other. Understanding the complexity of software develop-
ment activities and being able to track back on which de-
cisions my own code change is based, provides fundamental
information that determines the quality of a change. The
goal of this thesis is to determine the long-term impact of
code changes on the software quality, maintainability, and
development effort. Transaction dependency graphs model
inter-transaction dependencies based on the level of method
definitions and method calls. TDGs can be used to estimate
and measure the long-term impact of changes. Long-term
impact measurements might help improve automated rec-
ommendation system that warn the developer against risky
changes.

Acknowledgments.

The concept of long-term impact of changes was originally
sketched by Michael Godfrey, Andreas Zeller, and Thomas
Zimmermann at the SARS 2007 workshop.

7. REFERENCES
[1] O. Alam, B. Adams, and A. E. Hassan. Measuring the

progress of projects using the time dependence of code
changes. ICSM ’09: Proceedings of the 25th IEEE
International Conference on Software Maintenance,
2009.

[2] I. I. Brudaru and A. Zeller. What is the long-term
impact of changes? In RSSE ’08: Proceedings of the
2008 International Workshop on Recommendation
Systems for Software Engineering, pages 30–32, 2008.

[3] B. Dagenais and L. Hendren. Enabling static analysis
for partial java programs. In OOPSLA ’08:
Proceedings of the 23rd ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 313–328, 2008.

[4] B. Fluri, E. Giger, and H. Gall. Discovering patterns
of change types. In ASE ’08: Proceedings of the 23rd
IEEE/ACM International Conference on Automated
Software Engineering, pages 463–466, 2008.

[5] B. Fluri, M. Würsch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source
code change extraction. IEEE Transactions on
Software Engineering, 33(11):725–743, 2007.

[6] D. M. German, A. E. Hassan, and G. Robles. Change
impact graphs: Determining the impact of prior code
changes. Information and Software Technology,
51(10):1394–1408, 2009.

[7] A. Hassan and R. Holt. Using development history
sticky notes to understand software architecture. In
IWPC ’04: Proceedings of the 12th IEEE
International Workshop on Program Comprehension,
page 183, 2004.

[8] M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In ICSE ’07: Proceedings of the
29th International Conference on Software
Engineering, pages 333–343, 2007.

[9] J. Law and G. Rothermel. Whole program path-based
dynamic impact analysis. In ICSE ’03: Proceedings of
the 25th International Conference on Software
Engineering, pages 308–318, 2003.

[10] A. Orso, T. Apiwattanapong, and M. J. Harrold.
Leveraging field data for impact analysis and
regression testing. In ESEC/FSE-11: Proceedings of
the 9th European Software Engineering Conference,
pages 128–137, 2003.

[11] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: a tool for change impact analysis of java
programs. pages 432–448, 2004.

[12] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR ’05: Proceedings of the
Second International Workshop on Mining Software
Repositories, pages 1–5, 2005.

[13] T. Zimmermann. Fine-grained processing of cvs
archives with apfel. In eclipse ’06: Proceedings of the
2006 OOPSLA Workshop on Eclipse Technology
eXchange, pages 16–20, 2006.

