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ABSTRACT

Anomaly extraction is an important problem essential to sev-
eral applications ranging from root cause analysis, to attack
mitigation, and testing anomaly detectors. In this work,
we study the problem of extracting anomalous flows from
a large set of traffic flows suspected to contain an anomaly.
We divide the anomaly extraction problem in two steps: in a
first step meta-data from multiple anomaly detectors is used
to filter suspect flows, the second step consists in mining sets
of anomalous flows with the help of association rules. Us-
ing rich traffic data from a backbone network, we evaluate
the decrease in classification cost achieved with rule mining
and show that our techniques effectively isolate anomalous
events and relevant flow data about the events.
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1. INTRODUCTION

Anomaly detection techniques are the last line of
defense when other approaches fail to detect security
threats or other problems. They have been extensively
studied since they pose a number of interesting research
problems, involving statistics, modeling, and efficient
data structures. Nevertheless, they have not yet gained
widespread adaptation, as a number of challenges, like
reducing the number of false positives or simplifying
training and calibration, remain to be solved.

In this work we are interested in the problem of iden-
tifying the traffic flows associated with an anomaly dur-
ing a time interval with an alarm. We call finding these
flows the anomalous flow extraction problem or simply
anomaly extraction. At the high-level, knowing anoma-
lous flows reflects the goal of gaining more informa-
tion about an anomaly alarm, which without additional
meta-data is often meaningless for the administrator.
Identified anomalous flows can be used for a number of
applications, like root-cause analysis of the event caus-
ing an anomaly, improving anomaly detection accuracy,
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Figure 1: The high-level goal of anomaly extrac-
tion.

and modeling anomalies.

Our solution to the anomaly extraction problem is
the following: We use several histogram-based detec-
tors that provide fine-grained meta-data for filtering a
set of suspect anomalous flows. Then we apply the con-
cept of association rules in order to identify the event
that triggered an anomaly alarm. We test our anomaly
extraction techniques on rich network traffic data from
a medium-size backbone network and identify several
anomalies and associated anomalous flows. In particu-
lar, we show how the concept of association rules allows
for reducing the classification cost by several orders of
magnitude, and we evaluate the accuracy of the derived
rulesets.

In Figure 1 we present the high-level goal of anomaly
extraction. In the bottom of the figure, events with a
network-level footprint, like attacks or failures, trigger
event flows, which after analysis may raise an anomaly
alarm. Ideally we would like to extract exactly all trig-
gered event flows; however knowing or quantifying if
this goal is realized is practically very hard due to in-
herent limitations in finding the precise ground truth
of event flows in real-world traffic traces. The goal of
anomaly extraction is to find a set of anomalous flows
coinciding with the event flows. Suppose we have a large
number of flows f observed during a time interval ¢. !

"We use the classical flow definition, where each flow has
common values in the 5-tuple: source/destination IP ad-



AD methods in literature
Kalman [13], Wavelets [2],
Spatial-PCA [10], Spatio-
Temporal-PCA [3], Tsallis-
Entropy [14]

MetaData
Interval (only)

Protocol Maximum-Entropy [7]
IP range Defeat [11], MR-~Gaussian [5]
Port range Maximum-Entropy [7]
TCP flags Maximum-Entropy [7]
Table 1: Meta-data provided by existing

anomaly detection systems.

The anomaly extraction process takes as input a set of n
flows F = {f1,..., fn} observed during interval ¢ and
creates a subset F4 of anomalous flows.

An anomaly detection system may provide meta-data
relevant to an alarm that help to narrow down the set of
candidate anomalous flows. For example, anomaly de-
tection systems analyzing histograms indicate the his-
togram bins an anomaly affected, e.g., a range of IP ad-
dresses or port numbers. Such meta-data can be used
to restrict the candidate anomalous flows to these that
have IP addresses or port numbers within the affected
range. We refer to the step of using meta-data to re-
strict the candidate anomalous flows as filtering. In
Table 1 we outline meta-data provided by various well-
known anomaly detectors that can be useful for filter-
ing.

To extract anomalous flows, one could build a model
describing normal flow characteristics and use the
model to identify deviating flows. However, building
such a microscopic model is very challenging due to the
wide variability of flow characteristics. Similarly, one
could compare flows during an interval with flows from
normal or past intervals and search for changes, like new
flows that were not previously observed or flows with
significant increase/decrease in their volume. Such ap-
proaches essentially perform anomaly detection at the
level of individual flows and could be used to identify
anomalous flows.

In this work, we take an alternative approach to iden-
tify anomalous flows that combines and consolidates in-
formation from multiple anomaly detectors. Compared
to the other possible approaches, our method does not
rely on past data for normal intervals or normal mod-
els, which substantially simplifies the problem. Intu-
itively, each detector provides an additional view into
network traffic. Additional views or equivalently detec-
tors explore different techniques for finding anomalies,
different traffic features, or simply different calibration
settings. Each detector may raise an alarm for an in-
terval ¢ and provide a set of candidate anomalous flows,

dress, source/destination port number, and protocol num-
ber.

Figure 2: Anomaly extraction: (1) filtering flows
identified by each detector j (left), (2) extracting
the set of anomalous flows F4 from UA; (right).

where candidate flows are the complete set of flows ob-
served during the interval or the set of flows that results
after filtering. This is illustrated in Figure 2, where a
set A; represents the candidate flows supplied by de-
tector j and the union UA; represents the candidate
anomalous flows. We then use association rules to mine
flows with common characteristics in the dataset A;.
The assumption we make here is that flows with com-
mon characteristics represent anomalous flows. We val-
idate this assumption on several weeks of Netflow data
captured in a backbone network that contains a large
variety of anomalies.

The rest of the paper is structured as follows. How we
extract anomalous traffic from Netflow traces with the
help of histogram-based detectors and association rules
is described in section 3. In section 4 we first describe
the datasets used for this study, and then present the
evaluation results. Related work is discussed in section
5. Finally, section 6 concludes the paper.

2. ANOMALY EXTRACTION

In the following section we outline our approach for
generating fine-grained filters with histogram-based de-
tectors, and for finding the set of anomalous flows with
the help of association rules.

2.1 Fine-grained Metadata for Flow Filtering

Histogram-based anomaly detectors [7, 11, 5, 8] have
been shown to work well for detecting anomalous behav-
ior and changes in traffic distributions. We propose an
alternative histogram-based detector that differs from
its predecessors in several ways: (i) We do not train a
normal model but use the previous interval as reference
for comparison, thus circumventing the still unsolved
problem of recalibrating a derived model. (ii) We pro-
vide a threshold-based method for identifying the his-
togram bins that have triggered an alert.

As detection metric we use the Kullback-Leibler (KL)
that has been successfully applied for anomaly detection
in [7, 8]. The KL distance measures the similarity of a
given discrete distribution g to a reference distribution



p and is defined as
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Coinciding distributions have a KL distance of zero,
while deviations in the distribution cause larger KL dis-
tance values. In general, the KL distance is an asym-
metric measure, D(p||q) # D(q||p).

It is worthwhile discussing the difference between a
trained reference model and a constantly adapting ref-
erence model as in our case. Suppose the measured
distribution changes at time ¢ for n intervals due to an
event and returns back to normal afterwards. The KL
distance obtained from comparison with a trained ref-
erence model will show a rectangular pulse of length n,
whereas comparison with an adapting reference model
will result in two KL distance pulses of length 1 at time
t (additive change) and ¢t + n (subtractive change). For
the purpose of anomaly extraction we are particularly
interested in intervals with additive changes in the traf-
fic distribution. We have observed that the backward
KL distance (taking the current interval as reference for
computing the distribution p) reacts stronger to addi-
tive changes than the forward KL distance (taking the
previous interval as reference for deriving p). We relate
this behavior to the weight p(i) in Equation 1. As a
consequence of this observation, we use the backward
KL distance as detection signal.

The five feature distributions we track over intervals
of 5-minute duration are source/destination IP address,
source/destination port number, and flow size (in num-
ber of packets). Additionally, we separate the traffic by
flow direction (flows originating vs. terminating in the
observed AS) and protocol (TCP vs. UDP). To obtain
additional views of the traffic we maintain multiple ran-
domized versions of each feature distribution that are
generated by applying multiple independent hash func-
tions. [11, 5] follow a similar approach. 2.

For each flow that is received we call an update func-
tion that processes the five flow features. In particu-
lar, for each feature and hash function it computes the
hash values and increases the count in each identified
histogram bin. The detect function is called when an
interval is completed (i.e., , when a flow with start time
larger than the interval end is received). The function
is applied to each feature and hash function separately.
It computes the backward KL distance and checks if
it has exceeded a preset threshold value. If not, the
function returns. If we have detected a deviation in
the distribution, our goal is to extract the meta-data
(e.g., the IP addresses) that have caused the change.
In order to extract this meta-data we first identify the
responsible hash bins and then use reverse hashing ob-

2Following their findings we use five independent 10-bit hash
functions.

tain the actual feature values. To find the responsible
hash bins we use an iterative algorithm that simulates
the removal of suspect flows until the KL distance falls
below the threshold. In each round we select the bin
with the largest absolute distance in the previous and
current distribution. Removal of flows falling into this
bin is simulated by setting the bin count in the current
distribution equal to its value in the previous distribu-
tion. Having identified the set of hash bins we obtain
the feature values behind via reverse hashing. For each
feature we use the intersection of values identified by
reverse hashing as as meta-data. The flow set A; for
feature/detector j consequently contains all flows that
match at least one of the feature values.

2.2 Association Rules for Anomaly Extraction

Association rules describe items that occur frequently
together in a given dataset. A typical and widely-used
example of association rules is market basket analy-
sis. A record in such basket data sets typically consists
of the transaction date and the items that have been
bought. An example of a rule in this scenario might be
that 98% of customers that purchase tires also get auto-
motive services done [1]. Such rules are interesting for
companies to adjust store layouts, promotions, or cat-
alog design. Formally, we can define association rules
as follows: Suppose that each transaction T is a set of
items I = {i1,...,im}, and X C I, Y C I are disjoint
item sets. An association rule X = Y is said to have
support s in the dataset if s transactions contain X UY.

The basic motivation for applying association rules
to the anomaly extraction problem is the following:
Anomalous flows typically have similar multivariate
characteristics (e.g., source/destination IP addresses,
port numbers, or flow length) since they have a com-
mon root-cause be it a network failure, a bot engine,
or a Denial of Service script. We use association rules
to identify these characteristics in an automated man-
ner. The generated rules can then be directly applied
for extracting the set of anomalous flows Fa.

Ideally, the rule mining step would only return rules
that match anomalous flows. In reality, however, the ra-
tio of rules capturing anomalous flows and those captur-
ing non-anomalous flows depends largely on the quality
of the available detectors that are used in the filter-
ing step. If we use for example a simple interval-based
detector (i.e., the meta-data provided is only the inter-
val), we have to apply the rule mining to all flows in
a given interval. Naturally, this dataset contains many
non-anomalous flows that cause additional rules to be
generated. On the other hand, if we use histogram-
based detectors (i.e., we obtain fine-grained meta-data
that identifies suspicious IP addresses or port number)
for filtering the dataset, fewer rules will capture non-
anomalous flows. At this point, a human is still required



in the loop to classify the generated association rules.
We argue, however, that association rules are a great
help for this task since they reduce the information to
be processed from hundred thousands of flows to possi-
bly several tenths of rules. Moreover, rules that are fre-
quently observed but non-anomalous (e.g., web servers
with exceptionally high load) might even be white-listed
to reduce the number of rules for manual processing. A
learning-based rule classification algorithm is a direc-
tion for future work.

As said previously, we take the union set of flows
filtered by all available detectors UA;. Each flow in our
dataset has several features associated with it. An item
in our case is a combination of the feature f and its
value v, e.g., the item i1 = (f1,v1) = (spo, 80) refers
to a source port number equal 80 while ix = (dpo, 80)
refers to a destination port number equal 80. A rule

r: X =Y (2)

expresses an association between two item sets X =
{(f1,v1)} and Y = {(f2,v2, (fn,vn))}. The support of
an association rule sup(r) is defined as the number of
flows that match a given rule r.

2.3 Rule Mining in Detail

The problem of discovering all association rules in a
dataset can be decomposed into two subproblems [1]:

e Discover large item sets: Find all item sets that
have a support above the user-specified minimum
support, i.e., the number of flows containing this
item set is larger than the minimum support.

e Discover association rules: Use the large item sets
found in the last step to generate the desired rules.
Basically, for every non-empty subset a of every
large item set I, we generate a rule a = (I — a)
if the ratio of sup(l) to sup(a) is larger than a
user-specified minimum confidence.

For discovering the large item sets in our data we im-
plemented the Apriori algorithm proposed by Agrawal
and Srikant [1]. The Apriori algorithm makes several
passes over the data, and counts in each pass the sup-
port for candidate item sets. After each round, the
large item sets are selected and used as candidate item
sets for the next round. The process continues until no
new large item sets are found. This algorithm is com-
putationally more efficient than previous ones since it
reduces the number of candidate item sets to be consid-
ered in each round. We omit a detailed discussion here
and refer the interested reader to the original paper.

Inputs for the rule mining algorithm are the dataset
(UA;) and two parameters: the minimum support
(minsup) and the minimum confidence (minconf).
These two parameters determine the sensitivity of the
rule mining method. Smaller minsup and mincon f
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Figure 3: For each histogram-based detector
(source IP address, destination IP address,
source port, destination port, flow length) we
plot the 10 largest anomalies it has detected.
In the last row the sum of alerts per interval is
shown.

values will result in fewer rules to be generated, while
larger values will result in a larger ruleset. Obviously,
if the minsup parameter is set to a value that is larger
than the size of the common anomalous flow set |F4] it
will not be detected by the algorithm. An estimation
for the maximum minsup parameter that is required to
detect an anomalous flow set can be obtained from the
detectors, i.e., based on the cumulative change in flows
over all flagged hash bins.

3. EVALUATION

In this section we present the datasets that are used in
this study. Further we evaluate the reduction in classi-
fication cost that is achieved with association rules, and
the accuracy of the generated rule sets.

3.1 Data Set

For validation we use three weeks of non-sampled and
non-anonymized Netflow data coming from one of the
peering links of a medium-sized ISP (SWITCH, AS559).
SWITCH is the backbone operator connecting all Swiss
universities and various research labs (e.g.,CERN, IBM)
to the Internet. The SWITCH IP address range con-
tains about 2.2 million IP addresses. In the trace we see
on average 92 million flows and 220 million packets per
hour. The dataset used for this study was recorded in
August 2007 and comprises a variety of traffic anoma-
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Figure 4: Reduction in classification cost vs.
minimum support (relative to the dataset size
| U A;|) when compared with interval-based and
histogram-based detectors (mean and min/max
errorbars).

lies happening in daily operation such as network scans,
Denial of Service attacks, alpha flows, etc. We focus in
this study on flows that originate within AS559 and
that do not terminate within AS559.

For our evaluation we manually verified selected in-
tervals that have been flagged by one of the detectors as
anomalous. Specifically, we selected the topl0 intervals
with the largest KL distance values for each detector.
The distribution of these topl0 intervals over time and
over the different detectors is shown for TCP traffic in
Fig. 3. Since there is some overlap between the topl0
sets of the detectors, the final set contains 31 intervals
for TCP traffic and 39 intervals for UDP traffic that
have been verified manually. In each of the selected
intervals at least one anomalous event was identified.
Among them we have several scans for different vulner-
abilities (e.g., port 135,34689,6000) as well as the cor-
responding replies, distributed and single-source Denial
of Service attacks, and spam campaigns.

3.2 Decrease in Classification Cost

Using association rules we obtain a higher level view
that is based on rules instead of flows. As a conse-
quence, the flow classification problem can be reduced
to a rule classification problem. If we find the rule that
matches the anomalous flows, the flow extraction prob-
lem is considered as solved.

To quantify this decrease in classification cost, we
make the assumption that the classification cost is a
linear function of the number of items that need to be
classified. We define the reduction in classification cost
red(R) for a given ruleset R generated by rule mining
as follows:

_ U4yl 3)
|R|

where |UA;| denotes the number of flows in the filtered
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Figure 5: Ruleset accuracy for the set of se-
lected anomalies when the input dataset is only
restricted by the interval and transport protocol
(worst-case). TCP anomalies are marked with
squares, UDP anomalies with circles.

flow set, and |R| the size of the ruleset.

We consider two different cases: the histogram-
based detectors described in section 2 that provide fine-
grained meta-data for filtering, and an interval-based
detector (considering the KL distance only) that pro-
vides only the interval and the transport protocol as
input. The size of of the rule set R depends (1) on
the minsup parameter, which gives the minimum sup-
port that a rule/anomaly needs for being considered
by the algorithm, and (2) the number of features that
are considered. For this study, we consider a constant
set of eight features, including the source/destination
IP address, source/destination port number, number of
packets and bytes per flow, and flow length in msec. We
generated the filtered datasets for interval-based and
histogram-based detectors and counted the number of
flows in each dataset. Then we applied association rule
mining to these datasets varying the minsup parameter
between 10’000 and 60’000.

In Fig. 4 we plot the average cost reduction vs. the
minimum support relative to the dataset size, which
is obviously much larger for interval-based detectors.
For the interval-based detector, the average reduc-
tion in classification cost ranges between 10* and 10°.
For histogram-based detectors, the average reduction
ranges between 10% and 10* for the selected range
of minsup parameters. This proves our assumption
that association rule mining can greatly simplify the
anomaly extraction problem.

3.3 Ruleset Accuracy

Still, the reduced rule set is a mix of rules match-
ing anomalous flows (true positives) and non-anomalous
flows (false positives). Next, we evaluate the accuracy
(or true positive rate) of the obtained rule sets. For
each interval we have a set of ground truth rules Ryyy:n



that have been verified to match anomalous events by
a human expert. The output of the rule mining algo-
rithm is a ruleset R. We define the accuracy of a rule
set acc(R) as

_ |{T|T S Rtruth}|

acc(R) 7]

(4)
The false positive rate becomes thus 1 — acc(R).

In Fig. 5 we plot the ruleset accuracy for several
anomalies against the relative size of each anomaly
(number of anomalous flows divided by total flows in the
dataset). The minsup parameter has been estimated in
each case based on information provided by the detec-
tors, i.e., the number of flows that had to be removed
for getting rid of the alarm. As input we used all flows
in the given interval that match the transport protocol.
Thus the results presented in Fig. 5 are a lower-bound
estimation of the ruleset accuracy. By restricting the
input data set to flows that match the meta-data pro-
vided by the histogram-based detectors we can further
improve the ruleset accuracy.

As one would expect, the ruleset accuracy increases
with the relative anomaly size. Nevertheless, even for
anomalies that contribute only 1% to the total flows re-
sult in acceptable accuracy rates. This nicely validates
our assumption that a large variety of anomalous events
have flows with similar multivariate characteristics and
can thus be captured by association rules. Another ad-
vantage of our approach is that multiple anomalies are
correctly split by the algorithm if they differed in at
least one feature.

4. RELATED WORK

Many different approaches have been proposed for
anomaly detection in backbone networks, e.g., [2, 13,
10, 7]. Most of these approaches, however, focus on the
detection part and then use ad-hoc methods for extract-
ing the anomalous flows.

Histogram-based detectors similar to ours have been
proposed by Dewaele et al. [5], Li et al. [11], and Gu
et al. [7]. Nevertheless, our detector differs from pre-
vious approaches in several ways. Dewaele et al. [5]
first use sketches to reduce the dimensionality of data,
and then derive non Gaussian models for the normal
behavior at different time scales. In contrast, we use
the distribution from the previous interval as reference
model and provide a threshold-based method for iden-
tifying anomalous distribution bins. Li et al. [11] also
use sketches and apply the PCA-subspace method [10]
for anomaly detection. We rely on the KL distance
for anomaly detection and concentrate on identifying
anomalous flows. Gu et al. [7] use the Maximum En-
tropy technique to estimate the distribution of base-
line data. Anomalies in observed traffic are detected
by computing the relative entropy between the trained

baseline density model and the actual traffic distribu-
tion. In contrast to their work, we defer the model
building to a later point, after the rule mining, when
more precise information is available.

Association rules have been successfully applied to
different problems in networking. Chandola and Ku-
mar [4] study the problem of finding an optimal sum-
marization for a set of anomalous flows. They propose
and evaluate techniques based on clustering and rule
mining. In contrast, we provide a solution for separat-
ing normal and anomalous flows. Mahoney and Chan
[12] use association rule mining to find rare events that
are suspected to represent anomalies in packet pay-
load data. They evaluate their method on the 1999
DARPA /Lincoln Laboratory traces. Their approach
is targeted at edge networks where mining rare events
makes sense. In massive backbone data, however, this
approach is less promising. Another application of asso-
ciation rule mining in edge networks is eXpose [9]. The
system learns fine-grained communication rules by ex-
ploiting the temporal correlation between flows within
1s time windows.

Duffield et al. [6]. derive flow-level signatures based
on alerts of packet-level sensors (SNORT) that are de-
ployed in edge networks via machine learning tech-
niques. Their approach is orthogonal to ours since it
relies on signature-based detectors.

5. CONCLUSION

In this paper, we have posed and formalized the prob-
lem of anomaly extraction that is of uttermost impor-
tance to several applications such as root-cause anal-
ysis and detection system testing. We have presented
a histogram-based detector that provides fine-grained
meta-data for filtering suspect flows. Further, we have
introduced a method for extracting anomalous flows
that uses association rules to describe flows that have
similar characteristics across several features.

We have used a rich Netflow dataset captured in a
backbone network to validate the proposed techniques.
Evaluation results show that the classification cost can
be reduced by several orders of magnitude using asso-
ciation rules. Further, we evaluated the ruleset accu-
racy for several verified anomalies. We find that an ac-
ceptable accuracy rate of 10% can be achieved for most
anomalies found in our dataset. In future work, we will
concentrate on automating the rule classification and
building anomaly models for testing purposes.
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