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Abstract

We present a novel omnivision-based robot localiza-
tion approach which utilizes the Monte Carlo Lo-
calization (MCL) [2], a Bayesian filtering technique
based on a density representation by means of par-
ticles. The capability of this method to approximate
arbitrary likelihood densities is a crucial property for
dealing with highly ambiguous localization hypotheses
as are typical for real-world environments. We show
how omidirectional imaging can be combined with the
MCL-algorithm to globally localize and track a mobile
robot given a taught graph-based representation of the
operation area. In contrast to other approaches, the
nodes of our graph are labeled with both visual fea-
ture vectors extracted from the omnidirectional im-
age, and odometric data about the pose of the robot
at the moment of the node insertion (position and
heading direction). To demonstrate the reliability of
our approach, we present first experimental results
in the context of a challenging robotics application,
the self-localization of a mobile service robot acting
as shopping assistant in a very regularly structured,
maze-like and crowded environment, a home store.

1 Introduction and motivation

An interactive mobile service robot, e.g., a shopping
assistant, should be able to actively observe its oper-
ation area, to detect, localize, and contact potential
users, to interact with them continuously, and to ad-
equately offer its specific services. Typical service
tasks we want to solve in our PERSES (PERsonal
SErvice System) project are to guide the user to de-
sired areas or articles within a home store (guidance
function) or to follow him as a mobile information
kiosk while continuously observing the user and his
behavior (companion function) (see [3]). To accom-
modate the challenges that arise from the specifics of
our interaction-oriented scenario and the character-
istics of the operation area, a very regularly struc-
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Figure 1: (Top) Location plan of our experimen-
tal area, a large home store in Erfurt (toom Bau-
Markt). The topology of the store is characterized by
many similar, long hallways of equal width. Because
of their very regular structure, most of the hallways
can be distinguished only visually. (Bottom) exem-
plary appearance of three hallways which can not be
distinguished by distance sensors (sonar, laser) be-
cause of identical geometrical features. The hallways
and racks, however, show very characteristic views,
which allow a vision-based self-localization.

tured, maze-like and crowded environment, we place
special emphasis on vision-based methods for both
human-robot interaction and robot navigation. The
motivation for this is outlined in the following:

Functional and economical advantages: Mean-
while, vision systems have become available as very
powerful universal sensor systems with a good price-
performance ratio such that they can be successfully
utilized in a great number of robotics tasks - both
in human-robot interaction and autonomous naviga-
tion. Therefore, our low-cost prototype of a mobile
and interactive shopping assistant currently under
development will be equipped with an universally us-
able omnidirectional vision-system instead of an ex-
pensive laser rangefinder, which shows a number of
limitations in human-robot interaction and naviga-



Figure 2: (Left) Experimental platform PERSES,
an extended version of a B21 robot, equipped with
an omnidirectional imaging system on top. (Right)
The omnidirectional vision system consists of a ver-
tically oriented color camera (digital Sony CCD cam-
era DFW-VL 500 with IEEE 1394 connection) and
a middle-size spherical mirror (from Accowle).

tion (see below). Omnidirectional imaging recently
has become an effective basis for vision-based robot
navigation and human-robot interaction. An excel-
lent overview of the designs and principles of exist-
ing omnidirectional cameras and their applications in
fields of autonomous robot navigation, telepresence,
and remote surveillance is given in [11].

Specifics of the human-robot interaction: In
the context of an interactive mobile shopping assis-
tant, we have to cope with a number of demanding
human-robot interaction tasks which require image
processing to be solved: (1) fast and robust detection
of users willing to interact with the shopping assis-
tant, (2) fast learning of a specific appearance-based
model of the current user allowing his tracking and
re-detection if lost from view, and also preventing
a confusion with other customers, (3) estimation of
age and gender of the person willing to interact, (4)
robust tracking of the current user both while stand-
ing still and during self-movement of the robot, (5)
continuous estimation of the heading direction of the
current user to estimate his actual interest in interac-
tion (6) recognition of gesticulated user instructions,
(7) telepresence for consultancy service, and remote
surveillance.

Characteristics of the operation area: The
topology of the operation area, a typical home store,
is characterized by many similar, long hallways of
equal length, width and geometrical structure (see
Fig. 1) with a constant ceiling structure. Because
of this regular, maze-like topology, self-localization
methods based on distance sensors (laser or sonar)
can produce numerous ambiguities complicating a
quick self-localization or re-localization in case of a
complete loss of positioning. Moreover, 2D-distance
sensors only operate at certain planes of the 3D
space. Therefore, goods racks cleared out show blank

space at the respective height which can be misin-
terpreted by the navigation system as free space. In
contrast, vision-based systems do not show these lim-
itations, but supply a much greater wealth of infor-
mation about the 3D-structure of the hallways and
racks. The filling of the racks with different arti-
cles gives the hallways a characteristic appearance,
especially with respect to color or texture. Because
of this, we expected to defuse the localization prob-
lem drastically by development of an approach for
view-based robot self-localization that combines om-
nidirectional imaging with the probabilistic Monte
Carlo Localization (MCL) [2] which is based on the
Condensation algorithm [4].

The robot PERSES we use as experimental platform
is a standard B21 robot additionally equipped with
an omnidirectional imaging system for vision-based
navigation and human-robot interaction (Fig. 2).
The omnivision system consists of a vertically ori-
ented color camera and a middle-size spherical mirror
mounted in front of the lens. The camera is mounted
on top of the mobile platform with its axis placed
coincidentally to the platform’s rotation axis. The
spherical mirror yields an image of the environment
around the robot, and its field of view is the widest
among sensors with convex mirrors [11]. Such a wide
view is very useful for locating the robot along its
route, as we are interested in.

2 Omnivision-based MCL

In recent years, several omnivision-based self-
localization methods have been developed [10, 9, 6,
7]. Most of them use topological maps as environ-
mental representation. During operation, commonly
the input image or a describing feature vector is com-
pared to all reference images or feature vectors of the
topological map. While in many approaches, e.g. in
[9], the location whose reference image best matches
the input image is considered to be the location cur-
rently taken by the robot, in our approach, we use
a distributed probabilistic location estimation. The
reason is, that in uncertain and maze-like environ-
ments, localization on the basis of a crisp mapping
from observations o to states x becomes unreliable.
Because of this, soft computing methods are required
to quantify the ambiguity by means of beliefs for mul-
tiple pose hypotheses [8, 6, 7].

The Monte Carlo Localization (MCL) method under-
lying our omnivision-based localization approach is a
version of Markov localization [8], a family of proba-
bilistic approaches for approximating a multi-modal
probability density distribution coding the robot’s
belief Bel(xt) for being in state xt = (x, y, ϕ)t in its
state space. x and y are the robot’s position coordi-
nates in a world-centered Cartesian reference frame,
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Figure 3: General idea of our view-based Monte
Carlo Localization. The approach is based on a
graph-based representation of the operation area.
The nodes of the graph are labeled with both view-
based visual features and metric information about
the pose of the robot (position and heading direction
in a world-centered reference frame) at the moment
of the node insertion during teaching.

and ϕ is the robot’s heading direction. MCL applies
sampling techniques to represent the belief Bel(xt)
for being in the current state xt by a set St of N
weighted samples or particles distributed according

to Bel(xt): St = {x
(i)
t , w

(i)
t }i=1..N . Here each x

(i)
t

is a sample, and the w
(i)
t are non-negative numerical

weighting factors called importance factors. Because
the sample set constitutes a discrete approximation
of the continuous probability distribution, the MCL
approach is computationally efficient, it places com-
putation just “where needed”. Additionally, it is
more accurate than Markov localization with a fixed
cell size, as state represented in samples is not dis-
cretized [2]. This allows a self-localization and posi-
tion tracking with sub-grid accuracy.

2.1 Map building

We use a graph-based representation of the operation
area by a set of visual reference vectors r(x, y, ϕ) ex-
tracted from the respective panoramic views at po-
sitions x, y in heading direction ϕ (Fig. 3, bottom
right). To train the system, it only needs to be led
through the environment once. This training run
can be performed under human control or by an au-
tonomous exploration system. Presently, the graph
is constructed when manually joy-sticking the robot
through the hallways of the store. During training,
omnidirectional images are captured from the envi-
ronment and associated with the corresponding lo-
cations. In addition to the feature vectors extracted
from the omnidirectional images (see Section 2.2),

the nodes of the graph are labeled with metric in-
formation about the pose x = (x, y, ϕ) of the robot
at the moment of the node insertion. A new node
(reference point) with importance for the represen-
tation is inserted, when the Euclidian distance to the
positions of the reference points in a local Ω-vicinity
is larger than ddistance or if the norm of the differ-
ence vector between the current feature vector f input

t

and the feature vectors rΩ(x, y, ϕ) of these reference
points is larger than dfeature.

However, the labeling of the graph nodes with odo-
metric data about the pose of the robot necessitates
an efficient correction of odometry because of the in-
creasing error over time, especially concerning the
orientation angle. This problem is well known and
leads to the fact that a global map generated along
a closed-loop course cannot be really closed with-
out additional efforts (see [3]). To attenuate this ef-
fect, we utilize a specific feature of our market floor
(ground). It shows a very regular structure caused
by tiles that are uniquely oriented across the whole
market area. The general idea of our vision-based
odometry correction is illustrated in Fig. 4. A top-
down oriented on-board camera acquires images of
the floor in front of the robot. By continuously es-
timating the dominant orientations within these im-
ages, we can determine the accurate orientation of
the robot and, therefore, substitute the rotation an-
gle supplied by odometry by the orientation deter-
mined visually. Hence, it is possible to eliminate the
orientation error, and subsequently, the position er-
ror. Under the assumption that the initial position
and heading direction of the robot are known dur-
ing training, this method allows an accurate, iter-
ative position and orientation tracking as required
for graph building. Earlier experiments (see [3]) al-
ready illustrated the efficiency of this specific cor-
rection method for building of large-scale occupancy
maps based on sonar data. Of course, this correction

Figure 4: General idea of our vision-based odom-
etry correction considering the regular structure of
the market floor: (from left to right) a) image of
the floor in front of the robot, b) local orientation or
structure tensors [5] (orientations coded as gray val-
ues), c) confidences of local orientations (low-black,
high-white), d) histogram of confidence-weighted local
orientations (interval 0o − 90o). The dominant ori-
entation (center of gravity) is a significant measure
for the accurate orientation of the robot with respect
to the global orientation of the tiles.



method is not able to solve the localization problem
in general because the translation error of the odome-
try can not be corrected by this approach and, there-
fore, is accumulated by the navigation system. How-
ever, because the total distance to be travelled during
training is limited to about 2000 meters, the obtain-
able accuracy is sufficient. We utilized this odometry
correction method for learning a graph representa-
tion of the operation area as shown in Fig. 5 and
achieved a relatively low localization error of about
60cm after a total distance of 1000 meters. All dots
represent nodes labeled with the pose of the robot
and the visual feature vector extracted from the cor-
responding panoramic image.

Figure 5: Topological map of the operation area
in the home store. The size of the area is 42 × 45
meters, the graph consists of 2007 reference points
labeled with visual feature vectors and odometric data
about the pose (position and orientation) of the robot
at the moment of node insertion. The total distance
travelled to learn this map was about 1000 meters.

2.2 Iris control and feature extraction

To realize a constant image quality within the omni-
directional annulus of the camera image, we switched
off the integrated automatic iris-control of the cam-
era and implemented a simple but specific iris-
control that realizes a constant average brightness
only within this interesting part of the image. Be-
cause of this on-line control of the digital camera,
in all experiments the image quality proved to be
very constant despite extreme changes in illumina-
tion caused by shop windows, lamps, air shafts, and
dark regions. Both during map-building and self-
localization, in a first step, the omnidirectional image
is transformed into a panoramic image (see Fig. 3,
top). Each panoramic image is first partitioned into
a fixed number of non-overlapping sectors (typically
10) each covering 36o of the panoramic field of view.

As a second step, features are extracted from these
sectors.

The following criteria determined the selection of
appropriate features to describe the present scene:
1) To allow a sufficient performance of the MCL-
method as a whole (on-line localization), the calcu-
lation of the features should be as easy and efficient
as possible. 2) The features should include the orien-
tation of the robot, since based on it, the estimation
of the x, y-position may be complemented by an esti-
mation of the heading direction of the robot. 3) The
feature description should allow for an easy genera-
tion of expected observations for unknown positions
and orientations of the robot in its operation area,
e.g. by interpolation between known reference posi-
tions. 4) The features should be largely insensitive
against partial occlusion of the environment, such as
caused by people in the direct vicinity of the robot.

Considering these criteria and the requirements
and results of the omnivision-based localization ap-
proaches published in recent years [10, 9, 6, 7], we
decided to implement the simplest feature extraction
method possible. For each sector of the panoramic
image an average color value in the RGB color space
is determined (see Fig. 3, top). Note, that investi-
gations comparing RGB to other color spaces, like
HSI, did not show any advantages neither in accu-
racy nor in speed of the method. Our model of the
operation area simply stores a reference feature vec-
tor r(x, y, ϕ) consisting of mean RGB-values for each
reference point in the graph. This provides a very
efficient coding of the respective situation in the en-
vironment. The influence of size and number of seg-
ments on the localization accuracy is explained in
Section 3 (Fig. 8).

Since the feature vectors are extracted from the seg-
mented panoramic image, their organization is cyclic
(see Fig. 3). This cyclic organization makes the cal-
culation of the feature distribution of any desired
orientation very easy: the reference vectors just need
to be rotated by the appropriate angle, which is re-
alized by linear interpolation between the discrete
components of the feature vector. Moreover, we in-
vestigated whether it were possible to generate fea-
ture vectors for positions between reference points,
i.e. completely unknown observations. We found
that up to a distance of 90cm, a linear interpolation
yielded sufficiently accurate interpolation results.

2.3 The localization algorithm

In analogy to the MCL algorithm presented in [2],
our omniview-based MCL proceeds in two phases,
the Prediction phase and the Update phase.

Prediction phase (robot motion): In this phase,
the sample set computed in the previous iteration



(or during random initialization) is moved accord-
ing to the last movement of the robot ut−1 (Fig. 3,
left). The motion model p(xt|xt−1, ut−1) describes
how the position of the samples changes using in-
formation ut−1 from the odometry. This way, MCL
generates N new samples that approximate the ex-
pected probability density of the robot’s position af-
ter the movement ut−1. As described above, we use a
graph-based model of the operation area labeled with
both visual reference vectors r(x, y, ϕ) and the corre-
sponding pose data (Fig. 3). Because of this discrete
graph representation and the chosen feature coding,
our approach requires interpolations both in state
and feature space to determine the expected feature

vectors f
(i)
t of the samples moved to new states x

(i)
t

within the continuous 3D state space. For each sam-
ple s(i), we first interpolate linearly between the two
reference feature vectors r(x, y, ϕ) of those reference

nodes closest to the respective sample position x
(i)
t .

After this, the resulting feature vector is rotated ac-

cording to the expected new orientation ϕ
(i)
t of the

sample s(i). Since the feature vector only has a dis-
crete number of components, for this step we use a
linear interpolation between the features of neigh-
boring segments. Thus, we obtain a set of N feature

vectors f
(i)
t (x, y, ϕ) describing the expected observa-

tions of the moved samples in the new states x
(i)
t .

Update phase (new observation): In this phase,
the actual panoramic view at the new robot position
has to be taken into account in order to re-weight the

sample set St. For this, the importance factor w
(i)
t of

each sample s(i) is computed. It describes the proba-

bility that the robot is located in the state x
(i)
t of the

sample. We determine the similarity E
(i)
t between

the current input feature vector f input
t extracted from

the panoramic view at the new robot position and

each of the expected feature vectors f
(i)
t of each sam-

ple s(i) simply by computing the angle between both
normalized vectors applying a simple Gaussian-like

observation model. Now w
(i)
t = 1− αE

(i)
t can be de-

termined, where α is a normalization constant that

enforces
∑N

j=1 w
(j)
t = 1.

For the next iteration, the final sample set St is ob-
tained by re-sampling from this weighted set. The
re-sampling selects those samples with higher proba-

bility that have a high importance factor w
(i)
t . Sam-

ples with low importance factors are removed and
randomly placed in the state-neighborhood of sam-
ples with high factors. After that, both phases are
repeated recursively.

To allow for a faster self-localization or a re-
localization of the robot, we extended the common
MCL algorithm and inserted a new type of sam-

step 0

step 3

step 5

step 8

Figure 6: Self-localization and tracking experiment
executed in a large section (42× 45m2) of the home
store covering 18 hallways, 3 main passages, and 16
goods racks. The sequence depicts the temporal con-
densation dynamics of the samples (initial distribu-
tion, after 3 step, 5 steps, and 8 steps) - as result of
local robot movements and the sampling/importance
re-sampling cycle. In the beginning, the robot is
globally uncertain, the particles are spread uniformly
throughout the free space. The variance of the 10%
of the samples with the highest importance factors is
marked as circle. Already after 8 movements (about
5 meters), MCL has disambiguated the robot’s posi-
tion - the majority of samples is now centered tightly
around the correct position, the variance is drasti-
cally reduced.

ples with fixed positions and orientations, so called
grounded or “surviving” samples. These surviving
samples are uniformly distributed within the state
space and act as nuclei of crystallization for the freely
movable regular samples in all cases, where these
samples are already localized in a local region of the
state space (convergent state), but a new localiza-
tion is required, for example, because of a false lo-
calization or a “kidnapping” of the robot. Without
these surviving samples a quick self-localization or
re-localization in case of a complete loss of position-
ing is rarely possible. The influence of the number
of surviving samples on the localization accuracy is
analyzed experimentally in the next section.

3 Experimental results

All experiments were carried out in the ‘toom’
home store Erfurt with our experimental platform
PERSES (see Fig. 2, left). The experiments were
performed as off-line cross-validation tests on differ-
ent sequences of images acquired in the home store.
All images were labeled with the corresponding cor-
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Figure 7: Influence of the number of regular and
fixed samples on the localization error.

rect position and orientation of the robot. One of the
sequences is used as training data (about 2000 pose-
labeled panoramic images), while the other one is
used as test data (about 5000 pose-labeled images) to
determine the localization error. Every localization
experiment has a typical length of 190 movements,
this corresponds to a path length of about 130 me-
ters. The average localization error is determined
per experiment. Because of the temporal dynamics
and the estimation error of the sample distribution
at the beginning of each localization experiment, the
estimations of the first 10 movements are not consid-
ered. Every experiment was repeated 20 times, and
the localization errors were averaged.

It is to note that, in all cases, we studied the worst-
case scenario: our robot had no prior information
about its initial position and orientation - this is a
typical kidnapped robot problem. All tests can be
judged as being very successful, as our localization
system was able to find and continually track the
location of the robot. Fig. 6 illustrates the typical
course of a view-based self-localization and position
tracking experiment executed in a section of the store
(42 × 45m2). Despite the geometrical uniformity of
the selected hallways and the coarse graph-structure
(2007 nodes), our omniview-based MCL yields very
precise localization results already after a few robot
movements. For example, after 8 movements and ob-
servations, which corresponds to a travelled distance
of about 5 meters, the difference between estimated
and correct position of the robot was lower than 40
cm. The average localization error of our test set is
even smaller than 25 cm.

Fig. 7 illustrates the influence of the number of reg-
ular and surviving samples on the localization er-
ror. For the given localization problem, the best re-
sults were achieved with 4.000 to 10.000 regular and
500 to 1.000 surviving samples. Without surviving
samples satisfactory localization results (mean error
lower than 25 cm) can be obtained only if more than
6.000 regular samples are used. In contrast to this re-
sult, the error of the orientation estimation is largely

independent of the number of regular samples. The
reason, why the localization error is slightly higher
compared to earlier experiments, is that the surviv-
ing samples added to the MCL algorithm can pro-
duce relatively high estimation errors due to their
fixed positions that worsen the average error and
even dominate it if less than 2000 regular samples are
used. The advantage of the surviving samples, how-
ever, is the faster and more flexible self-localization
and re-localization. Note, that in all following exper-
iments a constant number of 4.000 regular samples
and 500 surviving samples is used.

The time required for computation of the MCL al-
gorithm directly depends on the total number of
samples. With the current on-board equipment
(1500 MHz AMD Athlon), for example, the sam-
pling/importance re-sampling for 1000 samples re-
quires about 12 ms, for 10.000 samples about 120
ms. The time for image transformation and feature
extraction takes 25 ms per image. Therefore, our lo-
calization system enables real-time localization leav-
ing a good amount of processing time for other nav-
igation modules.

The influence of the number of panoramic image sec-
tors used for feature extraction on the accuracy of the
pose estimation is illustrated in Fig. 8. The function
showing the localization error (left) and the orienta-
tion error (right) have an optimum for 10 segments
used for training and localization. In this case, the
mean localization error covers the range from 20 to
35 cm with a mean value of 25 cm. The average error
of the orientation estimation (right) is largely inde-
pendent from the number of segments and covers a
range from 3.5 to 7.5 degrees for a number of 6 to
20 segments. If the feature extraction uses less than
6 segments, the localization and orientation errors
increase drastically.
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Figure 8: Influence of the number of sectors for
feature extraction on the localization error (left) and
the orientation estimation (right).

Dealing with occlusions: It is clear that we have
to cope with occlusions in the scene, such as, for ex-
ample, people walking by, other objects being moved
around the environment, etc. Due to its wide visual
field, occlusion of the entire panoramic view becomes
very unlikely. For example, in Fig. 9 the two people
standing as close as possible to the robot occlude
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Figure 9: (Top) Occlusion example: two people
are standing as close as possible to the robot and oc-
clude about 10% of the visual field. (Bottom) Result
of experiments investigating the influence of local oc-
clusions on the localization error (left) and and the
orientation estimation (right).

no more than 10% of the visual field. We expected
that this occlusion is not sufficiently large so as to
cause the robot to misinterpret its position. To test
the robustness of the localization algorithm, the test
images were occluded by artificial gray-colored seg-
ments. The impact of occlusion effects was gradually
controlled by the percentage of image content cov-
ered by the artificial image. Fig. 9 (bottom) depicts
the results w.r.t. localization accuracy and various
degrees of occlusion. For 0% occlusion, the mean er-
ror of the localization is 25 cm and covers a range
between 15 and 30 cm. The mean localization error
remains relatively low until 15% occlusion. There-
after, the error vigorously increases since the image
is affected by severe occlusions. To cope with higher
occlusions, the approach presented in [7] seems to be
sufficiently powerful. However, due to the geometry
of robot and vision system, it is not possible to place
more than three or four people directly around the
robot. Therefore, the maximum occlusion by people
cannot be larger than 20%. Moreover, the particle
dynamics of the MCL-algorithm realizes a temporal
self-stabilization of the estimation result, therefore,
the influence of large but short occlusions can be
largely neglected.

4 Conclusions and future work

In this paper, we have shown that particle filters
in combination with a graph-based representation of
the operation area by local panoramic views can be
used to perform omniview-based self-localization of a
mobile service robot in a challenging real-world ap-
plication, the navigation of a mobile service robot
in a home store with a maze-like topology. The re-
sults of the executed experiments confirm the ac-
curacy and robustness of our omniview-based self-
localization method. Our localization system uses
color omni-vision, works in real-time, and can easily

be trained in new operation areas by joy-sticking.

Currently, theoretical and experimental studies are
carried out to further improve our omniview-based
MCL-system. For example, we are investigating the
impact of the motion and observation models on the
pose estimation and are studying the influence of
a new mechanism adaptively controlling the sam-
ple rate on the localization accuracy and computing
time. Other running experiments are dealing with
the impact of appearance variations at the reference
points in the learned graph, for example, as result of
a changed filling of the goods racks or modifications
in the market topology. The view-based localization
approach presented here seems to be a computa-
tionally efficient and robust localization algorithm,
however, it still has to demonstrate its capabilities
scaling up to the whole market area with a size of
100× 60m2 over a longer period of operation.
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