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Abstract.

Optimisation is a key issue in the design of large manufacturing systems. An ad-
equate modelling formalism to express the intricate interleaving of competition and
cooperation relationships is needed first. Moreover, robust and efficient optimisation
techniques are necessary. This paper presents an integrated tool for the automated
optimisation of DEDS, with application to manufacturing systems. After a very
quick overview of optimisation problems in Manufacturing Systems, it presents
the integration of two existing tools for the modelling and evaluation with Petri
nets and a general-purpose optimisation package based on Simulated Annealing.
The consideration of a cache and a two phase technique for optimisation allows to
speed-up the optimisation by a factor of about 35. During the first preoptimisation
phase, a rough approximation of the optimal parameter set is computed based on
performance bounds. Two application examples show the benefits of the proposed
technique.

Keywords: Manufacturing systems, Modelling, Optimisation, Petri nets, Simulated
Annealing

1. Introduction

The design of modern manufacturing systems is a complex task. High
investments necessitate to make sure that the planned system will fulfil
the requirements. Methods and computer tools for the modelling, per-
formance evaluation and optimisation of manufacturing systems are
therefore important.

Discrete event dynamic systems (DEDS) correspond to a view of
systems where the state space is discrete (i.e. states are countable) and
state changes are driven by (external or internal) events. The DEDS
view of systems currently gains importance due to the development
of computer based technologies. Manufacturing systems design and
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operation is one of the technological fields where the DEDS view is
widely used (Silva and Teruel, 1997).

The complexity of the behaviour of DEDS requires formal means for
their modelling. In this paper we consider Petri nets (PN) for this task.
As it is required for manufacturing systems, this allows to model sys-
tems with intricate interleaving of cooperation and competition, thanks
to the ability of nets to model conflicts and synchronisations. Com-
bined with appropriate interpreted extensions, PNs lead to different
formalisms useful in the different phases of the life-cycle of the system
under design or operation. Petri net performance models (PNPM) are
obtained through interpreted extension of autonomous models in which
a time duration is associated with transitions, and routing policies
are defined to solve conflicts. The complex interleaving of choices and
synchronisations in manufacturing systems may lead to systems where
paradoxical behaviours are exhibited. For example, increasing the num-
ber of resources (i.e. tokens in the net model) can lead to a dead-locked
system, and replacing a machine for a faster one can decrease the global
productivity. It is thus clear that formal techniques and computer tools
are required for their design and optimisation. The main contribution of
this paper is methodological: a two phase optimisation strategy leading
to reasonable improvement of efficiency.

After some generalities on optimisation in manufacturing systems
(Section 2), two case studies (an assembly line and a flexible manu-
facturing cell) are introduced (Section 3). Single phase optimisation,
improved by the adition of a cache (Section 4) and two phase op-
timisation (Section 5), introduce a technichal and a methodological
contribution. Section 6 present some concluding remarks.

2. On Design Optimisation in Manufacturing

Design problems for manufacturing systems usually involve the selec-
tion of one out of several options (e.g. a machine or material handling
system selection), or a dimension. Numerical values can be discrete (e.g.
the size of a buffer) or continuous (e.g. a production mix). In practice,
mixtures of these problems have to be considered in an optimisation.
Typical optimisations deal with complex non-linear evaluative models
in high-dimensional search spaces.

The optimisation problems arising for manufacturing system design
can be solved using ewvaluative techniques, leading to some iterative
computations, or generative techniques where a solution is obtained
directly given a set of criteria and dynamic constraints. Among the
latter are problems that allow to fit well-known mathematical program-
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ming templates like linear- (integer, mixed, ...) programming problems.
Unfortunately those efficient algorithms are not applicable for more
complex models. Evaluative techniques only require an algorithm that
computes the value of an optimisation function from a parameterised
model. The optimisation algorithm iteratively generates new parameter
sets and controls the search for the optimum.

Discrete optimisation problems in Manufacturing Systems are usu-
ally NP-hard. For real-life problems it is not possible to analyse the
full parameter space. Therefore search techniques have been developed
that in general do not guarantee to find the global optimum, but often
lead to a “good” (or just “acceptable”) solution. Modern optimisation
techniques approach the problem through some meta-heuristics, e.g.
tabu search (Reeves, 1993), genetic algorithms (Reeves, 1993; Gen and
Cheng, 1997), and simulated annealing (Aarts and Korst, 1989; Ingber,
1996).

In this paper we adopt Simulated Annealing as an evaluative meta-
heuristic, but Tabu Search could be used instead. First, in a one phase
optimisation the simulated annealing toolkit ASA (Ingber, 1989; In-
gber, 1996) is used. In order to avoid costly recalculations of profit
functions for similar parameter sets, a kind of cache is implemented in
the interface between ASA and the modelling and evaluation algorithm.
In several examples this allows to improve the computational time
by almost one order of magnitude. In order to reduce the computa-
tional cost further without losing too much on the result quality, a
second optimisation approach is designed in two phases. During the
first preoptimisation phase the profit function is computed by a very
fast approximation technique based on upper and lower performance
bounds. The result of the preoptimisation is used as the starting point
of the second fine-grain optimisation phase.

The necessary performance measures can be obtained by analytical
techniques based on either exact or approximate computations (e.g.
product form solutions, if possible), numerical techniques (Markov-
chain, brute force or net-driven generated) or simulation techniques.
In most practical cases, expensive model evaluations are required. A
broad perspective of PNPM performance evaluation techniques is con-
tained in (Balbo and Silva (Eds.), 1998). In this paper an approximate
evaluation technique based on performance bounds is used (Section 5as
well as the simulation module of the software package TimeNET (Zim-
mermann et al., 2000).

Manufacturing systems are set up in order to make profit from
producing and selling parts. A profit function has to be specified and
later maximised by the optimisation. Typical profit functions consider
the money earned from selling finished parts minus the costs arising
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in the production process. The price of raw parts, the money spent
for work-in-process, machine and transport systems amortisation, and
utilisation dependent costs are examples. All of them can be determined
by a performance analysis of a model. The complexity of the profit
function depends on the needs of the modeller and has to include every
significant influence. More complex functions could e.g. capture human
factors and costs as well.

3. Case modelling and their rationale

In this section we will consider two examples of Manufacturing Systems
that involve three different types of design problems. These concern the
determination of the Production Policy, the Buffer Dimensioning and
the Machine Selection.

3.1. EXAMPLE 1 — ASSEMBLY LINE

An assembly line with five machines is considered in this example.
Three different parts A, B and C are assembled for one final product.
Customer demands and waiting times are also considered, and one
of the optimisation goals is to find the best production policy out of
three classical manufacturing control strategies (“push”, “on demand”
and “kanban”). Under the “push” strategy, customer waiting time is
decreased by producing parts until the buffers are full, accepting a
high work in process. Following the “on demand” (or “pull”) strategy,
production starts contrary to the first approach only after a customer
demand. The “kanban” strategy allows to control work in process for
production stages with the number of available kanban cards.

The second important parameter of the planned system is the num-
ber of parts (or pallets) in the system. This is controlled by dimen-
stoning the buffers or by selecting the number of kanban cards. Finally,
a machine selection problem is considered. We assume that there are
three different options for machine 1. Each of them has a different
processing speed, and a faster machine is more expensive.

Figure 1 shows the Petri net model of the system with push strategy.
Machines are modeled by a resource place with the name of the ma-
chine, e.g. M1, and a sequence of an immediate transition, an operation
place (likem14), and a transition (like M14). There are nine intermediate
buffers (named B1...B9), which all have a capacity of B parts. The D
customers are modelled with the upper right part. Transition ok fires
when an order arrives and a complete part is available in this buffer.
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Figure 2 shows the model of the system with “on demand” strategy.
Every order starts the production of a new part by adding tokens to
places inA, inB, and inC.

The model of the assembly system with kanban strategy is shown
in figure 3. There are now two stages of assembly operations, which
are connected by a central immediate transition. The operation is con-
trolled by kanban cards. For the first stage their number is given by K1
and for the second by K2, both being parameters of the optimisation.

The profit function to be maximised by the optimisation computes
the profit per day. It considers profit for selling parts, which decreases
if the time from order until delivery is higher. The costs include work
in process, costs for machine 1 depending on the machine selection,
the buffer sizes, and an estimation of constant costs. A more detailed
definition is omitted here. The formula of this profit function can be
expressed like this:

108000 T 500

ok _ 30(K1+ K2) — ———— — 1000

Profit =
o M1Delay

where T; denotes the throughput of transition ¢, and M, the mean
number of tokens in place p. K1, K2 and M1Delay are the changing
parameters of the model.

3.2. EXAMPLE 2 — FLEXIBLE MANUFACTURING CELL

A flexible manufacturing cell (see figure 4) is used as a second example.
The robot takes raw parts from the input buffer and places them on
pallets at the loading station. The transport system includes conveyors
and automated guided vehicles.

m5ABC | B8ABC

Figure 1. Assembly line with five machines: push strategy
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Figure 2. Assembly line with “on demand” strategy
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Figure 3. Assembly line with kanban strategy
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Figure 4. Flexible manufacturing cell
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Figure 5. Petri net model of flexible manufacturing cell

Two types of products A and B have to be produced. Parts of type A
can first be processed by one of the two machines. A manual operation
and an assembly of an additional part have to follow, before the product
is finished. B-type parts are first processed by machine 1. Afterwards
they are tested at the manual work place. Parts that have been correctly
processed are transported to the assembly station. After an assembly
operation the product is finished. However, 5% of the parts have to be
reworked at machine 1, which is detected at the manual work place.

A Petri net model for the example is shown in figure 5. The robot
at the loading and unloading station is described with the transitions
RAi, RBi, RAo, and RBo as well as the surrounding places and immediate
transitions. Places whose names end with C ensure that the capacity
of buffers and machines is not exceeded. M1 and M2 model the two
machines, Man the manual work place and As the assembly station.
Whether a part of type B has been correctly processed is decided by
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the firing of the immediate transitions ok and fail. The four conveyors
act as intermediate buffers, their names begin with a B. The number
of AGV vehicles is set by the model parameter A, and P defines the
number of pallets.

During the optimisation, the number of pallets and of AGVs can be
changed. More of them may lead to higher throughput, but increases
work in process and costs. Different production possibilities for parts
of type A are considered by adjusting the probablity whith which they
are processed by machine 1 or 2. Finally, the production mix of the two
products can changed.

The profit function for this example considers the type-dependent
amount of money earned by selling one of the parts. Work in process
as well as costs associated with the number of pallets and AGVs are
included as well.

The complete profit function including the conversion from seconds
to one day is defined as follows:

Profit = 17280070yta + 3456001 0ytp — 10 M pyyip — 2000 — 2504 — 20P

where T; denotes the throughput of transition ¢, and M, the mean
number of tokens in place p.

4. First Schema of the Optimisation Approach

The first approach is based on a single phase. It uses an implementation
of the simulated annealing algorithm called ASA (Ingber, 1989; Ingber,
1996). This technique is known to be useful for applications where local
optima lead to problems with simpler algorithms. The ASA algorithm
generates new parameter sets in a region around the last accepted one.
The cost (or profit) function is computed for it and checked if it is better
than the last accepted one. With a certain probability, it is possible to
accept a worse solution to avoid being trapped in a local optimum. The
cost “temperature” T°! influences the probability with which worse
solutions are accepted. The parameter “temperature” TP controls how
far away from the last accepted parameter the new parameter value
is selected. The speed of “cooling down” the temperatures (and thus
the convergence and run length of the algorithm) is controlled by the
constant TAnnealScale = 100 of the ASA algorithm. In the second
approach, TAnnealScale is changed to speed up the convergence.
Simulation is the method used for the computation of the per-
formance measures, because in most considered examples, analytical
techniques are unable to obtain a result for the measures. The Petri
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net modelling and performance evaluation package TimeNET (Zim-
mermann et al., 2000) is used. It allows firing times of the transitions
to be zero, deterministic, exponentially, or more generally distributed.
Simulation runs can be executed in parallel on a cluster of worksta-
tions. Statistical techniques guarantee a reliable variance estimation
and derivation of valid confidence intervals.

The computational effort for computing the value of the cost func-
tion from a parameter set is high because every cost function is com-
puted by simulation. For the examples considered in Section 3 this can
take some minutes to complete, depending on the model complexity or
the confidence interval. During the optimisation, the same parameter
sets (or only slightly differing ones) are often generated. It is therefore
very important for efficiency to avoid re-computations. Every result
is thus stored in a cache-like table, together with its corresponding
parameter set by the interface procedure.

Before an optimisation can be started, the original model and a con-
figuration file have to be specified. The configuration file contains the
objective function and the parameters to consider in the optimisation.
The system model is constructed using the TimeNET graphical user
interface. It contains the definition of a cost or profit function as a
performance measure. ASA calls its user-defined cost function, which
is now the interface procedure to TimeNET, with a parameter set.

In the case that the parameter set has not been evaluated, the inter-
face procedure prepares a parameterised model from the original Petri
net model by substituting the actual parameter values in the model
description. The TimeNET simulation component is called afterwards.
The resulting file with the computed value of the profit or cost func-
tion is read by the interface procedure after the TimeNET process
has finished. The new value is stored in the cache together with the
parameter set and afterwards returned to the ASA optimiser. In the
next step ASA tests whether convergence is reached and if so, exits
with the final optimisation result. A new parameter set is generated
otherwise and a new iteration begins.

4.1. RESULTS FOR EXAMPLE 1

The profit function has been evaluated for the range of possible param-
eter sets in order to test the optimisation algorithm. Figure 6 shows the
profit function for the kanban strategy versus the numbers of kanban
cards in the two assembly stages. There is one mesh of plot data for
each of the three possible processing delays of machine 1. The best
profit results of almost 9000 are achieved using machine 1 with delay
1, and kanban card numbers of 2 and higher. The surface plots for
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the other two strategies are omitted here, because the optimal profit is
achieved with kanban strategy.

During the optimisation, one special type of parameter selects be-
tween the three available models. The automatic optimisation finds a
profit result of 8965 by selecting the kanban strategy, K1 =2, K2 = 8
and M1Delay = 1.

4.2. RESULTS FOR EXAMPLE 2

Figure 7 shows a plot of the profit function versus the number of AGV
vehicles and pallets. Different meshes are drawn for three selected pro-
duction mix values. The mesh forms are very similar, while producing
more parts B gives the best results. The optimal profit of 6397 is gained
for two AGV cars, 8 pallets, 80% parts B, and a probability of sending
parts A to machine 1 of 10%.

An automatic optimisation computes a profit function of 6338, which
is an error of less than 1%, for 2 AGVs, 9 pallets, 79% parts B, and
probability 22% of parts A to machine 1.

Table I compares the computational cost for an optimisation using
exhaustive search versus the presented ASA/TimeNET tool combina-
tion with and without cache. The efficiency of the cache of already
computed results is demonstrated with the results in the last column.
For each example the percentage of results which could be answered

10000
8000
6000
4000
2000

Figure 6. Profit function for assembly line with kanban strategy
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Figure 7. Profit function for flexible manufacturing cell

Table I. Reduction of computational complexity by using the cache

Number of TimeNET calls CACHE
EXHAUSTIVE STANDARD ASA  ASA WITH CACHE HIT RATE
Example 1 900 387 74 81%
Example 2 144768 2008 274 86%

from the cache is given. The cache usage speeds up the simulated an-
nealing algorithm by almost one order of magnitude in addition to the
speedup due to the use of simulated annealing.

5. A two phase Optimisation Strategy

The main idea of the two-phase optimisation method is to compute a
first guess of a “promising area” of the parameter search space very
fast; then use this as a starting point for a more thorough optimum
search (during the first preoptimisation phase). Speed is more impor-
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tant than accuracy during the first phase preoptimisation phase. Thus
an approximation method for performance measures is adopted here
that makes use of results on bounds for Petri net models.

5.1. PREVIOUS RESULTS ON BOUNDS

The method used to obtain the different performance measures involved
in the objective function is based on the results obtained by Campos
et al. (Balbo and Silva (Eds.), 1998; Campos, 1990; Campos and Silva,
1992; Campos el al., 1991), who found upper and lower bounds for the
throughput of the transitions as well as the mean number of tokens
in steady state. The formulas can be applied to any Petri net, but if
they are restricted to the class of FRT-nets the results are more reliable
than for other different classes of Petri nets. The main reason for this
is that for models belonging to this class the relative routing rates of
transitions at conflict can be computed directly from the net structure.
Based on these results the visit ratios v[t;] and average service demands

ﬁ(l)ﬁk] for all transitions ¢; with respect to ¢; can be computed. For
the exact definition of FRT nets as well as proofs for the validity of the
bounds the reader is referred to the above mentioned references.

From the average service demands it is possible to compute upper
bounds for the throughput of one transition ¢; in the model by solving
the LPP problem (Campos and Silva, 1992):

1
X+[t:] = g 1)
with h; = min{y-Pre-D/y-C=0, y- My =1,y > 0}

where y is a P-semiflow and C = Pre — Post denotes the incidence
matrix. The bound for all other transitions can be directly calculated
from the result and the relative corresponding visit ratios.

After that the throughput lower bounds are computed:

1
— 1
ter D[t] 2)
x-[ti] = x-[t] - v[t:]
A lower bound for the mean place marking (mean number of tokens

in the places in steady state) can be computed using the results of the
throughput lower bounds (Campos and Silva, 1992).

x-[t1] =

M_ =Pre- DY . W] (3)

For the computation of the upper bound for the mean number of
tokens a LPP problem has to be solved for each place in the system:
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My[p;]=min{M/YT.C=0,Y" e =1,Y >0} 4
M = M [p]+YT. (My— M) (4)

with
e;[k] ={0,1} if i =k then 1 else 0 (5)

where M is the initial marking vector. With this approach only two
LPPs must be solved to obtain the different bounds for the throughput
and the mean marking of places. For the examples this is efficiently
done using the software tool 1p-solve.

5.2. THE PROPOSED APPROACH

In order to compute an approximation of the throughput, a weighted
sum of upper and lower bounds is computed.

Xx[ti] = a-x+[ti] + (1 — @) - x-[t] (6)

Experiences show that usually the throughput upper bound is much
better (closer to the actual value) and more sensitive to parameter
changes. This is however not surprising because of the “trivial” formula
of the throughput lower bounds. The value of o has therefore been
set to 0.9 for the examples presented later on and often results in a
“reasonable” good approximation of the throughput.

A similar improvement in the context of a more general linear de-
scription of a Petri net has been presented in (Balbo and Silva (Eds.),
1998) for the marking upper bounds. For each transition ¢, with only
one input place p; the following inequality holds:

M [pi] < K- xy[tr] - S[tr] + (K — 1) (7)

where K = Pre(p;,t,) and S[t;] is the service time of transition ¢;.
An approximated value for the mean number of tokens in the places
can now be computed in the same manner as for the throughput:

M. =B M+ (1) M (8)

where f is a weighting factor similar to « for the throughput approxi-
mation. For the examples considered so far, the marking bounds were
in general not very close to the actual values. No observation have
been made whether the upper or lower bound is systematically better.
Therefore 8 has been set to 0.5 for the example computations, resulting
in an equal importance of marking lower and upper bound.

It has already been stated that the lower bounds for the transition
throughputs are usually not very exact. The marking lower bounds are
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computed using them and the marking upper bounds depend on the
marking lower bounds. Therefore the marking bounds are also not very
tight in most cases. However, we are mainly interested in a good ap-
proximation of the throughput and mean marking. An approximation
of the marking bounds can then be computed by assuming that y~ (as
computed in equation (6)) equals the correct throughput values. The
bounds on the throughput that are being used in formulas (7) and (3)
can then be substituted by x~.

This technique can be applied to the two application examples be-
cause they belong to the special class of Petri nets called FRT-nets.
The results for the examples show that the improved approximation
based on bounds can actually be closer to the real value; however, one
should keep in mind that the upper and lower values are no bounds
anymore.

5.3. RESULTS FOR EXAMPLE 1

The profit function for the range of possible parameter sets has been
evaluated in order to test the optimisation algorithm. Because of the
dimension of the parameter space, only selected parts can be shown in
the plots. Figure 8 shows the profit function for the push strategy versus
machine selection and buffer size. The shape of the simulated curve
can also be found in the approximated ones. Improving the bounds
by approximation makes the difference to the simulated results even
smaller.

Table II. Optimal results for different evaluation techniques

Parameter Simulation  Approximation Improved Appr.
Buffer size 2.0 1.0 1.0
Kanban cards 8.0 1.0 1.0
Machine 1 speed 1.0 1.0 1.0
Control strategy kanban kanban kanban
Profit 8965 6256 7761

The optimal profit (among the parameter sets analysed here) is
achieved for the kanban strategy and machine 1 selected with delay 1.
Keeping them fixed, Figure 9 shows the influence of the remaining two
parameters of the kanban model, namely the numbers of kanban cards
in the two production stages. This plot is shown here to visualise the
limits of approximating the performance measures using bounds. While
again the improved approximation is much closer to the simulated
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profit
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Figure 8. Profit function for assembly line with push strategy

results, none of both bounds based functions capture the influence of
kanban cards on the system performance. The reason for this is that as
long as there are enough kanban cards available to reach the through-
put upper bound, the bounds calculation is not able to realize the
buffering function of additional cards. More cards therefore lead only
to a higher associated cost, decreasing the overall profit. However, the
best approximated solution (both number of kanban cards 1, machine 1
speed 1, kanban strategy) is not too far away from the best simulated
one (2 resp. 8 kanban cards, machine 1 speed 1, kanban strategy). The
experiences from the models analysed so far lead to the conclusion that
in this example, the approximation works well for structural changes,
while this might not be the case for “fine tuning” parameters like buffer
sizes.

As an exercise Table IT shows the optimal results of a “full” explo-
ration in the parameter space for simulation, bounds approximation,
and improved approximation. As long as no other local optimum results
in profit function values of similar quality like in this case, the “optimal”
approximated parameter values should be a very good starting point
for the later fine-grain optimisation.
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Figure 9. Profit function approximation for assembly line with kanban strategy

For a comparison of the results and run times first the application
example was optimised using the one-phase ASA algorithm with cache
(see column “ASA (cache)” in Table III).

Afterwards the preoptimisation was started. It took two minutes
to complete, while for 388 overall cost function calls 59 different ones
resulted in an approximation. One approximation typically took be-
tween one and two seconds to complete. The “optimal” parameter set
is Kanbanl = 1, Kanban2 = 1, machine 1 delay = 1, and kanban
strategy, giving a profit value of 7761 (column “Phase I ” in Table III).

The second optimisation step is started with the final results of
the preoptimisation phase as starting values. Table IIT shows results
(best found cost and corresponding parameter set, result value from
simulation) and computation times for these different selections of
TAnnealScale between 100 (the default only for Phase I) and 10, 5
and 1 (for Phase II), influencing the cooling factor speed. The result
in brackets is computed by approximation. It seems to be possible to
make the cooling process faster without loosing much of the result
quality. However, there is of course a limit on how fast the optimisa-
tion can be made without a significant loss on the result quality. For
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Table III. Tradeoff between speedup and result quality

ASA (cache) Phase I Phase II

TAnnealScale 100 100 10 5 1
Kanbanl 4 1 4 4 1
Kanban2 6 1 1 7 1
Machine 1 speed 1 1 1 1 1
Control Strategy kanban kanban kanban kanban kanban
Profit 8911 6115 (7761) 8702 8649 6115
Time (minutes) 64 2 14 7 2
Speedup (Ph. I+II) 4.0 7.1 16.0

TAnnealScale = 1 the simulated annealing process does not move away
from the initial solution, resulting in a clearly non-optimal parameter
set.

5.4. RESULTS FOR EXAMPLE 2

In the case of this example the influence of the work in process on the
profit function is not very important, and therefore the approximate
bounds computation does not change the results significantly. In the
following thus only the “correct” bounds computation is used for the
approximate calculation of the performance measures.

To check the quality of the automatic optimisation algorithm, the
profit function has been computed for a selected number of parameter
sets that systematically cover the whole range of possible solutions.
Figure 10 shows a plot of the profit function versus the number of
AGYV vehicles and the production mix in terms of parts B. Two different
meshes are drawn for results obtained by simulation and approximation
based on bounds. For the picture, the number of pallets is set to 12 and
the probability of parts A to be sent to machine 1 is set to 30%. The
actual values are in the range for which the optimal values are achieved
with simulation. The shape of the functions is quite similar — the main
difference is that the approximated profit is higher for one AGV, while
simulation achieves the optimal result with two AGV.

Table IV shows a comparison of some results for simulation and
approximation using bounds for this example. The bounds calculation
results of the profit function are quite different from the simulated ones.
More important, however, is the very good approximation of where the
global maximum can be found. The best simulated profit of 6397 for a
systematic “full” search is achieved for 2 AGVs, 8 pallets, 80% parts



18 A. Zimmermann, D. Rodriguez and M. Silva

sm ——
S bounds --------
Profit TR

8000
7000
6000
5000
4000

Figure 10. Profit function for the flexible manufacturing cell

Table IV. Results comparison for simulation and ap-

proximation
Parameter Simulation  Approximation
AGV vehicles 2 1
Pallets 8 6
Part B prod. mix 80% 80%
Part A to machine 1 10% 10%
Profit 6397 8717

of type B, and a probability of 10% for parts of type A to be sent to
machine 1.

Although the approximately found parameter set is a neighbouring
solution to the one found by simulation, the simulated cost function
value of 5464 for the best approximated parameter set reaches only
85% of the optimum of the simulated parameter sets. This underlines
the importance of the second fine-grain optimisation step, although the
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Table V. Tradeoff between speedup and result quality

ASA (cache) Phase I Phase II
TAnnealScale 100 100 10 5 1
AGYV vehicles 2 1 2 1 1
Pallets 9 5 9 10 6
Part B prod. mix 79% 78% 8% 4% 8%
Part A to machine 1 22% 10% 16% 10% 10%
Profit 6338 5069 (8841) 6326 5575 5388
Time (minutes) 802 2 89 38 14
Speedup (Ph. I+II) 8.8 20.0  50.0

parameter sets are very close. For a comparison of the results and run
times the same set of experiments were carried out for this example as
for the first one.

Table V shows results and computation times for the standard setup
(ASA with cache), and the two phases with different selections of
TAnnealScale. Profit results are computed by simulation from the pa-
rameter sets, while the result in brackets is the bounds based approxi-
mation result.

The second optimisation step is started with the final results of the
preoptimisation phase as starting values. For TAnnealScale values of
5 and 1, the fine-grain optimisation was not able to find the better
solution with AGV vehicles equal to two. Again, this shows that a sig-
nificant speedup can be achieved, but the heuristic choice of the faster
temperature scheme is important. For both models a speedup factor
of at least four could be achieved while a near-optimal solution is still
found. There is no guarantee for a better solution if the computational
cost is higher; only the probability increases. In addition to that, the
reason for the difference of less than 1% could also be the simulation
that computes the results.

6. Conclusion

The optimisation of complex systems is computationally expensive,
even when iterative meta heuristics - like simulated annealing - are
applied. This is due to the cost of the ddynamic model evaluation
e.g. by simulation. In this paper two techniques are presented. The
first one allows a speedup of 7 while obtaining an “optimal” solution.
The two phase method adds another speedup of 5, by first obtainig
a “near optimal” solution using a fast and approximated evaluation
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of the model of the plant. Both approaches together allow a speedup
factor of more than 35 for the examples considered so far. The paper
demonstrates the benefits of the techniques with two manufacturing
system examples, that are modelled with stochastic Petri nets.
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