

STORMY-WEATHER: Plausible Storm Hazards in a Future Climate

Colin Manning, H.J. Fowler, J.L. Catto, E.J. Kendon, S.C. Chan, A. Kahraman, P. Sansom and D.B. Stephenson

colin.manning@ncl.ac.uk

Introduction to Stormy Weather Project

Aims:

- Identify drivers behind storm hazards and their future changes in convection-permitting model ensembles
 - Role of temperature in cyclones, fronts, thunderstorms for:
 - Rainfall hazards, combined wind-rain hazards
 - $\circ~$ Role of large-scale circulation for storm hazards
- Create useable information for stakeholders in the form of storylines of plausible future hazards

Introduction to Stormy Weather Project

Aims:

- Identify drivers behind storm hazards and their future changes in convection-permitting model ensembles
 - Role of temperature in cyclones, fronts, thunderstorms for:
 - Rainfall hazards, combined wind-rain hazards
 - Role of large-scale circulation for storm hazards
- Create useable information for stakeholders in the form of storylines of plausible future hazards

Motivation:

- There is a need for better information on how & why storm hazards will change in the future
 - Process driven understanding of changes provides a greater understanding of the uncertainty in the future changes
- Useful tools and metrics that portray this information is needed for decision-making around climate change adaptation

Storm Typology Methods

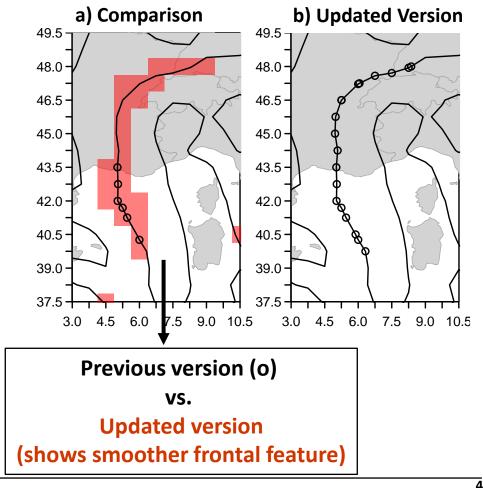
Identifying the different storm types:

1. Updated front identification method

Based on a thermal front parameter method that uses contouring to find the line features (Berry et al 2011/Hewson 1998).

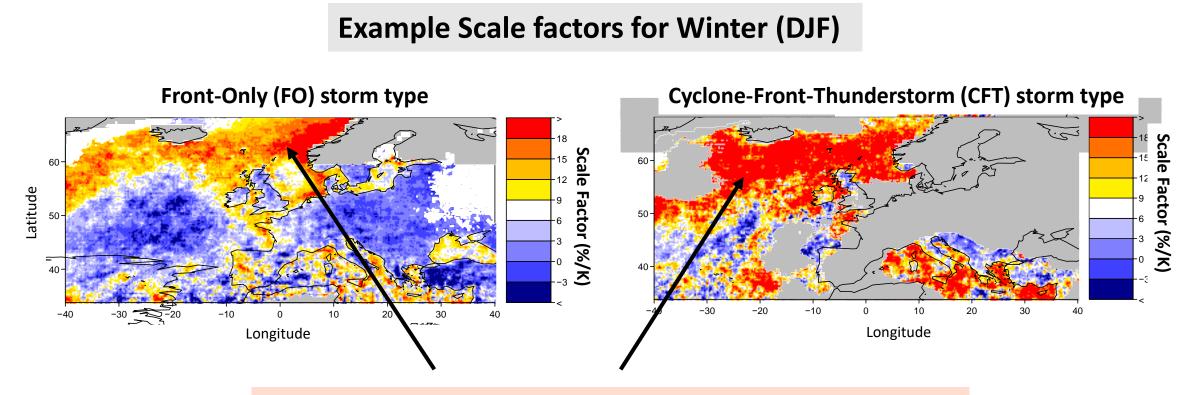
Now can be used on higher resolution datasets by applying an objective smoothing function.

Built in R and available on Github. <u>https://github.com/phil-</u> <u>sansom/front_id</u>


2. Cyclone identification

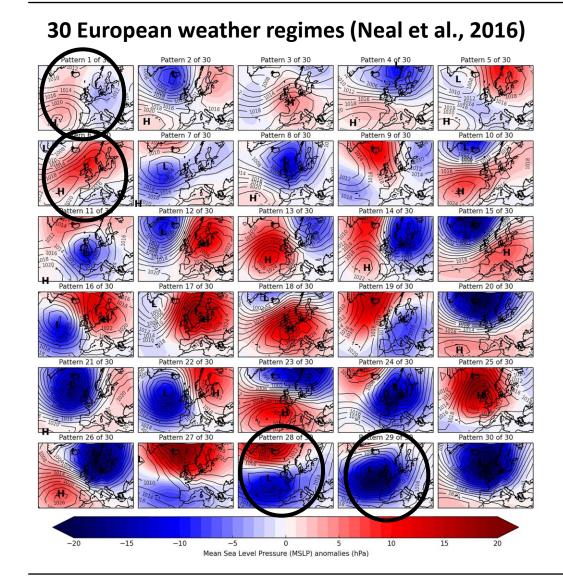
Using a pressure contour method to identify cyclone areas.

3. Thunderstorm identification


A proxy method based on CAPE and wind shear, trained on the World Wide Lightning Location Network dataset.

Improvement Frontal Detection Compared to Previous Algorithm

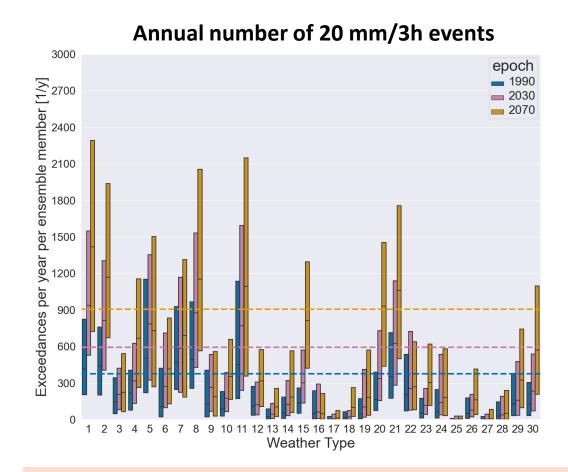
Scaling of Extremes Depends on Storm Type



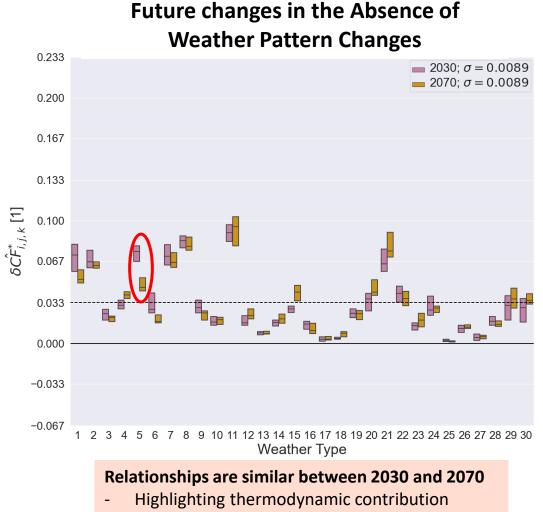
- Scale Factor is larger than the value expected from the Clausius-Clapeyron equation (red areas)
- Scale factor is overall larger for CFT storm type than FO

Future Changes to Synoptic Variability

Future Changes of Weather Types in UKCP18 1.8 Future/Present 0.8 0.6 Epoch 2010 **2030** 0.4 2050 **—** 2070 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Weather Type

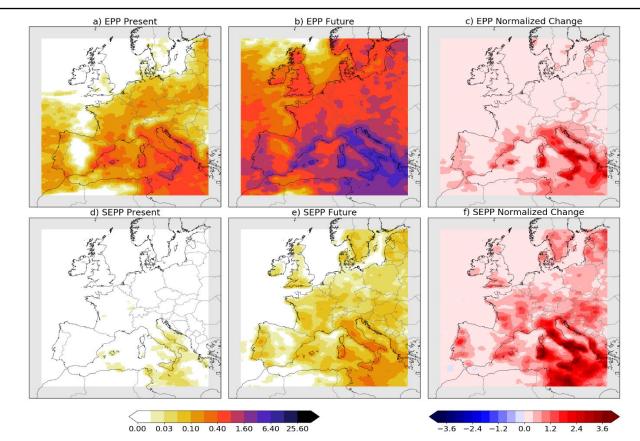

Slide courtesy of Steven Chan (steven.chan@newcastle.ac.uk)

6


Role of Weather Patterns for Extreme Precipitation

7

Dashes indicate the 75% percentile of each period, highlighting the overall future increase and favourable weather types (like 1 and 11).



Weather Pattern 5 is a notable exception

- Possible new process is modifying relationship

Increase in Slow Moving Convective Systems with Extreme Precip. Potential

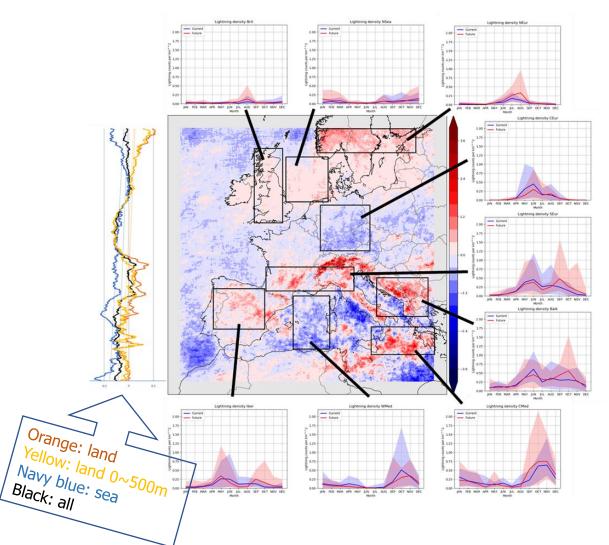
EPP: Extreme Precipitation Potential

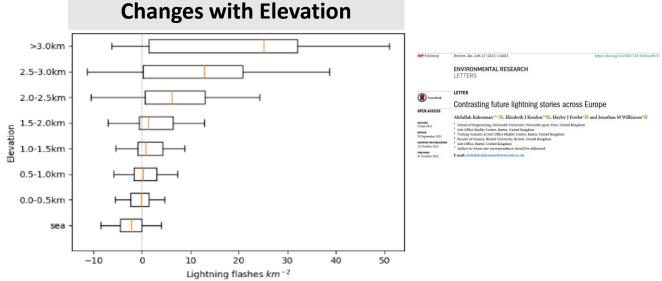
based on moisture content and vertical velocity

SEPP: Slow moving Extreme Precipitation Potential

 based on moisture content, vertical velocity and storm motion

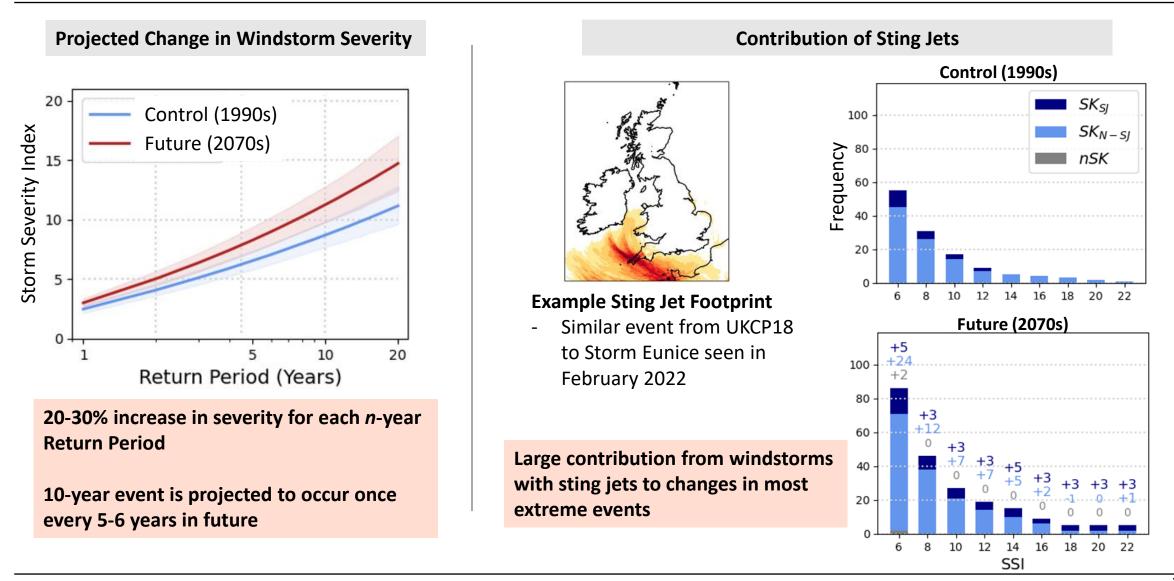
4	Gl	,	ADVANCING EARTH AND SPACE SCIENCE
-		0	SPACE SCIENCE

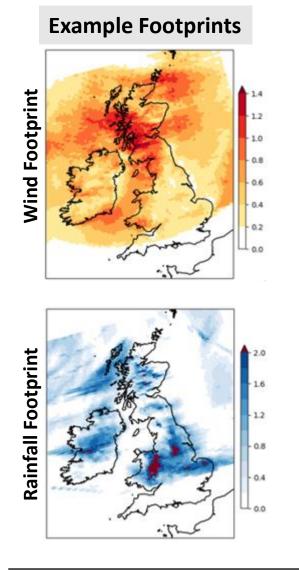

8


Geophysical	Research Letters			
RESEARCH LETTER 10.1029/2020GL092361	Quasi-Stationary Intense Rainstorms Spread Across Europe Under Climate Change			
Key Points: - Following an ingredents-based method, future changes in intense rainstorms in Turrope are studied using convection-permitting	Abdullah Kahraman ¹² , Elizabeth J. Kendon ¹ , Steven C. Chan ¹² , and Hayley J. Fowler ¹ ¹ School of Engineering, Newcastle University, Newcastle upon Tyne, UK, ² Visiting scientist at Met Office Hadley Centre, Esster, UK, ¹ Met Office Hadley Centre, Esster, UK			
simulations Environments/section [14] environments for expert by 2100, while the flagser of quark attribution in astern speech dise to the section of the se	Abstract Under climate change, increases in precipitation extremes are expected due to higher atmospheric moletare. However, the lotal precipitation in an event also depends on the condensation rate, precipitation efficiency, and duration. Here, a new approach following an "ingredient-based methodology" from severe weather forecasting identifies important aspects of the heavy precipitation response to climate change, relevant from an impact perspective and hiltheroi largely neglected. Using 2.2 km climate strange, relevant from an impact perspective and hiltheroi largely neglected. Using 2.2 km climate strange, relevant due that a future increase in precipitation extremes across furgree occurs, no only because of higher mostiver and updraft velocities, but also due to slower storm			
Supporting Information: Supporting Information may be found in the online version of this article.	movement, increasing local duration. Environments with extreme precipitation potential are 7× more frequent than today by 2100, while the figure for quasi-stationary ones is 11× (14× for land). We find that a future reduction in storm speeds, possibly through Arctic Amplification, could enhance event accumulations and flood risk beyond expectations from studies focusing on precipitation rates.			

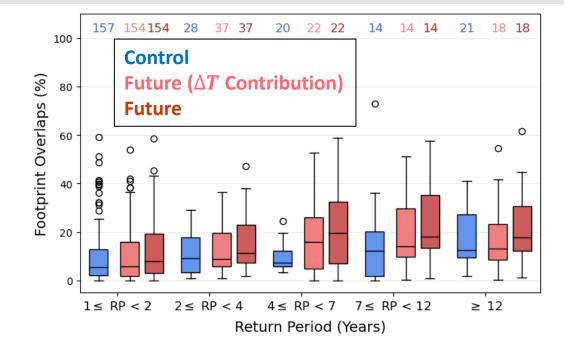
Slow moving storms can lead to increased rainfall accumulations in a locality

Future Changes in Lightning across Europe




- No single key driver of changes to lightning but rather a picture of contrasting lightning stories across Europe
 - Overall increase in thunderstorm energy (more convective storms), but
 partially compensated by decrease in ability to trigger thunderstorms
 - Huge increase in melting level height with warming, resulting in less cloud ice, hence, less lightning in many places
- Circulation changes (albeit being less certain)
 - Favour more lightning in Northern Europe, and less elsewhere, except higher terrain
 - Weaker circulation in Southern Europe favours more lightning over the Alps, due to enhanced "Alpine pumping" mechanism

Projected Increase in Extreme Windstorms and Sting jets over UK University



Extreme Wind and Rain Footprints from ET-Cyclones

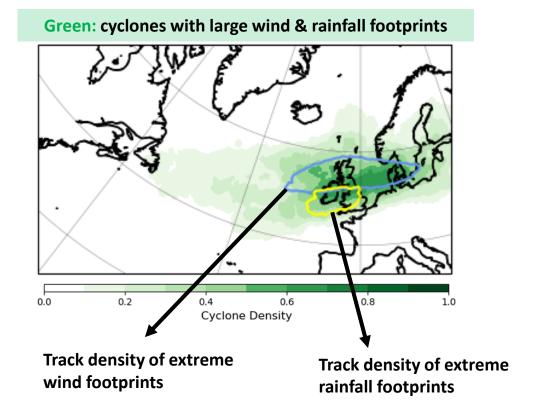
% of Windstorm Footprint over Land Overlapping with Extreme Rainfall

- Projected increase in the land area experiencing combined wind-rain extremes
- This is not explained by the Clausius-Clapeyron relation
 - Possible contributions from dynamical changes

Drivers of Combined Windy & Wet Extremes

Rainfall Wind 10.0 10.0 7.5 7.5 5.0 5.0 24 2.5 2.5 18 igodol0.0 0.0 -2.5 12 -2.5 -5.0 -5.0 -7.5 -7.5 10.0 10.0 -105 -5 5 -10**Combined Extremes** 1u.u 7.5 1.0 cyclone 5.0 0.8 2.5 0.6 0.0 0.4 -2.5 -5.0 0.2 -7.5 0.0 10.0 -10 -5 10 5

Cyclone Composites


Highest winds and rainfall occur in different sectors of

1000

10

Combined extremes occur within region of warm conveyor belt between warm & cold fronts

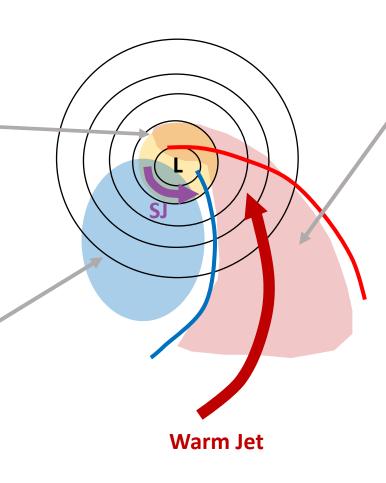
Cyclone Track Densities

Position and track of cyclone over the UK contribute to the areas affected

Changes in cyclone tracks will influence footprints

- The Stormy Weather has quantified changes of hazards such as rainfall, wind, combined wind-rain, and lightning
- Drivers of these hazards and their changes have also been characterised
 - Quantified the role of temperature for precipitation
 - Highlighted the important role of large-scale drivers for extreme events
- Developing qualitative storylines of plausible worst case scenarios for individual cyclones
 - Informed by quantitative understanding gained from the project
 - Used to inform of the worst case scenarios for:
 - Extreme windstorms
 - Extreme rainfall footprints
 - Cyclones with both extreme wind and rainfall footprints

Developing Storylines of Plausible Worst Case Scenarios


Quantitative Understanding of Projected Changes for Cyclones over the UK with ~ 4°C Warming

More intense storms

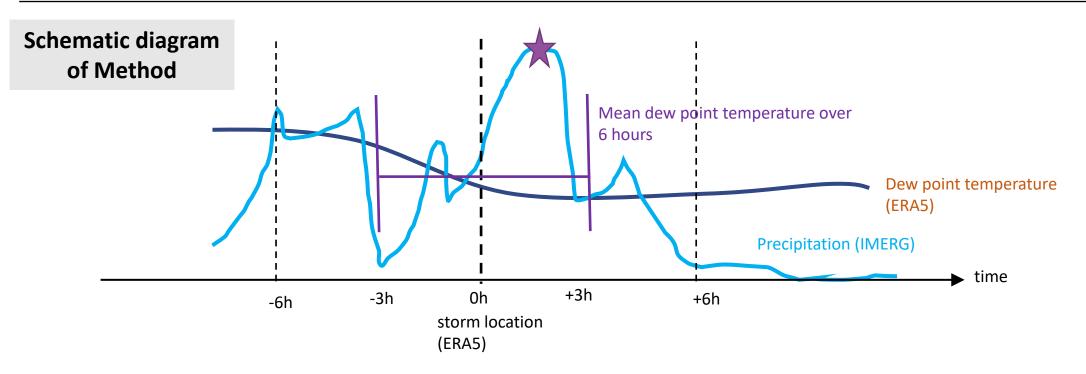
- Increased frequency of cyclones over UK in winter
 - Changes in cyclones tracks & large-scale drivers
- Increased intensity from
 enhanced latent heating

Cold sector

- 30% increase in windstorm intensity, highest winds in cold sector
- Increased contributions from sting jets (Storms such as Eunice & '87 are more likely)
- Larger wind footprints due to increased winds throughout cyclone
- Increased 1-hourly rainfall from convective showers

Warm sector

- Hourly rainfall intensity changes close to CC-scaling
- Rainfall footprint volume (incl. area, duration, intensities) are ~70% higher
 - Potentially modulated by cyclone track changes
- Increased frequency of combined wind-rain extremes due to warm jet


Dependence between wind & rainfall hazards

- Changes shown will not apply to all cyclones equally
- Cyclones with extreme wind and rainfall footprints jointly exceeding 2-year RL are 60% more likely
- Most extreme wind & rainfall footprints tend to occur in isolation, modulated by the strength of the jet stream

Additional slides

Scaling of Precipitation with Dewpoint Temperature

Estimate scaling of 90th percentile of maximum 1-h precipitation from IMERG within 6 hours with dew point temperature from ERA5 using quantile regression.

Storm combinations								
Cyclone	Front	Thunderstorm	Cyclone &	Cyclone &	Front &	Cyclone, Front		
Only	Only	Only	Front	Thunderstorm	Thunderstorm	& Thunderstorm		
(CO)	(FO)	(TO)	(CF)	(CT)	(FT)	(CFT)		