Cobalt: Separating content distribution from authorization in distributed file systems

Kaushik Veeraraghavan, Andrew Myrick, and Jason Flinn
Department of Electrical Engineering and Computer Science
University of Michigan

Abstract

How should a distributed file system manage access to
protected content? On one hand, distributed storage
should make data access pervasive: authorized users
should be able to access their data from any location. On
the other hand, content protection is designed to restrict
access — this is often accomplished by limiting the set of
computers from which content can be accessed. In this
paper, we propose a new method for storing content in
distributed storage called Cobalt. Rather than grant ac-
cess to data based on the computer that reads the data,
Cobalt grants access based on the physical proximity of
authorized users. Protected content is stored encrypted
in the distributed Blue File System; files can only be de-
crypted through the cooperation of a personal, mobile
device such as cell phone. The Cobalt device is veri-
fied by content providers: it acts as a proxy that pro-
tects their interests by only decrypting data when policies
specified during content acquisition are satisfied. Wire-
less communication with the device is used to determine
the physical proximity of its user; when the Cobalt de-
vice moves out of range, protected content is made inac-
cessible. Our results show that Cobalt adds only modest
overhead to content acquisition and playback, yet it en-
ables new forms of interaction such as the ability to ac-
cess protected content on ad hoc media players and cre-
ate playlists that adapt to the tastes of nearby users.

1 Introduction

The complexity of managing digital content continues to
increase. Many people use a wide variety of computing
and consumer electronics devices to access their content
— PCs, laptops, MP3 players, and DVRs are just a few
examples. While users typically access their content on a
handful of well-known devices, inevitably some scenar-
ios arise in which they would like to access their content
on ad hoc devices, which we define to be devices that
they do not own and do not commonly use. For instance,
a visiting family member might wish to display photos
using a living room DVR, or a party-goer might wish

to share their taste in music by playing MP3 files on a
friend’s stereo.

Ad hoc access to digital content is challenging for sev-
eral reasons. First, the ad hoc media player must locate
the content that a user wishes to access. Currently, this
requires the user to copy their content to portable stor-
age or specify a location in a distributed storage system
from which the content can be read. Second, if the con-
tent is not compartmentalized into a specific subtree of
the portable or distributed storage, the media player must
search through many files to locate relevant media. Over
a wide-area link, such searches can be extremely time-
consuming. Third, configuring a media player to locate
the content might be challenging since each new device
presents a different user interface. Finally, users may
have to enter a password to grant the media player ac-
cess to their content — however, they have no assurance
that any entered password will not be abused.

Digital rights management introduces another dimension
of complexity. Content providers who wish to ensure
that users will not share their products in an unauthorized
manner typically use some form of digital rights manage-
ment. While many providers such as Yahoo [30] and the
iTunes Music Store [1] allow a user to view content on
multiple media players, the user must explicitly autho-
rize the device on which content is viewed. In order to
play protected content, the user must enter his userid and
password. To revoke access to his content, the user must
later deauthorize the ad hoc device. Potentially, such au-
thorizations compromise privacy by informing the con-
tent provider of the movements and activities of users
who have purchased their content.

In this paper, we introduce Cobalt, a mobile solution
for ad hoc content access. Cobalt is implemented
as an extension to the distributed Blue File System
(BlueFS) [22]. Cobalt runs on a foken, which is defined
to be a mobile device such as a cell phone or PDA that
is nearly always carried by its user. Cobalt improves us-
ability and security by automating:

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

231

e content location. A Cobalt token automatically dis-
covers media players in its immediate vicinity. When
its user decides to access her content on an ad hoc
player, she specifies her intentions as a semantic
query. The token translates the semantic specification
into a specific list of files to share. For example, a user
may share all her MP3 files with a media player or just
her recent vacation photos. The token provides the
media player with the network address of the BlueFS
server from which these files can be fetched, as well
as a list of shared content.

o authorization. Cobalt uses techniques from Zero-
Interaction Authentication [5] to limit the content that
is shared with each media player. Content is pro-
tected with per-file keys that are encrypted with a
key-encrypting key (KEK) known only to the token.
Thus, the media player must contact the token to ob-
tain the per-file key for all shared content. Unless the
user has explicitly authorized sharing of the content
with the media player, the Cobalt token denies access
by refusing to decrypt the per-file key. Cobalt lever-
ages Trusted Platform Module (TPM) hardware to en-
sure that decrypted per-file keys are not leaked by any
media player to which they are provided. Currently,
Cobalt limits ad hoc devices to read-only access to
shared content.

o digital rights management. The token acts as a
proxy for digital rights management that protects the
interests of a content provider. During content acqui-
sition, a provider uses the TPM to verify the integrity
of the software running on the token. It then sends
the token the key used to encrypt content along with
a policy describing how that content can be played.
The token encrypts the content key and a secure hash
of the policy with its KEK. It stores these encrypted
values along with the policy and encrypted content
in BlueFS. Subsequently, it only decrypts the content
key for media players that satisfy the policy. The use
of a proxy improves usability because it eliminates the
need to register and deregister media players with a
content provider.

Our experimental results show that Cobalt adds only
minimal overhead to content acquisition and playback.
Further, this overhead does not substantially depend on
the size of data being acquired or played. We also present
results from a case study that shows how Cobalt can be
used to enable new applications such as adaptive playlists
that adjust the selection of music being played to match
the tastes of people located nearby.

2 Design goals

In this section, we outline the goals that we followed in
the design of Cobalt.

2.1 Usability

The primary design goal for Cobalt is usability. Cobalt
minimizes the amount of effort required to access con-
tent. When user input is required, Cobalt strives to pro-
vide the interface on the token, with which the user is
familiar, rather than on an ad hoc media player, which
may have an unfamiliar interface.

Consider the effort that a typical user must currently ex-
ert to access protected content on an ad hoc media player.
The user must authorize the new device with each con-
tent provider. Then, the user must provide the content to
the device either with portable storage or by specifying
a network address of a Web or distributed storage server
from which data can be read. If the content is copied over
the network and is not publicly accessible, the user must
specify a password with which the media player can ac-
cess the content. The user may need to manually create a
playlist in order to specify what content should be shared
with the ad hoc media player. Many of these interactions
must be done using the unfamiliar media player interface.

For example, while iTunes allows content to be streamed
to ad hoc computers, protected content can only be ac-
cessed after the userid and password of the person who
owns the streaming computer is provided. Streaming is
only permitted between computers on the same local net-
work. While proxies exist that allow unpermitted access,
setting up such proxies requires substantial configura-
tion.

In contrast, Cobalt minimizes the actions required to
share content with an ad hoc media player. It leverages
a distributed file system, BlueFS, to share content seam-
lessly with the media player — this automatically pro-
vides prefetching and caching of content to improve the
quality of playback. Since each token is associated with
a specific BlueFS server, the user need not enter network
addresses and other technical information. A Cobalt to-
ken allows its user to specify content to be shared as a
semantic query rather than an explicit list of files; query
results are automatically updated when a user adds con-
tent or modifies existing files. Finally, the token protects
a user’s content without the need to enter a password by
decrypting only files that match the specified query.

2.2 Protection for content providers

The second design goal for Cobalt is to protect the inter-
ests of content providers. Content should not be leaked
to unauthorized users or devices. Files should only be ac-
cessible on media players that satisfy the policy specified
when content was acquired.

Figure 1 shows the Cobalt trust model. The token and ad
hoc media player have Trusted Platform Modules. The

232

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

BlueFsS Clients

N

2
a0

= un]

BlueFS Server

[] Untrusted
[] Trusted

Figure 1. Cobalt trust model

TPM on each platform is used to verify the operating
system, BlueFS client, and applications involved in con-
tent acquisition and playback. The TPM allows a content
provider to verify the software running on the token —
this verification is vital because the token acts as a proxy
that protects the interests of the provider.

Using the media player’s TPM, the token verifies the in-
tegrity of software on the player before it allows content
to be decrypted. BlueFS, with the cooperation of the op-
erating system, ensures that the decrypted content is only
provided to the trusted application and not to other appli-
cations running on the media player. The operating sys-
tem caches decrypted content in the buffer cache to im-
prove performance. The BlueFS daemon may also cache
content on disk; however, protected content on disk is
always encrypted.

In contrast, the BlueFS server and its other clients are
not trusted devices and do not need TPM hardware. The
token has a symmetric key-encrypting-key (KEK) that is
never exposed externally. Protected content is stored en-
crypted in BlueFS and cannot be decrypted without the
KEK that is known only to the Cobalt token. This ar-
chitecture allows unverified clients to prefetch and cache
content on their local storage to improve performance.
The Cobalt token only decrypts the content key for
prefetched files after it has verified the trustworthiness
of the media player.

Cobalt also allows users to protect their own content. For
instance, a user might store all of her photos in BlueFS
and protect them using Cobalt. When she visits a friend’s
house, she can then make specific subsets of those pho-
tos, e.g., vacation pictures, available on her friend’s tele-
vision. Photos that she does not choose to share will not
be decrypted by her token.

A substantial advantage of this trust model is that the

Untrusted | Media Apps |Cobalt
Applications | BlueFsS
Operating System
Ad-Hoc Media Player ~ LTPM)
(—)

Untrusted Cobalt
Applications BlueFs

Operating System
L Token TPM]|)

platforms required to have a TPM are typically closed.
For example, the token may be a cell phone, and the me-
dia player may be a DVR or car stereo. In contrast to a
general-purpose computer, these closed-platform devices
typically run a much smaller set of software that may
be more tightly controlled by their manufacturers. The
task of verifying these platforms becomes easier given
that the set of possible software and hardware combina-
tions is limited. In contrast, the number of software and
hardware combinations on a general-purpose computer
is much larger, meaning that it might be more difficult to
verify the integrity of other entities such as the BlueFS
server.

2.3 Privacy

A Cobalt token preserves its user’s privacy. The use of a
mobile wireless device naturally raises concerns because
the presence of such a device can be used to track the
movements and activities of its user.

A Cobalt token discovers new media players in its vicin-
ity without exposing its identity. The discovery protocol
reveals to a media player that a token is located nearby;
however, the discovery request is generic and reveals no
information that can be used to identify a particular to-
ken. The user explicitly authorizes an interaction with a
particular media player by selecting it from a menu on
the token. Alternatively, the user may authorize future
interactions with a media player by adding it to a list of
pre-approved players. The token does not reveal its iden-
tity to unauthorized media players.

In contrast, if a user must register and deregister media
players, the content provider has considerable informa-
tion about the movement and activities of that person. In
addition, if content is protected, then the user must dis-
close a password to the media player before accessing

USENIX Association

FAST °07: 5th USENIX Conference on File and Storage Technologies

233

content. A malicious media player could use this infor-
mation to access unauthorized information.

Cobalt currently has a privacy limitation. In order to let
media players efficiently generate playlists from shared
content, the type-specific metadata of shared content,
e.g., ID3 tags, are public and unencrypted. We plan to ad-
dress this limitation in the future by including the meta-
data in the list of files generated by the token and spec-
ified to ad hoc media players. Once such metadata are
available through other means, they can be encrypted in
content files without adversely affecting performance.

3 Threat model

Cobalt is designed to protect the interests of both its users
and content providers. For individual users, Cobalt pre-
vents unauthorized access to their data. An attacker may
try to subvert Cobalt to obtain access to content that the
user has not decided to share. For content providers,
Cobalt prevents access to content in violation of the spec-
ified policy. An attacker may try to subvert Cobalt to gain
access to content in a manner that violates the policy or
attempt to make a copy of decrypted content to gain un-
fettered future access.

We assume that attackers are capable of monitoring all
communication between parties such as the Cobalt to-
ken, content provider, media players, and BlueFS server.
Cobalt uses the station-to-station protocol [6] to establish
a session key to encrypt communication; we assume that
the private keys used in this protocol are known only to
the respective parties and that trusted mechanisms exist
for obtaining the public keys of other parties. We fur-
ther assume that the encryption used by Cobalt is strong
enough to provide confidentiality and authentication.

We assume that an attacker cannot compromise the hard-
ware on the Cobalt token or media players. An attacker
who subverts these mechanisms can gain unfettered ac-
cess to content. Similarly, we assume that an attacker
cannot subvert software that has been certified as trusted.
A software exploit in a token or media player could
record content keys to give the attacker access to pro-
tected content. Keys might also be discovered through
covert channels such as power analysis. Finally, the cur-
rent TPM standard is known to be vulnerable if attackers
can modify software after it has been loaded and verified
by the TPM but before it is used to access content.

We assume that an attacker may gain access to data
stored on disk. Content and keys written to persistent
storage are always encrypted. On the token, we as-
sume that the TPM’s sealed storage mechanisms pre-
vent an attacker from obtaining the encryption keys. An
attacker who compromises the BlueFS file server does
not gain access to content since all content is encrypted.

However, the attacker may mount a denial-of-service
attack by deleting content or causing the server to re-
spond to queries with incomplete information. Tech-
niques that have been developed to deal with untrusted
file servers [14] might address the latter problem.

An attacker might attempt to gain unauthorized access
to content through a wormhole attack [11] in which a
computer near a media player forwards packets to a re-
mote Cobalt token over the Internet and returns the to-
ken’s replies to the media player. Cobalt defends against
wormhole attacks with a protocol that requires tokens
to periodically respond to challenge messages within a
threshold time period. If a number of challenges are
missed, a media player refuses to play content. We as-
sume that a threshold value exists that allows nearby to-
kens to respond in time and that is also small enough to
prevent responses to be received from remote tokens.

An attacker may gain the ability to play content by ob-
taining possession of a token. This does not give the
attacker more privilege than the Cobalt user, so an at-
tacker possessing a stolen token cannot make unautho-
rized copies of content. If a token is lost or stolen, a user
may deauthorize the token by re-keying content stored
in BlueFS. However, any content previously fetched and
cached by an attacker would still be viewable. Some cell
phones have locking mechanisms that require a user to
enter a PIN or password before using the device — such
mechanisms, while not required by Cobalt, could poten-
tially reduce the damage caused by a lost token.

4 Background

Cobalt leverages prior work in distributed file systems
and trusted computing. In order to put Cobalt in its
proper context, we briefly describe the relevant details
of this prior research.

4.1 Blue File System

BlueFS is a server-based distributed file system that is
designed to meet the storage needs of small groups of in-
dividuals such as a family [23]. The BlueFS file server,
which is assumed to have a static IP address, might re-
side in the family’s home or with its ISP. BlueFS clients
include traditional computers such as desktops and lap-
tops, as well as consumer electronics appliances such as
MP3 players, cell phones, DVRs, and digital cameras.
BlueFS supports disconnected operation [12] for mobile
clients. When clients are connected to the server, the
BlueFS consistency model is similar to Coda’s weakly
connected mode [21]. Prior to this work, BlueFS clients
were tightly bound to a single server; they could only
read or write data stored by that server. In Section 5.4.2,

234

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

we describe how we have extended BlueFS to support
read-only sharing of data stored on different servers.

Cobalt exploits a novel feature of BlueFS called persis-
tent queries. As described previously [23], a persistent
query notifies standalone applications about modifica-
tions to data stored in the distributed file system. An ap-
plication running on any client that is interested in receiv-
ing such notifications specifies a semantic query (e.g., all
files that end in “.mp3”’) and the set of events in which
it is interested (e.g., file existence and new file creation).
The query is created as a new object within the file sys-
tem. The BlueFS server evaluates the query and adds log
records for matching events. For instance, in the above
example, the server would initially add a log record to the
query for every MP3 file accessible to the user who cre-
ated the query and then incrementally add a new record
every time a new MP?3 file is created. Since the query and
its results are a file system object, the underlying cache
consistency mechanisms of BlueFS notify the applica-
tion about changes to the query. Prior results have shown
that persistent queries are fast to create since they are
evaluated at the server, which keeps a metadata database
to speed processing.

4.2 Trusted computing

Rather than propose a new model for trusted computing,
Cobalt leverages previous work in this area [9, 15, 17].
It assumes that both the token and the ad hoc media
player have a Trusted Platform Module, as defined by
the Trusted Computing Group (TCG) [28]. In this sec-
tion, we summarize only the portions of TPM that are
relevant to our work: McCune et al. [17] provide a good
introduction to TPM for those who wish more details.

A TPM implementation includes hardware support for
cryptography primitives. At a minimum, Cobalt assumes
that the TPM module incorporates two unique keys: the
Attestation Identity Key (AIK) which is an RSA signing
key pair and a symmetric Key-Encryption-Key (KEK).
Any value signed with the AIK can be verified by an ex-
ternal entity using the public RSA key. The public RSA
key may be exported as a certificate with an embedded
chain that can be followed back to the manufacturer of
the hardware. Thus, signing a value with the AIK allows
any external entity to verify the identity and manufac-
turer of the device that generated the signature. To avoid
computationally-expensive public key cryptography, the
symmetric KEK is used to encrypt large data items.

Cobalt relies on TPM support for attestation. When re-
quested, the TPM generates a manifest that explicitly
lists the software loaded on the system, as well as a Plat-
form Configuration Registers (PCR) quote, which is an
AIK-signed hash of the manifest that can be used for

verification. Upon request, a device provides its TPM-
generated manifest and PCR quote to an external entity.
The external entity verifies the manifest using the PCR
quote and confirms that the software running on that de-
vice meets its approval. Additionally, if the entity doubts
the integrity of the TPM on the device, it can verify the
AIK signature on the PCR quote and trace the certificate
chain to ensure that the device was manufactured by an
entity that it trusts.

In Cobalt, content providers use the TPM to verify the
integrity of a token. The token, in turn, uses the TPM to
verify that media players meet the approval of policies
specified by the provider during content acquisition.

The Cobalt token uses the KEK to encrypt the content
key and hash of the policy that are given to it during con-
tent acquisition. Since the KEK never leaves the token,
content keys cannot be subsequently decrypted without
the cooperation of the token. We use the KEK to encrypt
these data items because the performance of symmetric
key encryption is substantially better than that of pub-
lic key encryption. Our experimental results using a cell
phone as the token confirm that public key operations can
require several seconds to complete, whereas symmetric
key operations require only a few milliseconds.

5 Implementation

5.1 Opverall model

The Cobalt token is a small, mobile device. The token
should be powerful enough to run a BlueFS client, yet
small enough to always be carried by its user. Addition-
ally, there should be a strong association between a token
and its user so that the presence of the token can be taken
to mean that its user is present. Cell phones are ideal
Cobalt tokens because they meet all of the above crite-
ria. Consequently, we use a Motorola E680i phone [20]
for our token implementation in this paper. We have also
ported the token to other platforms, such as the HP iPAQ
PDA.

We assume that ad hoc media players run a BlueFS
client. Given that platforms such as the TiVo DVR
run the Linux operating system and have APIs that al-
low them to be extended with novel applications, we do
not think this requirement will be onerous in the future.
Our prior work [23] has also investigated how general-
purpose computers can extend the functionality of con-
sumer electronics appliances when those platforms are
too closed to run a BlueFS client. Similar techniques
could be applied in Cobalt if necessary (although the
TPM verification would need to be extended to include
the general-purpose computer).

USENIX Association

FAST °07: 5th USENIX Conference on File and Storage Technologies

235

Cobalt functionality can logically be separated into two
phases: content acquisition, which is described in the
next section, and content playback, which is discussed
in Section 5.3. During content acquisition, the Cobalt
token coordinates the acquisition of new protected con-
tent from a provider. The content, encrypted with a per-
file content key, is stored in BlueFS. The content key, in
turn, is encrypted with the token’s KEK and also stored
in BlueFS. Optionally, the content provider may supply
a playback policy that is stored in BlueFS.

During playback, a token verifies that a file requested by
an ad hoc media player has been authorized for access by
its user. It checks that the media player meets the specifi-
cations provided by the content provider in the playback
policy. It only decrypts the content key (allowing the ad
hoc media player to decrypt the content) if both checks
pass.

5.2 Acquiring content

The Cobalt token manages the acquisition of content. We
have implemented content acquisition as a library rou-
tine that takes as parameters the network address of the
content provider and a unique identifier for the specific
content being acquired. Currently, we use a menu-driven
user interface. However, our library design would make
it trivial to substitute a more user-friendly GUI for direct-
ing content acquisition.

After the user selects the provider and content to ac-
quire, the token opens a network socket to the speci-
fied provider. The token and provider mutually con-
firm each other’s identities using the station-to-station
protocol. Specifically, Cobalt uses the Full-STS vari-
ant that includes an exchange of public-key certificates.
Each party provides the other with a certificate chain that
vouches for their respective public keys. While Cobalt
does not assume that the token and content provider have
prior knowledge of each other, it does assume that there
is at least one certificate authority trusted by each party
that can vouch for the other. As a by-product of the
station-to-station protocol, the token and the provider es-
tablish a symmetric session key that is used to encrypt
further communication during content acquisition.

The provider verifies that the token is running software
that it trusts. This is necessary since the provider will
give the token sufficient information to decrypt the con-
tent. The provider therefore needs to verify that the token
will only release the content in accordance with the spe-
cific policy for that content. For example, the content
provider needs to assure itself that the token will not leak
the content to an unauthorized third party.

The token uses its TPM’s AIK as its public key during
the station-to-station protocol. This allows the content

provider to ascertain that the token has a valid TPM. The
token then uses its TPM to generate a manifest and PCR
quote. The content provider verifies the signature on the
PCR quote and makes sure that the quote is a valid hash
of the software manifest. The provider then verifies that
the manifest entries are known versions of programs that
can be trusted not to leak content.

The provider next encrypts the requested content with a
symmetric content key. To improve performance, save
battery lifetime, or deal with closed software environ-
ments in which the BlueFS client code cannot be run, the
token typically enlists the cooperation of another helper
computer during content acquisition. The helper is a
BlueFS client that is known to the token; for example,
it might be the user’s workstation or BlueFS server. The
helper need not be trusted by the content provider since
it is never provided with the key necessary to decrypt
the content. When a helper is used during content ac-
quisition, the provider sends the encrypted content to the
helper, which stores the data as a new file in BlueFS. If
a helper is unavailable, the provider sends the content to
the token. The token writes the data to BlueFS itself.

The provider then sends the content key and the policy
for playing the content to the token. The policy for play-
back can be thought of as a set of requirements that the
provider wishes to enforce on any device that tries to ac-
cess the content. For example, the provider might request
that the device be deployed on a TPM platform whose
PCR quote corresponds to one of several known and
trusted software configurations — this helps ensure that
the content is not played on a device that leaks the con-
tent in an unauthorized manner. Alternatively, the pol-
icy might allow the provider, the manufacturer, or other
trusted entities to vouch for software running on media
players by digitally signing a certificate which lists the
software. The media player could present a copy of this
certificate to the token, which would verify that the cer-
tificate is signed by an entity trusted by the policy.

The token next generates a protector for the content be-
ing acquired. The protector is a concatenation of the
content key and a SHA-1 hash of the policy specified
by the provider. The token encrypts these values us-
ing its KEK and stores them in the BlueFS metadata of
the newly-created content file. Cobalt uses AES Output-
Feedback Chaining [7] when generating the protector—
this ensures that the content key cannot be decrypted suc-
cessfully if the policy hash is tampered with by an exter-
nal entity. The token writes the policy, which may be of
arbitrary length, to a separate file in BlueFS. The token
deletes the content key from its memory after generating
the protector. Although all our current tokens, the Mo-
torola E680i cell phone and HP iPAQ, are BlueFS clients,
Cobalt supports closed-platform tokens that cannot run

236

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

the client code by allowing the helper to store the protec-
tor and policy on their behalf.

If a Cobalt user is protecting his own content, the above
process is simplified. The user specifies files to protect
using his token — these files can be in a private direc-
tory within BlueFS. The token generates a content key
for each file, encrypts the data with that key, and stores
the encrypted data in a new file in a publicly-accessible
BlueFS directory. The protector is generated and stored
as described above.

5.3 Playing content

The Cobalt token runs a wireless discovery protocol to
learn about media players in its immediate vicinity. This
protocol can be run periodically or on-demand when the
user starts a media sharing application on the token. Pe-
riodic discovery reduces user-perceived latency, but on-
demand discovery saves battery energy on the token by
only performing discovery when necessary. During dis-
covery, the token sends a broadcast message over the lo-
cal network (currently, we use 802.11b in ad hoc mode
for discovery). All media players on the local area net-
work that are willing to access content respond to the to-
ken. If the media player is a TPM platform, its response
includes its public key (AIK), the manifest of software
running on the media player, and the signed PCR quote
necessary to verify the manifest.

The token presents the user with a list of all media play-
ers that responded. When the user selects one of these
players, the token and the media player mutually authen-
ticate and establish a secure communication channel via
the station-to-station protocol. Cobalt allows media play-
ers to reject connections from unknown tokens if they
wish; however, our design does require the media player
to disclose its identity to such tokens.

The user next specifies which content he is willing to
share with the media player. This content is stored as
encrypted, publicly accessible files in BlueFS. Rather
than requiring the user to specify a lengthy list of files,
the Cobalt token allows its user to semantically specify
which content should be shared as a persistent query. For
example, he can create a persistent query that matches
all MP3 files or refine the query to specify only music
files from a certain artist. To share content, the user may
browse through current outstanding persistent queries
and select one that is most appropriate. Alternatively,
the user may create a new query that matches the content
that they currently want to share. In either case, the user
specifies the query using the interface of his token, i.e.,
one that he knows and is comfortable with, rather than an
unfamiliar interface presented by an ad hoc media player
After authenticating the media player and establishing a

secure session, the token sends the media player the IP
address of the user’s BlueFS server and the unique 96-bit
identifier of the persistent query that specifies the content
to be shared.

The media player next contacts the user’s BlueFS server
and fetches the persistent query object. We have imple-
mented a federation mechanism, described in the next
section, that allows BlueFS clients to mount third-party
servers as read-only directories within their distributed
namespaces. The persistent query contains the unique
identifier of all files that match the associated semantic
string. Rather than search the entire BlueFS namespace
for relevant files, the media player can read the query
results to determine the exact set of files that are being
shared. Then, the media player can read the metadata as-
sociated with these files and add them to its list of avail-
able content. The media player may prefetch and store
locally some of this content to improve performance.
However, until the token provides the content key for a
file, the media player cannot decrypt cached content.

When a Cobalt-protected file stored in BlueFS is ac-
cessed, the file metadata indicates that the content is en-
crypted. On the first access to the file, the BlueFS client
on the media player contacts the token to obtain the con-
tent key. Over the secure session established previously,
the BlueFS client sends the token the protector encrypted
with the KEK that includes both the policy hash and the
content key. The BlueFS client on the media player also
sends the token the policy for the file it wishes to read.
The token decrypts the protector, hashes the specified
policy, and verifies that the computed hash matches the
one stored in the protector.

The token next verifies that the media player and its cur-
rent software environment is in accordance with the pol-
icy for the specified content. As described by McCune et
al. [17], the token can independently compute the PCR
quote from the manifest and confirm that its computed
quote matches the value supplied by the media player.
If the software environment specified by the PCR quote
is in accordance with the policy dictated by the content
provider, then the token sends the decrypted content key
back to the media player over the secure session. The
media player uses this key to decrypt and play the con-
tent. Having verified the media player platform, the to-
ken trusts it not to leak decrypted content to a third party.

To limit interactions with the token, the media player
caches content keys while the token is located nearby.
Once a session is established, the player sends a chal-
lenge to the token every 30 seconds (the period is config-
urable). A prompt response to the challenge informs the
media player that the token is still located within wire-
less communication range. If a number of consecutive
challenges (currently, one) are not met, the media player

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

237

assumes that the token has left its vicinity and destroys
any keys cached on its behalf. Any decrypted content is
flushed from the kernel buffer cache on the media player.
This stops playback of the content.

The media player may continue to cache encrypted con-
tent on its local storage. This behavior improves per-
formance by eliminating the need to refetch data from
the BlueFS server if the token returns. It also potentially
enables prefetching strategies (that we have not yet im-
plemented) where a user’s content can be prefetched by
a media player in anticipation of her arrival and stored
encrypted on a local disk for future use.

5.4 File system changes

5.4.1 Support for encryption

In order to support Cobalt, we made several changes
to BlueFS. First, we added support for token-encrypted
content. The metadata of each file stored in BlueFS
can optionally contain two new fields: the protector that
stores the encrypted policy hash and content key, as well
as the unique BlueFS identifier of the token that can de-
crypt the protector.

Cobalt metadata fields can be set by any application exe-
cuting with a userid that has write permission for a con-
tent file. The token first creates the file and writes the en-
crypted content using normal file system calls, then uses
an IPC to add the metadata. Encrypted content is pub-
licly readable — this allows an ad hoc media player to
fetch and cache the content. However, the media player
cannot decrypt the content without the cooperation of the
token, nor can it modify the content. As mentioned in
Section 2.3, file-specific metadata such as ID3 tags is un-
encrypted in our current implementation.

The BlueFS daemon only decrypts content immediately
before providing it to the kernel as the result of a file read.
If an encrypted content key is specified for a file, BlueFS
verifies that it has established a secure session for the
associated token. If no such session exists, it returns an
error. Otherwise, it asks the token to decrypt the content
key as described in Section 5.3. The content key is then
used to decrypt the content.

To improve performance, a BlueFS client maintains a
cache of decrypted keys for each connected token. All
keys associated with a token are flushed from the cache if
the specified number of consecutive challenge responses
are not received from the token. At that time, the dae-
mon also makes an upcall into the kernel to instruct the
kernel module to flush any decrypted content associated
with the flushed keys. Since content cached on storage
devices is encrypted, no action is taken to destroy or evict
on-disk files (however, files may be evicted later due to
capacity constraints).

5.4.2 Support for read-only federation

Ordinarily, a BlueFS client is tightly bound to its server.
A client registers with its server and receives a unique
identifier. When a client caches a file, the server main-
tains a callback, which is a promise to notify the client if
the file changes. Callbacks are maintained even when a
client is disconnected to eliminate the need for full disk
scans on reconnection.

The binding between an ad hoc media player and a
BlueFS server must necessarily be more loose. We en-
vision that the client running on the media player will be
associated with the server of its owner. However, it must
be able to read content from other servers in order to play
the content of different users. We enable this loose bind-
ing through read-only federation.

We added a federate IPC to the BlueFS client that takes
as input the IP address or hostname of a BlueFS server.
When this function is invoked, the client connects to the
server and assigns it a temporary volume identifier (like
AFS [10] and Coda [12], BlueFS reserves the high-order
32-bits of its file identifier for an administrative volume
identifier). The client maintains a mapping between the
actual volume identifier that is permanently chosen by
the server with which it is federated and the temporary
volume identifier that has been assigned. After reading
data from the server, the client changes the actual vol-
ume identifier to the temporary one. It makes the reverse
change when sending requests to the server.

The server maintains callbacks for its federated clients
so that it can maintain cache consistency when files
change. However, in contrast to permanent clients for
which it maintains persistent callbacks, the server imme-
diately drops all callbacks held on behalf of a federated
client once that client disconnects. Consequently, a client
evicts all files that it has cached from a federated server
as soon as it disconnects. Users may trigger an explicit
disconnection with a defederate IPC.

Currently, federated clients may not modify files. While
this may not suffice for all applications, read-only fed-
eration fits the needs of ad hoc content access. Media
players can read public but encrypted content from fed-
erated servers and access the content with the coopera-
tion of a Cobalt token. File updates are rare for media
files. For those rare updates, e.g., a change to a song rat-
ing, a Cobalt user can make the change directly using his
token, which is a permanent client of his server.

5.4.3 Support for other distributed storage

Although Cobalt was developed as an extension to
BlueFS, one could potentially modify other distributed
storage systems to use Cobalt. Cobalt has less than 5000
lines of source code, most of which could be reused.

238

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

The most significant change that would be required is
for clients that run on ad hoc media players to be made
Cobalt-aware. They need to establish secure sessions
with mobile tokens and use the TPM to attest to the in-
tegrity of software running on the player. Such clients
should restrict distribution of content to only authorized
software components. A distributed storage solution
must be able to associate Cobalt metadata (the policy,
protector, and token identifier) with each file. It should
also support a search mechanism, similar to persistent
queries, that allows users to specify content to share.

For example, Cobalt could potentially be used with data
stored on a Web server. One would need to build a
Cobalt-aware Web client and provide a mechanism for
a token to specify files to share. Cobalt metadata could
be embedded in HTTP headers.

6 Evaluation

Our evaluation answers the following questions:

e What is the overhead of using Cobalt during content
acquisition?

e What is the overhead of using Cobalt during content
playback?

e Can Cobalt enable new applications?

6.1 Methodology

In the following experiments, the Cobalt token is a Mo-
torola E680i cell phone with a 300 MHz XScale proces-
sor. The cell phone is a BlueFS client that runs Mon-
taVista Linux Consumer Electronics Edition 3.0. It com-
municates with the other computers via an SD/MMC
802.11b card. The BlueFS server runs on a Dell GX620
desktop with a 3.4 GHz Pentium 4 processor and 2 GB
of DRAM. The desktop also runs a BlueFS client that
is used during content acquisition. We use an IBM X40
laptop with a 1.2 GHz Pentium M processor and 784 MB
of RAM as both the content provider and ad hoc media
player. The laptop and desktop run Fedora Core 4 (Linux
kernel 2.6.15) and are connected by 100 Mb/s Ethernet.

6.2 Content acquisition

We first measured the overhead that Cobalt adds to con-
tent acquisition. In this experiment, the token initiates
the acquisition of a media file from the content provider.
The BlueFS client running on the desktop is used as a
helper during content acquisition, as described in Sec-
tion 5.2.

Figure 2 shows how the total acquisition time varies with
the size of the content being acquired. From the graph,
it can be seen that there is an approximately 10 second

404 -=- QOverall transaction time L

w
=]
1
\

Time (seconds)
8
1
\
\

0 50 100 150
Size of file (MB)

This graph shows the time to acquire content for audio and video
files of various sizes. Each result is the mean of 5 trials — the
error bars are 90% confidence intervals.

Figure 2. Time to acquire content using Cobalt

fixed cost for acquiring a file plus a variable cost that is
roughly linear with the size of the file. Table 1 shows
detailed results for 2 MP3 audio files and 2 MP4 videos.
For the smaller audio files, the majority of the acquisi-
tion time is used to establish a secure session between
the token and the content provider. In these experiments,
we assume that no prior relationship exists between these
two parties; thus, each must send the other a certificate
signed by a root authority to establish its identity.

The second column of Table 2 provides further detail
about session establishment by detailing the time for
the token to perform the individual components of the
station-to-station protocol. This step is especially time-
consuming since it requires the limited processor of the
cell phone to perform public-key cryptography. For ref-
erence, Table 2 shows that if we replace the cell phone
with the X40 laptop, session establishment requires an
order of magnitude less time. Thus, as cell phone pro-
cessors continue to improve, this component of the ac-
quisition cost will diminish.

Once a secure session has been established, a symmet-
ric session key is used for all further communication.
Therefore, the session establishment time does not in-
crease with the size of the file being transferred. Further,
if multiple files are being acquired, the session need only
be established once.

In contrast, Table 1 shows that the time to encrypt the
content, transfer it to the helper, and store the data in
BlueFS is roughly proportional to the size of the file be-
ing stored. For the larger video files, these activities com-
prise the majority of the time spent acquiring the content.

USENIX Association

FAST ’07: 5th USENIX Conference on File and Storage Technologies

239

| Operation

[1.8 MB MP3 [11 MB MP3 | 37 MB Video | 147 MB Video |

Secure session established 7.6 (£0.2) 7.5 (£0.3) 7.2 (£0.2) 7.5 (£0.3)
Content encrypted by provider 0.3 (0.0 1.8 (0.0 4.6 (+0.2) 14.3 (0.1)
Content fetched and stored by helper 1.3 (£0.0) 3.0 (£0.2) 5.8 (£0.4) 22.3 (£2.6)
Metadata stored by token 0.9 (+0.1) 0.9 (0.0 1.0 (0.2 0.8 (£0.1)
| Total acquisition time | 10102 | 132302 | 18604 | 45.028)

This table shows the time (in seconds) to acquire content using Cobalt for files of varying sizes. Each result is the mean of 5 trials —
90% confidence intervals are given in parentheses. The first row must be performed once per session, while the remaining rows are

per-file costs.

Table 1. Time to acquire content using Cobalt

| Operation | Cell phone (seconds) | Laptop (seconds) |
Diffie-Hellman parameter generation 2.49 (£0.11) 0.14 (£0.00)
Preparation of signed exponentials and certificate encryption 3.17 (£0.17) 0.21 (+0.01)
Verification of certificate and signed exponentials 1.29 (+0.01) 0.06 (+0.00)
Other (exponential exchanges, key derivation, network, etc.) 0.60 (£0.01) 0.11 (£0.01)

| Total session establishment time | 7.56 (£0.19) | 051001 |

This table shows the time to establish a secure session using the station-to-station protocol between the provider (Dell GX620) and
both, the token (Motorola E680i) and the helper (IBM X40 laptop). Each value is the mean of five trials — 90% confidence intervals

are given in parentheses.

Table 2. Detailed breakdown of the time to establish a secure session

However, these activities are not Cobalt-specific, as most
existing methods for acquiring protected content must
encrypt data, transmit it over the network, and store it on
a destination computer. In fact, this experiment underes-
timates the network cost of content acquisition since the
BlueFS desktop and the content provider communicate
via local Ethernet. For instance, if the server’s connec-
tion to the network were a 5 Mb/s cable link, transmitting
the 147 MB file would take approximately four minutes.
Thus, as network speeds decrease, Cobalt overhead be-
comes a smaller proportion of the total acquisition time.

The final activity, metadata creation by the token, con-
sists of generating the protector and storing it in BlueFS.
Since the metadata size is independent of the content
size, the time to perform this activity is constant.

Overall, we are encouraged by these results since the
overhead added by Cobalt (establishing the secure ses-
sion and storing metadata) is less than 9 seconds and does
not increase significantly with the size of the content be-
ing acquired. The vast majority of Cobalt overhead re-
sults from the need to establish a secure session between
the content provider and token — this overhead will de-
crease as cell phone processors become more powerful.

6.3 Content playback

We next evaluated the time to access content using
Cobalt. In this experiment, we use the X40 laptop to
represent an ad hoc media player. The laptop runs a
BlueFS client. It uses xmms to play MP3s and VLC to

play video. To specify which files are shared with the
media player, we created a persistent query that matched
1500 MP3 files stored on the BlueFS server.

Table 3 shows the time for a token to associate with a
media player and specify the content that will be shared.
The majority of the time is required to establish a secure
session between the token and player. The secure ses-
sion is necessary to confirm the identity of each party,
since a media player may only wish to accept content
from known sources, and the token must verify that the
media player is a trusted platform that meets the security
policy for the content being shared. As part of session
establishment, the token receives and caches the media
player’s PCR quote and software manifest, as provided
by the player’s TPM hardware. Since our laptop does
not have TPM hardware, the laptop transmits precom-
puted values (a SHA-1 hash for the PCR quote and 1 KB
file for the manifest) to the token on request.

Cobalt takes 4 seconds to create a persistent query spec-
ifying the content to be shared — most of this time is
spent resolving the path names associated with the media
files in the query. Currently, each path resolution requires
multiple remote procedure calls to the server — based on
these results, we are currently considering methods for
pipelining these operations to reduce latency.

Table 4 shows the per-file costs for playing content once
the token has associated with an ad hoc media player.
When the first 4 KB data block is read from a Cobalt-
protected file, the BlueFS client running on the media
player asks the token to decrypt the content key. Thus,

240

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

| Operation

| Time (seconds) |

Secure session establishment 7.9 (£0.2)
Media player selection and TPM verification 0.2 (£0.0)
Persistent query creation and content path resolution 4.0 (£0.2)
Playlist creation 0.3 (£0.1)
Total association time | 12.3 (+£0.3)

This figure shows how long it takes a Cobalt token to associate with a nearby media player and create a playlist with 1500 MP3s. Each
result is the mean of five trials — 90% confidence intervals are given in parentheses.

Table 3. Time for the token to associate with a media player

| Operation

| Time (seconds) |

First block decryption time

0.273 (£0.013)

Subsequent block decryption time | 0.001 (£0.000)

This table shows the time to decrypt content when playing it on an ad hoc media player. The first 4 KB block decryption time includes
the time for the token to verify the policy and decrypt the content key. Decryption of subsequent 4 KB blocks is much quicker since
the media player caches decrypted content keys. Each result is the mean of five trials — 90% confidence intervals are given in

parentheses.

Table 4. Decryption time

the first block decryption time includes the time taken by
the token to decrypt the protector, verify the policy hash,
check the policy against the media player’s PCR quote
and manifest, and return the content key if all checks
pass. Cobalt decrypts the first file block in 273 ms, while
it takes only 1 ms to decrypt subsequent blocks since the
content key is cached.

We have experimentally verified that Cobalt success-
fully prevents the media player from decrypting content
stored on the federated BlueFS server that is not explic-
itly shared by the persistent query (e.g., in the above ex-
periment, the media player is unable to play the video
files since only music files were shared). We have also
verified that the token prevents the media player from de-
crypting content when its manifest does meet the policy
specified for a given file. Finally, our results show that
when the token leaves the vicinity of the media player,
playback of the video ceases after approximately 30 sec-
onds due to the absence of challenge responses.

6.4 Decryption CPU load

We used the top utility to measure the CPU consumption
of Cobalt while decrypted content is accessed. During
playback of the video, Cobalt consumes 2.1% of the CPU
on the laptop while the VLC application uses 10.9% of
the CPU. When MP3 audio files are played, Cobalt con-
sumes 0.7% of the CPU while xmms uses 0.3% of the
CPU. These results match our expectations: since video
files have a higher data rate than music files, Cobalt must
decrypt more data per second for the videos.

6.5 Case study: Adaptive playlists

We also explored a potential new application that Cobalt
enables. Typically, when visiting a friend’s house, the
only content available is that which resides in the friend’s
music collection. However, with Cobalt, guests can pool
their content to create a more diverse set of music. With
this greater pool of potential content comes a problem:
not all music may be enjoyable to everyone in the room.

To address this scenario, we built a Cobalt application
that uses persistent queries to play only content that is
mutually enjoyable to all people located nearby. Each
user’s Cobalt token sends a persistent query that lists
their most highly rated songs to the media player. The
media player compares the results of all queries and cre-
ates an adaptive playlist that consists only of songs that
are in a specified number of query results (currently, all
of them). This application assumes that there is unifor-
mity in labeling MP3s, which seems reasonable given the
availability of ID3 repositories such as freedb [8].

Table 5 shows the time for the media player to create
an adaptive playlist. In this experiment, the owner of
the media player specifies a query that matches on 650
songs. The owner of the Cobalt token specifies a query
that matches on 1500 songs. When these queries are
combined, the adaptive playlist consists of 650 songs that
were included in both query results. Comparing the re-
sults in Table 5 with those in Table 3, it is apparent that
creating the adaptive playlist takes only about a second
longer than creating one based solely on remote content.
The extra time is required to create a persistent query for
the media player’s owner.

USENIX Association FAST °07: 5th USENIX Conference on File and Storage Technologies

241

Operation

| Time (seconds) |

Secure session establishment 7.7 (£0.2)
Media Player selection and TPM verification 0.3 (0.0
Local persistent query creation and path resolution 1.0 (+0.0)
Remote persistent query evaluation and path resolution 4.1 (0.0
Merged playlist creation 0.2 (+0.0)

| Total time to create a new adaptive playlist | 132302 |

This table shows the time needed by a guest’s token and an ad hoc media player to create a new adaptive playlist with 650 MP3s from
a collection of 1500 MP3s. Each value is the mean of 5 trials — 90% confidence intervals are given in parentheses.

Table 5. Time to create an adaptive playlist
7 Related work

To the best of our knowledge, Cobalt is the first system
to use a mobile token to assist in the secure playback
of protected content on ad hoc media players. Specifi-
cally, Cobalt separates content distribution from autho-
rization by utilizing a distributed file system (BlueFS) as
the distribution channel and a mobile device such as a
cell phone to perform authorization on behalf of a con-
tent provider.

Content secured by Cobalt is protected by a digital con-
tainer as described by Sibert et al. [25]. Cobalt extends
this scheme by storing the content key in a trusted mo-
bile device that can be used to decrypt the content when
requested by the user.

Cobalt builds on Zero-Interaction Authentication [5].
ZIA introduced the notion of proximity-based encryption
in which users carry a wearable token that announces
their presence to their mobile computer. The token ex-
changes periodic messages with the computer to confirm
its presence. If a user moves away from her computer,
ZIA encrypts sensitive data stored on disk and in mem-
ory. When the user returns, ZIA decrypts the data so that
it can again be accessed.

Cobalt differs from ZIA by focusing on scenarios where
a single user does not own all computers. Cobalt uses
TPMs to let content providers verify the integrity of a
token and to allow the token to validate the integrity of
a media player. Further, Cobalt tokens can dynamically
associate with ad hoc media players. In contrast to ZIA
which decrypts all files in a user’s presence, Cobalt users
can scope the specific files that they wish to decrypt using
persistent queries.

More generally, Cobalt is an example of splitting trust 3,
26], in which a small, trusted device performs certain
critical functions while a more resourceful computer ex-
ecutes the more demanding part of an application.

Pierce and Mahaney [24] have advocated using cell
phones to perform additional functionality for usability
reasons; Cobalt follows their advice in that it allows its

user to interact with the system via their phone rather
than through the interface of an ad hoc media player.

Cobalt assumes that tokens and ad hoc media players are
deployed on a trusted computing platform that meets the
Trusted Platform Module standard [28] defined by the
Trusted Computing Group [27]. Currently, this standard
is being extended to better support mobile devices such
as the Cobalt token [19]. BitE [17] extends the TPM ar-
chitecture by showing how a software manifest and PCR
quote can be used to verify the integrity of a trusted de-
vice. Cobalt leverages these ideas when it checks the
integrity of the token and media player. BitE provides a
secure channel through which a user can enter sensitive
data using their phone. Since Cobalt focuses on integrat-
ing protected content and distributed storage, the manner
in which it uses the manifest and PCR quote is differ-
ent from how they are used in BitE. We have tried to
make Cobalt as agnostic as possible with regard to the
trusted platform on which it runs; potentially, this could
enable Cobalt to run on alternative architectures such as
XOM [15] and Terra [9].

Commercial systems such as Apple’s iTunes Mu-
sic Store, Yahoo’s Music Unlimited and Microsoft’s
Zune also deploy content protection mechanisms.
Subscription-based services, such as Yahoo! Music Un-
limited [30], allow users to play content on ad hoc media
players after explicitly authenticating with a userid and
password. Apple’s iTunes Music Store [1] allows a user
to purchase protected content and stream it to an ad hoc
media player. Playback commences only after the user
provides her Apple userid and password to the iTunes
application on the ad hoc media player [2]. In contrast,
Cobalt improves usability as it removes the requirement
of entering a userid and password. Additionally, Cobalt
improves privacy as the content provider is not informed
every time the user accesses content from an ad hoc me-
dia player. Finally, Cobalt better protects the interests of
content providers as the physical proximity of a Cobalt
token such as a cell phone is a better indicator of the
presence of the content owner than a password, which
can be entered by another person.

242

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

Microsoft’s Zune can wirelessly discover another Zune
in its vicinity and share media. However, Zune places us-
age restrictions such as disallowing repeated reception of
the same content and limiting the number of times shared
content is played [18]. In comparison to Cobalt, Zune
operates on a different model where content acquisition,
not playback, is proximity-based. Unlike Zune whose
playback policy is based on the number of accesses,
Cobalt permits playback of protected content from ad
hoc media players as long as the Cobalt token is in its
vicinity.

Many distributed file systems support a form of federa-
tion. For instance, the Self-certifying File System [16]
supports secure federation through symbolic links that
include the public key of the federated server. AFS [10]
has long supported a global namespace. Coda [12] has
been recently enhanced to enable clients to access data
in more than one cell, and the Glamour project [29] has
added federation to NFSv4. Other file systems such as
NFESv3 [4] and CIFS [13] allow ad hoc clients to con-
nect to arbitrary servers. Cobalt could potentially lever-
age these federation mechanisms to allow ad hoc media
players to access data from other file systems.

8 Future work

In the future, we hope to investigate what other novel
applications are enabled by Cobalt. The presence of per-
sonal mobile devices such as cell phones provides valu-
able context about which people are physically present.
These devices can inform their environment about the
tastes and preferences of their users, allowing customiza-
tion of pervasive applications. Adaptive playlists are
one example of such customization. Alternatively, the
Cobalt token could record which content has been re-
cently played in the presence of its user to avoid repeats
or help start playback of content such as movies at the
place where its user last left off. Context could be used
to manage deletion of old content; for instance, a DVR
might delay automatic deletion of a TV show until all
users who typically watch that show have viewed it.

We also would like to explore prefetching and caching
policies for ad hoc media players. Given sufficient stor-
age, a media player may choose to hide network delays
by fetching encrypted content before it is played (perhaps
using a playlist to anticipate what might be played). The
media player may also choose to cache encrypted content
in case a visitor who has recently departed returns in the
future. While ad hoc media players are currently limited
to read-only access by the BlueFS federation mechanism,
we are considering adding the ability for a token to grant
update permission by signing and passing a capability for
the authorized access to a media player.

Cobalt currently supports only one token per file. We
plan to support more than one token for a file by storing
multiple token identifiers and protectors in the BlueFS
metadata. Use of Cobalt does not preclude a user from
authorizing additional devices that they own to play con-
tent using existing provider mechanisms. For instance,
a user might authorize a home computer and download
content directly to its hard drive, then also store a copy
of the content using Cobalt so that it can be accessed on
ad hoc media players.

Finally, Cobalt currently assumes a one-size-fits-all pol-
icy for how content is invalidated when the token is in-
accessible. A better solution would be to have the per-
file policy specify the amount of time that a file would
remain valid after the token departs. Potentially, the per-
file policy could also specify the minimum frequency for
challenge-response messages and the maximum number
of consecutive responses that can be missed before the
token is assumed to no longer be present.

9 Conclusion

The goals of content protection often conflict with those
of a distributed file system: the former is designed to
make data less accessible, while the latter is designed to
make data more accessible. Cobalt is targeted at reach-
ing a reasonable compromise between these two goals
that meets the needs of both users and content providers.
Cobalt bases its authorization on the physical presence
of a user and leverages a personal mobile device such as
a cell phone to determine when a user is located nearby.
Our results show that the overhead of Cobalt is quite rea-
sonable. Our case study shows that Cobalt can also add
value by enabling context-sensitive applications such as
adaptive playlists.

Acknowledgments

We thank Ed Nightingale and Dan Peek for their help
with BlueFS. Manish Anand, Evan Cooke, our shepherd,
Mike Swift, and the anonymous reviewers provided valu-
able feedback about these ideas. The work is supported
by the National Science Foundation under award CNS-
0306251. Jason Flinn is supported by NSF CAREER
award CNS-0346686. Intel Corp. and Motorola Corp.
have provided additional support. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of NSF, Intel, Mo-
torola, the University of Michigan, or the U.S. govern-
ment.

USENIX Association

FAST °07: 5th USENIX Conference on File and Storage Technologies

243

References

[1]

[2]

[3

[ty

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17

[18

[19]

APPLE. iTunes Music Store Customer Service - Authorizing
your computer. http://www.apple.com/support/itunes/
musicstore/authorization/.

APPLE. iTunes Tutorial - Sharing your music on your local net-
work. http://www.apple.com/support/itunes/windows/
tutorial/segment102094b.htm)1.

BALFANZ, D., AND FELTEN, E. W. Hand-held computers can be
better smart cards. In Proceedings of the 1999 USENIX Security
Symposium (1999).

CALLAGHAN, B., PAWLOWSKI, B., AND STAUBACH, P. NFS
Version 3 Protocol Specification. Tech. Rep. RFC 1813, IETF,
June 1995.

CORNER, M. D., AND NOBLE, B. D. Zero-interaction authen-
tication. In Proceedings of the 8th International Conference on
Mobile Computing and Networking (September 2002), pp. 1-11.

DIFFIE, W., VAN OORSCHOT, P. C., AND WIENER, M. J. Au-
thentication and authenticated key exchanges. Designs, Codes
and Cryptography 2, 2 (1992), 107-125.

DWORKIN, M. NIST Special Publication 800-38A: Recommen-
dation for Block Cipher Modes of Operation. Tech. rep., National
Institute of Standards and Technology (NIST), 2001.

freedb. http://www.freedb.org

GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND
BONEH, D. Terra: A virtual machine-based platform for trusted
computing. In Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles (Bolton Landing, NY, October 2003),
pp- 193-206.

HoOwARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS,
D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND
WEST, M. J. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems 6, 1 (February 1988).

Hu, Y.-C., PERRIG, A., AND JOHNSON, D. B. Wormhole at-
tacks in wireless networks. [EEE Journal on Selected Areas in
Communications 24, 2 (February 2006), 370-380.

KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected op-
eration in the Coda file system. ACM Transactions on Computer
Systems 10, 1 (February 1992).

LEACH, P., AND PERRY, D. CIFS: A Common Internet File
System. In Microsoft Interactive Developer (November 1996).

L1, J., KROHN, M., MAZIERES, D., AND SHASHA, D. Se-
cure untrusted data repository (SUNDR). In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (San Francisco, CA, December 2004), pp. 121-136.

LIE, D., THEKKATH, C. A., AND HOROWITZ, M. Implement-
ing an untrusted operating system on trusted hardware. In Pro-
ceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples (Bolton Landing, N, 2003), pp. 178-192.

MAZIERES, D., KAMINSKY, M., KAASHOEK, M. F., AND
WITCHEL, E. Separating key management from file system se-
curity. In Proceedings of the 17th ACM Symposium on Oper-
ating Systems Principles (Kiawah Island, SC, December 1999),
pp. 124-139.

MCCUNE, J. M., PERRIG, A., AND REITER, M. K. Bump in the
ether: A framework for securing sensitive user input. In Proceed-
ings of the USENIX 2006 Annual Technical Conference (Boston,
MA, June 2006).

MICROSOFT. Share Audio Files Zune to Zune. http:
//www.zune .net/en-us/support/howto/zunetozune/
sharesongs.htm

Mobile Device Security and Trusted Computing - Next Steps.
Tech. rep., Trusted Computing Group, 2005. https://www.
trustedcomputinggroup.org/groups/mobile.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

MOTOROLA. Motorola E680, September 2004. http://wuw.
motorola.com/us/products. jsp.

MUMMERT, L., EBLING, M., AND SATYANARAYANAN, M. Ex-
ploiting weak connectivity in mobile file access. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles
(Copper Mountain, CO, Dec. 1995).

NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and
storage flexibility in the Blue File System. In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (San Francisco, CA, December 2004), pp. 363-378.

PEEK, D., AND FLINN, J. EnsemBlue: Integrating consumer
electronics and distributed storage. In Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation (Seat-
tle, WA, November 2006), pp. 219-232.

PIERCE, J. S., AND MAHANEY, H. Opportunistic annexing for
handheld devices: Opportunities and challenges. In Proceedings
of HCIC (2004).

SIBERT, O., BERNSTEIN, D., AND WIE, D. V. Digibox: A
self-protecting container for information commerce. In Proceed-
ings of the first USENIX Workshop on Electronic Commerce (New
York, New York, 1995).

STAJANO, F., AND ANDERSON, R. The resurrecting duckling:
Security issues for ad-hoc wireless networks. In Proceedings
of the 7th International Workshop on Security Protocols (1999),
pp. 172-194.

TCG PC Specific Implementation Specification v1.1. Tech. rep.,
Trusted Computing Group, 2006.

TCG TPM Specification Version 1.2 Revision 94. Tech.
rep., Trusted Computing Group, March 2006. https://www.
trustedcomputinggroup.org/specs/TPM.

TEWARI, R., HASWELL, J. M., NAIK, M. P., AND PARKES,
S. M. Glamour: A Wide-Area Filesystem Middleware Using
NFSv4. Tech. Rep. RJ10368, IBM, June 2005.

Yahoo! Music Unlimited.
unlimited/.

http://music.yahoo.com/

244

FAST ’07: 5th USENIX Conference on File and Storage Technologies

USENIX Association

