USENIX Association

Proceedings of the
FAST 2002 Conference on
File and Storage Technologies

Monterey, California, USA
January 28-30, 2002

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Configuring and Scheduling an Eager-Writing Disk Array for
a Transaction Processing Workload

Chi Zhang* Xiang Yu*

Abstract

Transaction processing applications such as those
exemplified by the TPC-C benchmark are among the
most demanding I/O applications for conventional
storage systems. Two complementary techniques
exist to improve the performance of these systems.
Eager-writing allows the free block that is closest to
a disk head to be selected for servicing a write re-
quest, and mirroring allows the closest replica to be
selected for servicing a read request. Applied indi-
vidually, the effectiveness of each of these techniques
is limited. An eager-writing disk array (EW-Array)
combines these two complementary techniques. In
such a system, eager-writing enables low-cost replica
propagation so that the system can provide excel-
lent performance for both read and write operations
while maintaining a high degree of reliability. To
fully realize the potential of an EW-Array, we must
answer at least two key questions. First, since both
eager-writing and mirroring rely on extra capacity
to deliver performance improvements, how do we
satisfy competing resource demands given a fixed
amount of total disk space? Second, since eager-
writing allows data to be dynamically located, how
do we exploit this high degree of location indepen-
dence in an intelligent disk scheduler? In this paper,
we address these two key questions and compare the
resulting EW-Array prototype performance against
that of conventional approaches. The experimen-
tal results demonstrate that the eager-writing disk
array is an effective approach to providing scalable
performance for an important class of transaction
processing applications.

1 Introduction

Transaction processing applications such as those
exemplified by TPC-C [27] tend to pose more diffi-

*Department of Computer Science, Princeton University,
{chizhang,xyu,rywang}@cs.princeton.edu.

TDepartment of Computer Science, Yale University,
arvind@cs.yale.edu.

This work is supported in part by IBM. Wang is sup-
ported by NSF Career Award CCR-9984790. Krishnamurthy
is supported by NSF Career Award CCR-~9985304.

Arvind Krishnamurthy'

Randolph Y. Wang*

cult challenges to storage systems than office work-
loads. These applications exhibit little locality or
sequentiality; a large percentage of the 1/0 requests
are writes, many of which are synchronous; and
there may be little idle time.

Traditional techniques that work well for office
workloads tend to be less effective for these transac-
tion processing applications. Memory caching pro-
vides little relief in the presence of poor locality and
a small read-to-write ratio. As disk areal density im-
proves at 60-100% annually [9], as memory density
improves at only 40% per year, and as the amount
of data in transaction processing systems continues
to grow, one can expect little improvement in cache
hit rates in the near future. Delayed write tech-
niques become less applicable in the presence of a
large number of synchronous writes that must sat-
isfy strict reliability requirements, requirements that
are sometimes not met by even expensive NVRAM-
based solutions [13]. Even when it is possible to
buffer delayed writes in faster storage levels, such
as an NVRAM, the poor write locality implies that
there are very few overwrites before the buffered
data reaches disks. Furthermore, high throughput
requirements in conjunction with scarce idle time
make it difficult to schedule background activities,
such as de-staging from NVRAM [13, 20], garbage
collection in log-structured solutions [13, 21, 22, 24],
and data relocation [19], without impacting fore-
ground I/0 activities. The net effect of these chal-
lenges is that transaction processing applications
tend to be more closely limited by disk latency, a
performance characteristic that has seen an annual
improvement of only about 10% [9].

Although the traditional caching and asyn-
chronous I/O techniques have not been very suc-
cessful, a number of other techniques have proven
promising. One is mirroring: a mirrored system
can improve read latency by sending a read re-
quest to the disk whose head is closest to a tar-
get replica [2, 5], and it can improve throughput
by intelligently scheduling the requests in a load-
balanced manner. Mirroring, unfortunately, is not
without its challenges. Chief among them is the cost

of replica propagation—each write request is turned
into multiple physical writes that compete for 1/0
bandwidth with normal I/O operations. High up-
date rates, the lack of idle time for masking replica
propagation, and poor locality only make matters
worse.

While mirroring is more effective for improv-
ing a read-dominant workload, a technique called
eager-writing is more effective for improving a write-
dominant workload. Eager-writing refers to the
technique of allocating a free block that is closest
to the current disk head position to satisfy a write
request [4, 6, 28]. Under the right conditions, by
eliminating almost all of seek and rotational delay,
eager-writing can deliver very fast write performance
without compromising reliability guarantees, even
for workloads that comprise of synchronous I/Os and
have poor locality. What eager-writing does not ad-
dress, however, is read performance.

Since data replication in a mirrored system im-
proves read performance, and since eager-writing im-
proves write performance, reduces the cost of replica
propagation, and ensures a high degree of data re-
liability, it is only natural to integrate these two
techniques so that we may harvest the best of both
worlds. We call the result of this integration an
eager-writing array or an EW-Array: in the simplest
form, an EW-Array is just a mirrored system that
supports eager-writing.

This integration, however, is not without its own
tension. In order to achieve good write performance
under eager-writing, one must reserve enough disk
space to ensure that an empty block can be located
close to the current disk head position. At the same
time, to achieve good read performance under mir-
roring, the system needs to devote disk space to store
a sufficient number of replicas so that it can choose
a conveniently located replica to read. Given a fixed
budget of disks, one must resolve this tension by
carefully balancing the number of disks devoted to
each of these two dimensions. To further complicate
the matter, striping can improve both read and write
performance, so one must also consider this third di-
mension of the number of disks devoted to striping.
Although configuring a storage system based on the
number of disk heads instead of capacity for TPC-
C-like workloads is a common practice, and some
previous studies such as the “Doubly Distorted Mir-
ror” have incorporated “write-anywhere” elements
in a disk array [19], what is not well understood is
how to balance the number of disks devoted to each
one of the mirroring, eager-writing, and striping di-
mensions to get the most out of a given number of
disks.

While properly configuring an EW-Array along
these three dimensions presents one challenge, re-
quest scheduling on such a disk array presents an-
other. In the request queue of a traditional update-
in-place storage system, the locations of all the
queued requests are known. Although the sched-
uler can sometimes choose among several mirrored
replicas to satisfy a request, the degree of freedom is
limited. This is no longer the case for an EW-Array:
while the locations of the read requests are known,
the scheduler has the freedom of choosing any com-
bination of free blocks to satisfy the write requests.
Although disk scheduling is a well-studied problem
in conventional systems, what is not well understood
is how a good scheduler can exploit this large degree
of freedom to optimize throughput.

The main contributions of this paper are:

e a disk array design that integrates eager-writing
with mirroring in a balanced configuration to
provide the best read and write performance for
a transaction processing workload,

e a number of disk array scheduling algorithms
that can effectively exploit the flexibility afforded
by the location-independent nature of eager writ-
ing, and

e evaluation of a number of alternative strategies
that share the common goal of improving perfor-
mance by introducing extra disk capacity.

We have designed and implemented a prototype
EW-Array. Our experimental results demonstrate
that the EW-Array can significantly outperform
conventional systems. For example, under the TPC-
C workload, a properly configured EW-Array deliv-
ers 1.4 to 1.6 times lower latency than that achieved
on highly optimized striping and mirroring systems.
The same EW-Array achieves approximately 2 times
better sustainable throughput.

The remainder of this paper is organized as fol-
lows. Section 2 motivates the integration of eager-
writing with mirroring in an EW-Array. Section 3
explores different EW-Array configurations as we
change the way the extra disk space is distributed.
Section 4 analyzes a number of new disk schedul-
ing algorithms that exploit the location independent
nature of eager-writing. Section 5 describes the in-
tegrated simulator and prototype EW-Array. The
experimental results of Section 6 evaluate a wide
range of disk array configuration alternatives. Sec-
tion 7 describes some of the related work. Section 8
concludes.

2 Eager-Writing Disk Arrays

In this section, we explain how eager-writing,
mirroring, striping, and the combination of these
techniques can effectively improve the performance
of TPC-C-like applications.

2.1 Eager-writing

In a traditional update-in-place storage system,
the addresses of the incoming I/O requests are
mapped to fixed physical locations. In contrast, un-
der eager-writing, to satisfy a write request, the sys-
tem allocates a new free block that is closest to the
current disk head position [4, 6, 28]; consequently, a
logical address can be mapped to different physical
addresses at different times.

A number of characteristics associated with
eager-writing make it suitable for transaction pro-
cessing applications. The chief advantages of eager-
writing are excellent small write performance (in
terms of both latency and throughput) and a high
degree of reliability. The main component of the
eager-writing latency is the time it takes for the clos-
est free block to rotate under the disk head. Even at
a relatively high disk utilization of 80% and a disk
block size of 4 KB, this latency is well below 1 ms
and can be made even lower with lower disk utiliza-
tion. Furthermore, the improvement of this latency
scales with that of platter bandwidth, which is im-
proving much more quickly than seek and rotational
delays experienced by update-in-place systems. This
performance advantage of eager-writing is particu-
larly appealing to a TPC-C-like workload, which has
a large percentage of small writes. By committing
the data synchronously to the disk platter, eager-
writing also achieves a high degree of data reliabil-
ity, a degree of reliability that is unmatched by even
NVRAM-based solutions, which typically have far
worse mean-time-to-failure characteristics [13].

Of course, no storage system can cater to all
workloads equally successfully, and eager-writing is
certainly no exception. Omne example is frequent
sequential reads following random updates—eager-
writing would destroy locality during the random
updates, thus resulting in poor sequential read per-
formance. One possible remedy is periodic data re-
organization that restores physical data sequential-
ity. Fortunately, such complications do not arise in
TPC-C-like workloads, which are characterized by
small reads and writes with little locality. Another
difficulty that may arise with eager-writing is caused
by an uneven distribution of free blocks. For exam-
ple, if free blocks are concentrated in one part of the
disk but the disk head is forced by read requests into

regions with few free blocks, then a subsequent write
may suffer a long delay. Fortunately, such complica-
tions do not arise with TPC-C-like workloads either.
Indeed, the random writes of TPC-C cause the free
blocks to be evenly distributed throughout the disk
under eager-writing; this is desirable because a free
block is never very far from the current head posi-
tion.

In short, transaction processing workloads like
TPC-C can benefit a great deal from the perfor-
mance and reliability advantages offered by eager-
writing, while the very nature of the workload allows
it to avoid the performance pitfalls of eager-writing.

2.2 Mirroring and Striping

A D,,-way mirror, in addition to ensuring a high
degree of reliability, can improve small read perfor-
mance in terms of both latency and throughput. It
can improve latency because the system can sched-
ule the disk head that is closest to a replica to satisfy
a read request [2, 5]. It can improve throughput be-
cause any request can be satisfied by any disk, and
an intelligent scheduler should be able to exploit the
freedom in distributing the incoming requests to bal-
ance load.

Although cost per byte and capacity per drive
remain the predominant concerns of the consumer
market, due to the large cost and performance gaps
between disk and memory, database vendors have
long recognized the need for trading capacity to ob-
tain higher performance while configuring storage
systems. A D,,-way mirror is just one of the ways to
improve performance by exploiting excess capacity.
This approach, however, has an obvious limitation—
as one increases the degree of replication, the cost of
replica propagation becomes prohibitive. One pos-
sible way of addressing this high cost is to perform
some of the propagations in the background during
idle periods. Unfortunately, TPC-C-like workloads
are characterized by a combination of high write ra-
tio and scarce idle time, a combination that makes it
difficult to realize the potential benefits of mirroring.

An alternative to mirroring is striping—Dby par-
titioning and distributing data across a Dg-way
striped system, the system reduces the maximum
seek distance by a factor of D, as only a fraction
of each disk is used. This is attractive compared
to mirroring because there is no replica propagation
cost. Unlike mirroring, unfortunately, striping can-
not reduce rotational delay. As we raise Dy, only
the seek time is lowered and that too at a dimin-
ishing rate. Furthermore, unlike mirroring, due to
the partitioning of data, the choice of which disk to
send a request to is limited, so it is more difficult to

perform load-balancing.

In practice, disk array designers have used a com-
bination of mirroring and striping to form a striped
mirror [3, 11, 26]. In a D, x D, striped mirror, data
is partitioned into Dy sets, each of which is replicated
D,,, times. The configuration where D,, = 2 is com-
monly referred to as “RAID-10”. The replica prop-
agation cost remains an obstacle to achieving good
performance on RAID-10; and one seldom chooses a
replication factor D,, that is greater than two.

2.3 Eager-writing Disk Arrays

An EW-Array resembles a conventional striped
mirror in how data is distributed and reads are per-
formed. However, the two systems differ in how
writes are satisfied: instead of performing a write
to one of many fixed locations, a D,, x Dy EW-
Array chooses a disk whose head is closest to a free
block among D,, candidates to perform the fore-
ground write. In cases where a higher degree of reli-
ability is desired, the two disk heads that are closest
to their free blocks are chosen to perform the fore-
ground writes. The remaining D,,, — 1 (or D,, — 2)
writes are buffered in the delayed write queues of the
remaining disks to be performed in the background,
also in an eager-writing fashion.

In an EW-Array, reads enjoy good latency and
throughput just as they do in a conventional striped
mirror. Foreground write latency is improved
greatly due to eager-writing. This latency can be
even lower when there are more disk heads to choose
from. Unlike a striped mirror, copy propagation is
no longer the limiting problem because the writes are
sufficiently efficient that they are easily masked even
when idle time is scarce. As a result, an EW-Array
can sustain higher I/O throughput. The low cost of
replica propagation also makes it possible to raise
the degree of replication D,, for even lower read la-
tency or to increase the fraction of foreground writes
for higher reliability.

3 Configuring an EW-Array

An EW-Array combines three techniques: eager-
writing, mirroring, and striping. One commonality
shared by all three of these techniques is that they
all need extra disk capacity to be effective. We first
examine individually how performance under each
technique improves in response to increased capac-
ity. We then analyze their combined effect. We use
simple random workloads and simulation results in
this section to study these techniques. More details
about the simulation environment and results from

more realistic workloads will be presented in later
sections.

3.1 Impact of Extra Space on Eager-
writing

In order for eager-writing to be effective, one
needs to reserve enough extra space so that a free
block can always be located near the current disk
head position. Let disk utilization be U; we de-
fine dilution to be Dy = 1/U. For example, when
Dy = 2, we use twice as much capacity as is neces-
sary.

Figure 1(a) shows how the components of the av-
erage write cost respond to different dilution factors
(Dg) under a simple random write workload running
on a 10,000 RPM Seagate disk (ST39133LWYV). (In
this case, D,, = Ds; = 1. The block size is 4 KB,
and there is no queueing.) In this figure (and the
rest of this paper), overhead is defined to include
various processing times and transfer costs. Under
eager writing, when the closest free block is located
in the current track, only rotational latency is in-
curred. When the closest free block is located in a
neighboring track, a track switch or a small seek is
also needed, and this time is counted as seek time.

As we increase the amount of extra space, both
the rotational delay and seek time decrease as the
disk head travels a shorter distance to locate the
nearest free block. This improvement reaches di-
minishing return as the overhead dominates.

3.2 Impact of Extra Space on Mirroring

Figure 1(b) shows how the components of the av-
erage read cost respond to different degrees of repli-
cation (D,,) in a mirrored system under a random
read workload. (In this case, Dg = D; = 1.) The
read overhead is lower than the write overhead, be-
cause it takes longer for the disk head to settle when
servicing a write request. Note that mirroring re-
duces both the seek and rotational delays of read
requests. These components, however, remain sig-
nificant if mirroring is the only technique employed.

3.3 Impact of Extra Space on Striping

Figure 1(c) shows how the components of the av-
erage read cost respond to different degree of strip-
ing (Ds) under a random read workload. (In this
case, Dg = D,, = 1.) By restricting the disk head
within a small seek distance, striping lowers seek de-
lay. Unlike mirroring, it has no impact on rotational
delay. As Dy increases, rotational delay dominates
if striping is the only technique employed.

3500 - 10000 O Seek Time 10000 - O Seek Time
O Seek _T""e 9000 - WF i Latency 9000 - B Rotational Latency
3000 - B Rotational Latency 8000 = Overhead 8000 - D Overhead
[m] h — —
Qverhead 2 7000 - @ 7000 {
E 6000 - Tg 6000 -
i 5000 i 5000 4
s 4000 - S 4000 -
& 3000 & 3000 1
2000 - 2000 -
1000 - 1000 -
0 T T T T T T T 0 T T T T 0+
11 125 14 16 2 25 3 4 1 2 4 5 6 1 2 3 4 5 6

Dilution

(a) (b)

Number of Mirrors Number of Stripes

()

Figure 1: Components of average write response time as functions of (a) the degree of dilution Dy, (b) the degree of replication

Dy, and (c) the degree of striping Ds.

3.4 Distributing Extra Space in an EW-
Array

An EW-Array employs all three of the above
techniques. A large D, value allows for more efficient
writes. A large Dy value more aggressively reduces
the seek cost. A large D,,, value more aggressively re-
duces the rotational cost of reads. Given a total bud-
get of D disks and the constraint D = Dyx D,,, X Dy,
one must carefully balance these three dimensions
to optimize the overall performance. The decision
of how to configure these three dimensions is influ-
enced by both the workload and disk characteristics.
A workload that has a small read-to-write ratio and
little idle time demands a large dilution factor Dy
so that more resources are devoted to speeding up
writes. Disks with large seek delays demand a large
striping factor D, while disks with large rotational
delay demand a large mirroring factor D,,.

In this section, we explore the impact of ar-
ray configurations using a simple synthetic workload
(that is part of the Intel “Tometer” benchmark [15]).
More complex workloads are explored in Section 6.
In each of the test runs, the length of the queue
of the outstanding requests is kept at a constant.
This is accomplished by adding a new request to
the queue as soon as an old one is retired from it.
Different queue lengths emulate different degree of
idleness in the system. In all runs, the read/write
ratio is 50/50.

Figure 2 compares the latency of alternative EW-
Array configurations. In these experiments, the
number of outstanding requests is one so there is no
queueing. As a result, a relatively small dilution fac-
tor (Dg = 1.25) is generally sufficient for absorbing
the writes while a relatively large D,, x Dg prod-
uct improves read latency. A properly configured
4-disk EW-Array halves the latency achieved on a
single-disk conventional system. Note that many of
the configurations in Figure 2 have fractional val-
ues for Dy and Dy, yet D x Dy is always integral.

6 M1S1D1.1 o Suboptimal Config
° M m Optimal Config

V] o s2.7

s1.8 D1.1 Trend

D1.1

4 L o 2
I Vo) 3 8
£
= s2.4 V3 5
Q D1.25 M3
E3 O 832 — sas M3 [| M3 M3
= D1.25 D1 '25 S6.4 S8 S9.6
3 M1 - D1.25 D1.25 D1.25
c2 1 s32
8 D1.25
3
[l

0 T T T T T

0 234 6 12 18 24 30 36

Number of Disks

Figure 2: Comparison of response times of different EW-
Array configurations. FEach point symbol shows the perfor-
mance of an alternative EW-Array configuration. A label
“MaSbDc” denotes a Dy, X Ds X Dg = a X b X ¢ configura-
tion.

That means each replica stripes data across D X Dy
disks. On each of those disks, only 1/D; fraction of
the tracks are actually used to store data, and uti-
lization of those tracks is 1/Dg.

Figure 3 shows how the throughput of opti-
mally configured EW-Arrays scales with an increas-
ing number of disks. We vary the number of out-
standing requests per disk to emulate different load
levels. For a fixed number of disks, as we raise the
request arrival rate, a progressively larger dilution
factor Dy is needed to absorb the disk writes that
can no longer be masked by idle periods.

4 Scheduling on an EW-Array

When multiple outstanding requests are present
in the I/O system, the order of servicing these re-
quests has an important impact on the throughput
of the system. Although disk scheduling is a well-
studied problem, eager-writing presents a new chal-
lenge and a new opportunity. The challenge is that
the physical locations of the write requests are un-

10000 +——{_o— per Disk Queue Len 0.5
—=— Per Disk Queue Len 1.0
—a— Per Disk Queue Len 2.0

9000 ——

8000 -

7000 -

6000 -

M257.5D1.6
—~{M3s7.

D
M3S5.6D1.8

50001

[T

— M154.8D125
3
M1S3.2D1.25 . T

)2 i
o / 6
[M251.6D1.25 |
Figure 3: Throughput of optimal EW-Array configurations

under different queueing conditions. FEach point represents
the performance of an EW-Array configuration.

4000

6

3000 [M1s52.7D1.1

Optimal Throughput

2000

1000

0

18 2
Number of Disks

known at the time the requests are queued. The op-
portunity is that the flexibility afforded by data loca-
tion independence may enable an intelligent sched-
uler to achieve greater throughput. In this section,
we first examine a number of eager-writing sched-
ulers for a single disk; we then describe how we per-
form global scheduling across multiple disks in an
EW-Array.

4.1 Naive Scheduling Algorithms

Given a mix of queued read and write requests,
since write requests generally can be serviced quickly
under eager-writing, one naive strategy is to sim-
ply schedule all the writes first. (To prevent star-
vation of read requests, one can augment this al-
gorithm with simple heuristics such as imposing an
upper-bound on the amount of time that a request
can spend in the queue before it is forcibly sched-
uled.) We call this the write-first algorithm. One
problem with this naive algorithm is that by greed-
ily scheduling all the writes first, the scheduler may
be missing opportunities of inserting some of these
writes into naturally occurring latency gaps during
the later read operations without adding much to
the queueing time of the reads.

The opposite approach, an equally if not more
naive algorithm, is to schedule all the reads first us-
ing an existing disk scheduling algorithm. We call
this the read-first algorithm. Write requests that
could have completed more quickly suffer long de-
lays, and it is not hard to see why this algorithm is
not optimal. We describe the read-first and write-
first algorithms here not because of their practical
utility, but because the problems encountered by
these two extreme approaches may expose the pit-
falls of eager-writing scheduling algorithms in gen-
eral.

4.2 Eager-writing-based Shortest Ac-
cess Time First Scheduling

The traditional shortest access time first (SATF)
algorithm greedily schedules the request that is clos-
est to the current disk head position [16, 23]. It takes
both seek and rotational latency into consideration.
We now extend this algorithm for eager-writing, and
we call this extension the SATF-EW algorithm. The
SATF-EW algorithm examines the queue and com-
pares the location of the closest read request against
the location of the closest free block. If the former is
closer, we schedule the read request, else we sched-
ule a write request into the closest free block. To
avoid trapping the disk head in a small region and
exhausting the free blocks, we always force the disk
head to move in one seek direction until it can move
no further and has to switch direction.

Unlike the naive algorithms described earlier,
SATF-EW generally strikes a sound balance in
scheduling read and write requests. When there are
a large fraction of free blocks and there are many
write requests, however, SATF-EW will tend to fa-
vor scheduling writes first; in the extreme case, it
may degenerate to the write-first algorithm which,
as we have explained earlier, may have its shortcom-
ings.

4.3 Eager-writing-based Free Band-

width Scheduling

“Free bandwidth” is different from bandwidth
available during idle periods—the disk head may
pass over locations that are of interest to some back-
ground operations even as it is “busy” serving fore-
ground requests. Inserting some of these background
requests into the foreground request stream should
impose little penalty on foreground activities. Ex-
ample applications that can benefit from free band-
width are background activities such as data mining
and storage reorganization [17].

Our next group of eager-writing scheduling algo-
rithms are inspired by the approach of exploiting free
bandwidth. Under this approach, we first schedule
the reads using a known disk scheduling algorithm.
Based on this schedule, we calculate a “deadline” by
which the disk head must arrive at a target cylinder
for each read operation so that the read operation
can complete in time. Once the schedule and the
deadlines of the reads are determined, we attempt
to insert eager-writes into gaps among the reads if
suitable free blocks can be located and the insertion
of these eager-writes does not cause the disk head to
miss the deadlines prescribed by the read schedule.
In this case, the disk head also moves in one direc-
tion until it can move no further and has to reverse

—&—SATF-EW
—>— FreeBW-SATF
50 —&— FreeBW-SCAN
—— FreeBW-Hybrid

Throughpu

] ;
1 4 8 16 32 64 128
Queue Length

192 256

Figure 4: Throughput comparison of different eager-writing
scheduling algorithms as we vary the number of queued re-
quests.

its direction.

The above description is not sufficient for fully
specifying the scheduling order—to complete the de-
scription, we must determine what scheduling algo-
rithm to use to schedule the reads. We shall explore
two possibilities: shortest access time first (SATF)
as described above, and SCAN, which orders the
read requests solely based on their seek distance. We
call the resulting overall algorithms FreeBW-SATF
and FreeBW-SCAN respectively.

These scheduling algorithms inspired by the ex-
ploitation of free bandwidth are a different way of
balancing the scheduling of reads and eager-writes.
When there are many read requests, however, these
algorithms will tend to favor scheduling reads first;
this happens because a large number of reads tend to
reduce the gap among them and there is less room
left for eager writes. In the extreme case, it may
degenerate to the read-first algorithm which, as we
have explained in Section 4.1, may have its short-
comings.

4.4 Comparison of Eager-writing
Scheduling Algorithms

Figure 4 compares the throughput of differ-
ent eager-writing algorithms as we vary the queue
length. This simple simulated workload has a 50%
write ratio and it runs on a disk with a dilution fac-
tor of 2.

SATF-EW works well for all queue lengths. In
contrast, although it is known that SATF gen-
erally outperforms SCAN in a traditional stor-
age system [16, 23], interestingly enough, FreeBW-
SATF performs worse than FreeBW-SCAN, espe-
cially when the queue is large. This occurs be-
cause the aggressive scheduling of reads by SATF

700 —e—SATF-EW

_~
'E 600 —>—FreeBW-SATF
8 —&—FreeBW-SCAN
3 500 —=— FreeBW-Hybrid
)
Q. 400 -
o
= 300 -
=
2
_g’ 200 - \
S
S 100 |
T
£
= 0 T T T T T T T T T
0% 20% 40% 60% 80% 100%

Read Ratio

Figure 5: Throughput comparison of different eager-writing
scheduling algorithms as we vary the fraction of queued op-
erations that are reads.

under high load leaves little “free bandwidth” for
scheduling the eager-writes; consequently, FreeBW-
SATF becomes similar to the read-first algorithm
and unnecessarily penalizes writes. In contrast, by
using SCAN to schedule the reads, FreeBW-SCAN
causes the reads to be spaced further apart so more
“free bandwidth” becomes available for eager-writes;
consequently, the scheduling of reads and writes
are better balanced and the overall performance of
FreeBW-SCAN is better.

When there are a large number of reads but few
writes, however, the performance of FreeBW-SCAN
is not the best due to its failure to take rotational
delay of reads into consideration. To address this
shortcoming, we augment FreeBW-SCAN with a
simple heuristics: when there is no write request in
the queue, we replace SCAN with SATF. We call the
modified algorithm FreeBW-Hybrid. Figure 4 shows
that this hybrid algorithm performs the best for this
workload—it even slightly outperforms SATF-EW
due to its successful masking the eager-writes in the
gaps of reads.

Figure 5 compares the throughput of these al-
gorithms as we vary the ratio of reads. The queue
length is 64 and the disk dilution factor is 2.

SATF-EW works well for all read ratios. When
the read ratio is high, the disadvantage of FreeBW-
SCAN is most apparent. In contrast, all other al-
gorithms approach the performance of SATF when
the read ratio approaches 100%. Interestingly, when
the number of reads is small (but nonzero), the
free bandwidth-based approaches also perform worse
than SATF-EW. This is because the seek time
among those small number of reads dominates and
there is little rotational time left for scheduling the
eager-writes. When there are a modest number of
reads, due to both of its ability of successfully ex-

ploiting free bandwidth and its intelligent scheduling
of reads, FreeBW-Hybrid is the best.

4.5 Scheduling an EW-Array

So far, we have described how to perform eager-
writing-based scheduling on a single disk. The
scheduling on an EW-Array is more complex because
a read request can be serviced by any one of the disks
that has a replica and a write request can return as
soon as the first one or two copies are made per-
sistent. We now incorporate the single-disk eager-
writing algorithms described in the previous sections
into the mirror scheduling algorithm employed by Yu
et al [30].

A read request is sent to the idle disk head that
is closest to a replica if at least one of the disks that
contain the data is idle. If all the disks that contain
the desired data are busy, a duplicate request is in-
serted into each of the relevant drive queues. Each
disk employs an eager-writing scheduling algorithm
as described in the previous sections. As soon as one
of the duplicates completes, all remaining duplicate
requests are canceled.

A write request can be sent to any one of the
disks that are supposed to contain a replica. If any
of these disks are idle, it is sent to the one that is
closest to a free block. If all disks that should contain
the desired data are busy, the request is inserted
into the shortest queue. A second foreground write
can be similarly scheduled for increased reliability.
We set aside the remaining replica writes (if any)
in a separate delayed write queue associated with
each drive. Replica propagations from the delayed
write queues are scheduled only when the foreground
queues are empty.

5 Implementation

In this section, we describe a prototype EW-
Array implementation that we use to experiment
with the configuration and scheduling alternatives.

5.1 Architecture

The EW-Array prototype is implemented on the
“MimdRAID” system developed by Yu et al [30].
Figure 6 shows how some of the MimdRAID mod-
ules have been replaced by EW-Array-specific com-
ponents and how these components fit together.
MimdRAID provides a framework and a number of
useful features that enable one to conveniently ex-
periment with novel disk array designs. We briefly
highlight some of these useful features:

e MimdRAID exports a transparent logical disk in-
terface on Windows 2000 so that the existing op-

| User Device Driver | | Kernel Device Driver |

Y v

| Logical Disk |

v

Array Configuration

l EW-Array] ’ SR-Array ‘
+ A
Scheduling
FreeBW

SATF

SCAN[SATF [Hybrid [SATF-EW 1 o

*

Calibration
Head Position Geometry
Prediction Extraction
v ‘
Simulat 1
imulator
SCSI Abstraction -
Device
Detection

Figure 6: The MimdRAID architecture. Shaded parts are the
modules added for an EW-Array.

erating system and applications run unmodified

on the underlying experimental disk array.

e Highly modularized components of MimdRAID,
such as the “Array Configuration” and “Schedul-
ing” components of Figure 6, can be replaced
to allow for experimentation with new array de-
signs.

e An accurate software-based disk head posi-
tion prediction mechanism (in the “Calibration”
layer) is crucial for realizing an EW-Array be-
cause the efficient scheduling of both eager-writes
and reads depends on the precise knowledge of
the rotational position of the disk head.

e At the lowest layer, the “SCSI Abstraction”
module, which manages real Seagate disks, can
be substituted with a disk simulator, so an EW-
Array simulator and its implementation effec-
tively share most of the code. The simulator
can shorten simulation time of long traces by re-
placing physical I/O time with simulated time; it
also allows us to experiment with a wide range of
configurations without having to physically con-
struct them.

Almost all the EW-Array-specific code in
MimdRAID is concentrated in the Scheduling and
Array Configuration layers. The Scheduling layer
implements all the eager-writing scheduling algo-
rithms described in Section 4. The Array Config-
uration layer is responsible for translating requests
of logical I/O addresses to those of physical I/O ad-

dresses. This layer maintains a logical-to-physical
address mapping and we describe this next.

5.2 Logical-to-physical Address Map-
ping

Under eager writing, the physical locations of a
logically addressed block can frequently change. In
this section, we detail how we query the logical-to-
physical address mapping upon a read operation,
how we maintain persistence of the mapping upon a
write operation, and how we recover the mapping.

5.2.1 Querying the Mapping

A simple design is to store the entire logical-to-
physical mapping in main memory. Reads are effi-
cient and simple to implement: for each read opera-
tion, we simply use the logical address as an index to
query a table to uncover the physical addresses. The
price we pay is the cost of the map memory. A map
entry in our system consumes four bytes per logical
address per replica. The block size of our EW-Array
implementation is 4 KB. With a Dy x D,,, x D EW-
Array, the amount of map space is D, - C'/1000,
where C' is the size of the logical disk which, in turn,
is typically much smaller than the total amount of
physical capacity in a TPC-C run.

We have chosen this simple design due to the na-
ture of the transaction processing workload that we
are targeting. First, the large number of spindles
that are necessary for achieving good performance
make the cost of the map memory insignificant. Sec-
ond, the poor locality of the workload implies that
the relatively small amount of memory consumed by
the map would have delivered little improvement to
read performance had the memory been used as a
data cache instead. For a workload that exhibits
more locality, we are currently researching the alter-
native approach of keeping only the most frequently
accessed portion of the map in memory and “pag-
ing” the rest to disk.

5.2.2 Updating and Recovering the Map-
ping with Incremental Checkpointing

In designing a mechanism to keep the logical-to-
physical address map persistent, we strive to ac-
complish two goals: one is low overhead imposed
by the mechanism on “normal” 1/O operations, and
the other is fast recovery of the map.

Figure 7 shows the map-related data structures
used in various storage levels. Updates to the logical-
to-physical map are accumulated in a small amount
of NVRAM. When the NVRAM is filled, its con-
tent is appended to a map log region on disk. (Both

L ogical-to-physical address map

Incremental checkpoints of map

H NVRAM

Map entry updates

Log of map entry updates

Figure 7: Logging of logical-to-physical map updates and in-
cremental checkpointing of the map.

the NVRAM and the map log region on disk can
be replicated for increased reliability.) We divide
the logical-to-physical address map into M portions.
(M = 4 in Figure 7.) Periodically, a portion of the
map is checkpointed as it is appended to the log.
After all M portions of the map are checkpointed,
the map update log entries that are older than the
Mth oldest checkpoint can be freed and this freed
space can be used to log the new updates. The size
of the map log region on disk is bound by the fre-
quency and the size of the checkpoints. When we
reach the end of the log region, the log can simply
“wrap around” since we have the knowledge that
the log entries at the beginning of the region must
have been freed. The location of the youngest valid
checkpoint is also stored in NVRAM.

During recovery, we first read the entire map log
region on disk to reconstruct the in-memory logical-
to-physical address map, starting with the youngest
valid checkpoint. We then replay the log entries
buffered in NVRAM. At the end of this process, the
in-memory logical-to-physical address map is fully
restored.

We note a number of desirable properties of the
mechanism described above. The size and frequency
of the checkpoint allows one to trade off the over-
head during normal operation against the map re-
covery time. In particular, the checkpoints bound
the size of the map log region, thus bounding the re-
covery time. Incremental checkpointing prevents un-
desirable prolonged delays associated with the check-
pointing of the entire map. It also allows the space
occupied by obsolete map update entries to be re-
claimed without expensive garbage collection of the
log.

It is interesting to compare the mechanism em-
ployed in managing the logical-to-physical address
map of an EW-Array against those employed in
managing data itself in a number of related sys-
tems such as an NVRAM-backed LFS [1, 21] and
RAPID-Cache [13]. While we buffer and checkpoint
metadata, these other systems buffer and reorganize
data. The three orders of magnitude difference in

7
® 6
E
5
E
|—
o 4
@
O 3
&
®© 5 || —#=—M1s4.8D1.25
o« ——M251.88D1.6 T
14 M154.8D1.25 sim
—+—M251.88D1.6 sim
0 ‘
0% 25% 100%

50% . 75%
write ratio

Figure 8: Comparison of response times on the EW-Array
prototype and those predicted by the simulator as we vary the
read/write ratio.

the number of bytes involved makes it easy to con-
trol the overhead of managing metadata in an EW-
Array. Practically, in a Dy, X Dy X Dg =2 x 9 x 2
EW-Array prototype (whose disks are 9 GB each),
with a 100KB NVRAM to buffer map entry updates,
we have observed that the amount of overhead due
to the maintenance of the map during normal oper-
ations of the TPC-C workload is below 1% and it
takes 9.7 seconds to recover the map. The recovery
performance can be further improved if we distribute
the map log region across a number of disks so the
map can be read in parallel.

5.3 Validating the Integrated Simulator

Operating system | Microsoft Windows 2000
CPU type Intel Pentium III 733 MHz
Memory 128 MB

SCSI Interface Adaptec 39160

SCSI bus speed 160 MB/s

Disk model Seagate ST39133LWYV 9.1 GB
RPM 10000

Average seek 5.2 ms read, 6.0 ms write

Table 1: Platform characteristics.

Due to the large number of configurations and
the long traces that we must experiment with, the
experimental results reported in Section 6 are based
on those obtained on the simulator; therefore it is
necessary to validate the EW-Array simulator using
our EW-Array prototype. Table 1 lists some of the
platform characteristics of the prototype.

We run a benchmark called “Iometer”, a bench-
mark developed by the Intel Server Architecture
Lab [15]. Iometer can generate workloads of var-

2500 — —=M1S4.8D1.25

——M2S1.88D1.6
M1S4.8D1.25 sim

—+—m2S1.88D1.6 sim

N
(=]
(=]
o
I
\

1500 -

1000 -

Throughput(l/O per second)

4 8 16_ 32 64 128
of outstanding requests

Figure 9: Comparison of throughput on the EW-Array pro-
totype and that predicted by the simulator as we vary the
per-disk queue length.

ious characteristics including read/write ratio, re-
quest size, and the maximum number of outstanding
requests.

Figure 8 compares the response times measured
on a number of six-disk EW-Array prototype con-
figurations with those predicted by the simulator
as we vary the read/write ratio. In these Iometer
experiments, the number of outstanding requests is
one, and the dilution factor of the EW-Array is two.
The two EW-Array configurations (D,, X Ds x Dy =
1x3x%x2,and D,, x Ds x Dg = 2 x 1.5 x 2) have sim-
ilar response times and they are closely matched by
those predicted by the simulations. Since the eager-
writes have much lower latency than reads, the re-
sponse time decreases as the write ratio increases.

Figure 9 compares the throughput obtained on
the same six-disk EW-Array configurations with
that predicted by the simulator as we vary the queue
length per disk. In these Iometer experiments, the
write ratio is 50%. As the per-disk queue length in-
creases, the 1 x4.8 x 1.25 EW-Array achieves greater
throughput than the 2 x 1.8 x 1.6 configuration be-
cause it becomes increasingly difficult for the latter
configuration to mask the replica propagation even
with a larger dilution factor. The throughput mea-
sured on the prototype matches closely the simulated
result.

6 Experimental Results

In this section, we compare the performance of
the EW-Array with that of a number of alternatives.

6.1 The TPC-C Trace

The eager-writing arrays are designed to target
TPC-C-like transaction applications. We evaluate

the effectiveness of EW-Arrays with a trace sup-
plied by HP Labs. It is a disk trace of an unaudited
run of the Client/Server TPC-C benchmark running
at approximately 1150 tpmC on a 100-warehouse
database. It has 4.2 million I/O requests, 54% of
which are reads. The I/O rate is about 700 I/Os
per second in the steady state. Most of the requests
are synchronous I/Os. The total data set is about
9 GB, distributed originally on 54 disks to achieve
the desired throughput. The trace was collected on
5/03/94.

Two characteristics of the trace may be of con-
cern due to its old age: the data rate and the size
of the data set. With comparable number of disks
and machines, the current technology can support
a much higher data rate. To account for this de-
velopment, in some of the following experiments,
we raise the I/O rate by multiplying it with a
“trace speedup” factor. For example, when the trace
speedup is two, we halve the inter-arrival time of re-
quests. The data set size factor is of less concern. In
fact, only a small fraction of the space on the origi-
nal traced disks was used to achieve the target 1/0O
rate. Although a single modern disk can accommo-
date the entire traced data set today, it cannot sup-
port the data rate of the original trace. We shall vary
the number of disks employed in a disk array onto
which the traced data set is distributed. We study
the effectiveness of various array configurations and
the conclusions that we reach are independent of the
size of the entire data set.

6.2 The Alternative Disk Array Config-
urations

In addition to the EW-Array configurations, we
will experiment with the following alternatives:

e A RAID-10 combines striping and mirroring:
data is striped across a number of disks and each
of the striped disks is also replicated once.

e A Doubly Distorted Mirror is a variant of a
RAID-10. For each logical write request, two
“write-anywhere” physical writes are performed
to free locations near the disk heads. One of
these two copies is later “moved” to a fixed loca-
tion in the background [19].

e An SR-Array combines striping and rotational
replication: data is striped across Dy disks, and
each block is replicated D, times within a track
to reduce rotational delay, so a total of D, x D
disks are used [30].

For configurations that support replication on
multiple disks, we shall experiment with two differ-
ent reliability guarantee scenarios: in one scenario,
a synchronous write request is allowed to return as

-
[7)
E
Q
£
=
[}
17}
c
2
n 2
& —O— SR-Array

1 —¥—RAID 10

—i— EW-Array
0 T
12 24 36

Number of Disks

Figure 10: Comparison of TPC-C 1/0 response time on sev-
eral disk array configuration alternatives as we vary the num-
ber of disks in the array. The SR-Arrays and EW-Arrays are
labeled with their configuration parameters: an “RaSb” label
denotes a Ds X Dr = b x a SR-Array configuration, and an
“MaSbDc” label denotes a Dy, X Ds X Dg = a X b x ¢ EW-
Array configuration.

soon as one physical write is committed to a disk
platter; in a second scenario, a synchronous write
request is not allowed to return until at least two
physical writes are committed to two disks. When
multiple requests are in the disk queue, the EW-
Arrays employ the SATF-EW scheduler discussed
in Section 4, and the other configurations employ
variants of SATF.

6.3 Playing the Trace at Original Speed

We play the TPC-C trace at original speed in
the experiments reflected in Figure 10. It compares
I/0 response times of the optimally configured EW-
Arrays against those of the RAID-10s and the opti-
mally configured SR-Arrays as we increase the num-
ber of disks. In these experiments, the second and
subsequent replicas, if any, are propagated in the
background.

An SR-Array generally outperforms RAID-10 be-
cause its combination of striping and rotational
replication balances the reduction of seek and ro-
tational delays better. An EW-Array outperforms
both because of its substantially lower write latency,
which also enables a higher degree of replication,
which in turn lowers read latency. As we increase the
number of disks, the performance benefit derived by
an SR-Array from an increasing number of disks is
larger than that of an EW-Array because the aggres-
sive rotational delay reduction of the former benefits
both reads and writes, while the write latency on an
EW-Array is small to begin with and further im-
provements are marginal. In general, far fewer disks
are necessary to achieve a specific latency goal on an

EW-Array.

6.4 Playing the Trace at Accelerated
Rates

We play the TPC-C trace at accelerated rates in
the experiments reflected in Figure 11. It compares
I/O response times of various array configurations
as we maintain a constant total of 36 disks for each
configuration. (Note that the Dy x D, = 36 x 1 SR-
Array configuration is simply a conventional 36-way
stripe.) In these experiments, we perform replica
propagation in the background. (A maximum of
10,000 blocks can be buffered on an array for back-
ground propagation.)

The EW-Array has the best response time under
all arrival rates and it generally delivers much higher
sustainable throughput than conventional configu-
rations. For example, the maximum sustainable
throughput rates (expressed in terms of the speedup
rate over the original trace speed) on a 36-way stripe,
a RAID-10, a 2 x 9 x 2 EW-Array, and a 1 x 22 x 1.6
EW-Array are approximately 5x, 8x, 10x, and
14 x, respectively.

As we raise the request arrival rate, idle time be-
comes more scarce and the replica propagation cost
becomes felt by all configurations. We must succes-
sively reduce the degree of replication for both the
SR-Array and the EW-Array. Thanks to the very
low write latency of the EW-Array, however, the
replica propagation burden on the EW-Array rep-
resents a much lighter load. The 2 x 9 x 2 EW-
Array remains a configuration of choice that offers
sub-5 ms response times for an arrival rate that is
as high as 9x the original, a rate that has rendered
replica propagation a costly luxury that the other
approaches cannot afford. The payoff of replication
is better read response time than that on the other
configurations.

In addition to eager-writing, two other factors
contribute to the EW-Array’s superior throughput.
One is the greater flexibility afforded by its SATF-
EW local disk scheduler. The other is the better
load-balancing opportunities afforded by the array-
wide scheduling heuristics as writes are scheduled to
disks with shorter queues and reads are serviced by
choosing among multiple candidate copies on differ-
ent disks.

6.5 Effect of Double

Writes

In the previous experiments, all but the first
replicas are propagated in the background. To raise
the degree of reliability, one may desire to have two
copies physically on disk before a write request is

Synchronous

o
L

Response Time (ms)
©

—o— SR R1S36(Striping)

—+—SR R2S18

—o—SR R3S12

—%— RAID10

P —e—EW M1S22D1.6

—a— EW M2S9D2

—a— EW M3S6D2

0 T T T T T T T T T T T T T T i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trace Speedup

Figure 11: Comparison of TPC-C throughput on alternative
disk array configurations as we vary the I/0 rate. The total
number of disks is a constant (36). The size of the delayed
write buffer is 10,000 blocks.

15 | —C—RAID 10 Sync P " r
—2— RAID 10 Delay
—X— Distort Mirror
12.5 | ——EW-Array Sync
TI)\ —&— EW-Array Delay
Ew
g J:/ / /é
=75
=
& n/n/
c 54
o
o
(7]
O 2.5
o
0 T T

1 2 3 4 5 6 7 8 9 10 11
Trace Speedup

Figure 12: Effect on TPC-C throughput as we write to two
disks synchronously. The total number of disks is a constant
(86). Labels that include the word “Delay” denote experi-
ments that propagate all but the first replicas in the back-
ground. Labels that include the word “Sync” denote experi-
ments that write two replicas synchronously

14

-
N

oy
o

©
L

o

Response Time (ms)

—o— SR R1S36(Striping)

—»—SRR2S18

—o—SRR3S12

—*—RAID10

24 —e—EW M1S22D1.6

—a—EW M2S9D2
—=—EW M3S6D2

I
L

1 2 3 4 5 6 7 11 12 13 14 15
Trace Speedup

Figure 13: Effect on TPC-C throughput as we increase the
size of the delayed write buffer to 100,000 blocks. The total
number of disks is a constant (36).

allowed to return. We now study the effect of in-
creasing foreground writes on three alternative con-
figurations: a RAID-10, a Doubly Distorted Mirror
(DDM), and a 2 x 9 x 2 EW-Array. The DDM per-
forms two synchronous eager-writes and moves one
of the two copies to a fixed location in the back-
ground. We note that the system that we have called
the DDM is in fact a highly optimized implementa-
tion that is based on the MimdRAID disk location
prediction mechanism and the eager-writing schedul-
ing algorithms, features not detailed in the words of
“write anywhere” in the simple original simulation-
based study [19]. (We do not consider SR-Arrays
because the pure form of an SR-Array involves only
intra-disk replication which does not increase the re-
liability of the system.)

As expected, extra foreground write slows down
both the RAID-10 and the EW-Array. However, for
a given request arrival rate that does not cause per-
formance collapse, the response time degradation ex-
perienced by the RAID-10 is more pronounced than
that seen on the EW-Array. This is because the
cost of an extra update-in-place foreground write is
relatively greater than that of an extra foreground
eager-write. The performance of the DDM lies in
between , because the two foreground writes en-
joy some performance benefit of eager-writing but
the extra update-in-place write becomes costly, es-
pecially when the request arrival rate is high. One of
the purposes of this third update-in-place write is to
restore data locality that might have been destroyed
by the eager-writes. This is useful for workloads that
exhibit both greater burstiness and locality. Unfor-
tunately, the TPC-C workload is such that it does
not benefit from this data reorganization.

6.6 Effect of the Delayed Write Buffer
Size

We have seen that replica propagation imposes
a significant cost on update-in-place-based disk ar-
rays such as RAID-10 and SR-Array. One possible
way of alleviating this burden to make these alter-
natives more attractive is to use a larger delayed
write buffer. A larger delayed write buffer is useful
in two ways. One is that it may allow larger batches
of replica propagations to be scheduled and these
larger batches can utilize the disk bandwidth more
efficiently. The second source of efficiency is that a
larger buffer can potentially more effectively smooth
the burstiness so that replica propagation does not
have to occur in the foreground due to lack of buffer
space.

Figure 13 shows the results of repeating the
throughput experiments shown in Figure 11 after

—o— SR-Array
—%— Striped mirror
—&— EW-Array

o=l

[R3]
b | Cello Disk 2 | |EL| | Cello Disk 6 |
0 T T T T
1 2 3 4 5 2 3 4 5 6
Number of Disks Number of Disks
(a) (b)

Figure 14: Comparison of the performance of different ar-
ray alternatives under two file system workloads: (a) Cello
disk 2, housing “/users”, and (b) Cello disk 6, housing
“/var/spool/news”. Each data point represents the perfor-
mance of the best configuration based on a given array al-
ternative. The rectangular labels show the degree of mirror-
ing (or replication) used in the configurations. The unlabeled
configurations in the second figure have identical degrees of
mirroring (or replication) as their counterparts in the first

figure.

we have increased the delayed write buffer from
10,000 blocks to 100,000 blocks. As expected, the
curves representing array configurations that require
data replication have all shifted to the right, signal-
ing higher maximum sustainable throughput rates.
However, even with this aggressive delayed write
buffering, the high cost of update-in-place is still
apparent and the advantage of eager-writing is still
significant.

6.7 Results of File System Workloads

Although the target workload of an EW-Array
is TPCC-like transaction processing applications, it
is natural to ask whether it works for other work-
loads. Figure 14 shows the performance results of
two file system workloads that are selected from the
HP “Cello” trace. Cello is a two month trace of a file
server supporting simulations, compilations, editing,
and reading mail and news. We use the traces of two
disks during the week from 5/30/92 to 6/6/92. Disk
2 houses user home directories and disk 6 houses a
news archive. To compensate for the relatively lower
I/O rates of the trace, we speed up the trace playing
rate by a factor of four.

The difference between Figure 14(a) and (b)
is due to the different locality and the different
read/write ratio of the two workloads. Cello disk
2 exhibits a higher degree of locality: the average
seek distance on this disk is about half of that of
disk 6. Cello disk 6, on the other hand, experiences
a higher write ratio: 63.2% on disk 6 versus 45.2%
on disk 2. Therefore, an SR-Array performs best for

disk 2 by preserving locality and balancing the re-
duction of seek and rotational delays; while an EW-
Array excels for disk 6 by aggressively optimizing
write latency.

7 Related Work

This paper combines four elements: (1) eager-
writing, (2) data replication for performance im-
provement, (3) systematic configuring a disk array
to trade capacity for performance, and (4) intel-
ligent scheduling of queued disk requests. While
each of these techniques can individually improve
I/0O performance, it is the integration and interac-
tion of these techniques that allow one to economi-
cally achieve scalable performance gain on TPC-C-
like transaction processing workloads. We briefly
describe some related work in each of those areas.

The eager-writing technique dates back to the
IBM IMS Write Ahead Data Set (WADS) system
which writes write-ahead log entries in an eager-
writing fashion on drums [7]. Hagmann employs
eager-writing to improve logging performance on
disks [10]. A similar technique is used in the Trail
system [14]. These systems require the log entries to
be rewritten to fixed locations. Mime [4], the exten-
sion of Loge [6], integrates eager-writing into the disk
controller and it is not necessary to rewrite the data
created by eager-writing. The Virtual Logging Disk
and the Virtual Logging File Systems eliminate the
reliance on NVRAM for maintaining the logical-to-
physical address mapping and further explore the re-
lationship between eager-writing and log-structured
file systems [28]. All of these systems work on indi-
vidual disks.

A more common approach to improving small
write performance is to buffer data in NVRAM
and periodically flush the full buffer to disk. The
NVRAM data buffer provides two benefits: effi-
cient scheduling of the buffered writes, and potential
overwriting of data in the buffer before it reaches
disk. For many transaction processing applications,
poor locality tends to result in few overwrites in
the buffer, and lack of idle time makes it difficult
to mask the time consumed by buffer flushing. It
is also difficult to build a large, reliable and inex-
pensive NVRAM data buffer. On the other hand,
an inexpensive reliable small NVRAM buffer, as the
one employed for the mapping information in the
EW-Array, is quite feasible.

The systems that use the NVRAM data buffer
differ in the way they flush the buffer to disk. The
conventional approach is to flush data to an update-
in-place disk. In the steady state, the throughput of

such a system is limited by the average head move-
ment distance between consecutive disk writes. An
alternative to flushing to an update-in-place disk is
to flush the buffered data in a log-structured man-
ner [1, 21]. The disadvantage of such a system
is its high cost of disk garbage collection, which
is again exacerbated by the poor locality and the
lack of idle time in transaction processing work-
loads [22, 24]. Some systems combine the use of
a log-structured “caching disk” with an update-in-
place data disk [12, 13], and they are not immune
to the problems associated with each of these tech-
niques, especially when faced with I/O access pat-
terns such as those seen in TPC-C.

Several systems are designed to address the small
write performance problem in disk arrays. The Dou-
bly Distorted Mirror (DDM) [19] is closest in spirit
to the EW-Array. The two studies have different em-
phasis, though. First, the emphasis of the EW-Array
study is to explore how to balance the excess capac-
ity devoted to eager-writing, mirroring, and strip-
ing, and how to perform disk request scheduling in
the presence of eager-writes. Second, the EW-Array
employs pure eager-writing without the background
movement of data to fixed locations. While this is
more suitable for TP C-C-like workloads, other appli-
cations may benefit from a data reorganizer. Third,
the EW-Array study provides a real implementation.

While the DDM and the EW-Array are based
on mirrored organizations, the techniques that may
speed up small writes on individual disks may be
applied to parity updates in a RAID-5. Floating
parity employs eager-writing to speed up parity up-
dates [18]. Parity Logging employs an NVRAM and
a logging disk to accumulate a large amount of par-
ity updates that can be used to recompute the parity
using more efficient large I/Os [25]. The amount of
performance improvement experienced by read re-
quests in a RAID-5 is similar to that on a striped
system, and as we have seen in the experimental re-
sults, a striped system may not be as effective as a
mirrored system, particularly if the replica propaga-
tion cost of a mirrored system is reduced by eager
writing.

Instead of forcing one to choose between a RAID-
10 and a RAID-5, the AutoRAID combines both so
that the former acts as a cache of the latter [29]. The
RAID-5 lower level is log-structured and it employs
a hole-plugging technique for efficiently garbage-
collecting a nearly full disk: live data is “plugged”
into free space of other segments. This is similar
to eager-writing, except that eager-writing does not
require garbage collection.

An SR-Array combines striping with rotational

data replication to reduce both seek and rotational
delay [30]. A mirrored system may enjoy some sim-
ilar benefits [2, 5]. Both approaches allow one to
trade capacity for better performance. The diffi-
culty in both cases is the replica propagation cost.
The relative sizing of the two levels of storage in
AutoRAID is a different way of trading capacity for
performance. In fact, for locality-rich workloads, it
is possible to employ an SR-Array or an EW-Array
as an upper-level disk cache of an AutoRAID-like
system.

Seltzer and Jacobson have independently exam-
ined disk scheduling algorithms that take rotational
delay into consideration [16, 23]. Yu et al. have
extended these algorithms to account for rotational
replicas [30]. Polyzois et al. have proposed a delayed
write scheduling technique for a mirrored system to
maximize throughput [20]. Lumb et al. have ex-
ploited the use of “free bandwidth” for background
I/0O activities [17]. The EW-Array scheduling algo-
rithms have incorporated elements of these previous
approaches.

Finally, the goal of the MimdRAID project
is to study how to configure a disk array sys-
tem given certain cost/performance specifications.
The “attribute-managed storage” project at HP [8]
shares this goal.

8 Conclusion

Due to their poor locality, high update rates, lack
of idle time, and high reliability requirements, trans-
action processing application such as those exempli-
fied by TPC-C are among the most demanding I/0
applications. In this paper, we have explored how
to integrate eager-writing, mirroring, and striping
in a eager-writing disk array design that effectively
caters to the need of these applications. Mirror-
ing and striping improves read performance, while
eager-writing improves write performance and re-
duces the cost of data replication. The combination
provides a high degree of reliability without impos-
ing excessive performance penalty. To fully realize
the potential of an EW-Array, we must address two
issues. One is the careful balance of extra disk capac-
ity that is devoted to each of the three dimensions:
free space dilution for eager-writing, the degree of
mirroring, and the degree of striping. The second
is the intelligent scheduling of the queued requests
so that the flexibility afforded by the high degree of
location independence associated with eager-writing
is fully exploited. Simulation and implementation
results indicate that the prototype EW-Array can
deliver latency and throughput results unmatched

by conventional approaches for an important class
of transaction processing applications.

Acknowledgement

We thank Ruoming Pang for proposing the
incremental metadata checkpointing algorithm,
Fengzhou Zheng for tirelessly running many of the
experiments, Sumeet Sobti for editing an earlier
draft, Walter Burkhard for careful shepherding of
the paper, and the FAST PC members and review-
ers for their excellent suggestions.

References

[1] BAKER, M., Asawmi, S., DEPRIT, E., OUSTERHOUT,
J., AND SELTZER, M. Non-Volatile Memory for
Fast, Reliable File Systems. In Proc. of the Fifth
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS-V) (Sept. 1992), pp. 10-22.

[2] BitTON, D., AND GRAY, J. Disk Shadowing. In
Proc. of the Fourteenth International Conference on
Very Large Data Bases (Los Angeles, CA, August
1988), Morgan Kaufmann, pp. 331-338.

[3] BORR, A. Transaction Monitoring in Encompass:
Reliable Distributed Transaction Processing. In
Proc. of the Seventh International Conference on
Very Large Data Bases (Cannes, France, Septem-
ber 1981), IEEE Press, pp. 155-165.

[4] CHao, C., ENcLISH, R., JACOBsON, D.,
STEPANOV, A., AND WILKES, J. Mime: a High
Performance Parallel Storage Device with Strong
Recovery Guarantees. Tech. Rep. HPL-CSP-92-9
rev 1, Hewlett-Packard Company, Palo Alto, CA,
March 1992.

[5] DisHON, Y., AND Lul, T. S. Disk Dual Copy Meth-
ods and Their Performance. In Proc. of Fighteenth
International Symposium on Fault-Tolerant Com-
puting (FTCS-18) (Tokyo, Japan, 1988), IEEE CS
Press, pp. 314-318.

[6] ENGLISH, R. M., AND STEPANOV, A. A. Loge:
a Self-Organizing Disk Controller. In Proc. of the
1992 Winter USENIX (January 1992).

[7] GAawLICK, D., GRAY, J., LIMURA, W., AND OBER-
MARCK, R. Method and Apparatus for Logging
Journal Data Using a Log Write Ahead Data Set.
U.S. Patent 4507751 issued to IBM, March 1985.

[8] GoLpING, R., SHRIVER, E., SULLIVAN, T., AND
WILKES, J. Attribute-managed Storage. In Work-
shop on Modeling and Specification of I/O (San An-
tonio, TX, October 1995).

[9] GRowcHOWSKI, E. Emerging Trends in Data Stor-
age on Magnetic Hard Disk Drives. In Datatech
(September 1998), ICG Publishing, pp. 11-16.

(10]

(14]

(15]

(16]

(18]

(19]

20]

(21]

(22]

HAGMANN, R., AND GARCIA-MoOLINA, H. Imple-
menting Long Lived Transactions Using Log Record
Forwarding. Tech. Rep. CSL-91-2, Xerox Corpora-
tion, Palo Alto, CA, February 1991.

Hsiao, H.-1., AND DEWITT, D. J. Chained Declus-
tering: A New Availability Strategy for Multipro-
cessor Database Machines. In Proc. of the 1990
IEEFE International Conference on Data Engineer-
ing (February 1990), pp. 456—465.

Hu, Y., AND YANG, Q. DCD—Disk Caching Disk:
A New Approach for Boosting I/O Performance.
In Proc. of the 23rd International Symposium on
Computer Architecture (1995), pp. 169-178.

Hu, Y., YANG, Q., AND NIGHTINCGALE, T. RAPID-
Cache—A Reliable and Inexpensive Write Cache for
Disk I/O Systems. In Proc. of the Fifth Interna-
tional Symposium on High Performance Computer
Architecture (HPCA-5) (Orlando, Florida, January
1999).

Huang, L., anpD Cuived, T. Trail: Write
Optimized Disk Storage System. http://-
www.ecsl.cs.sunysb.edu/trail.html.

INTEL SERVER ARCHITECTURE LAB. Tome-

ter: The I/O Performance Analysis Tool for
Servers. http://developer.intel.com/design /servers-
/devtools/iometer.

JACOBSON, D. M., AND WILKES, J. Disk Schedul-
ing Algorithms Based on Rotational Position. Tech.
Rep. HPL-CSP-91-7revl, Hewlett-Packard Com-
pany, Palo Alto, CA, February 1991.

LumB, C., SCHINDLER, J., GANGER, G. R.,
RieDEL, E., AND NAGLE, D. F. Towards Higher
Disk Head Utilization: Extracting “Free” Band-
width from Busy Disk Drives. In Proc. of the Fourth
Symposium on Operating Systems Design and Im-
plementation (San Diego, CA, October 2000).

MENON, J., RocHE, J., AND KassoN, J. Float-
ing parity and data disk arrays. Journal of Par-
allel and Distributed Computing 17, 1 and 2 (Jan-
uary/February 1993), 129-139.

OrJ1, C. U., AND SOLWORTH, J. A. Doubly Dis-
torted Mirrors. In Proc. of ACM SIGMOD Confer-
ence (May 1993), pp. 307-316.

Povyzois, C., BHIDE, A., AND Dias, D. Disk Mir-
roring with Alternating Deferred Updates. In Proc.
of the Nineteenth International Conference on Very
Large Data Bases (Dublin, Ireland, 1993), Morgan
Kaufmann, pp. 604-617.

RoseENBLUM, M., AND OUSTERHOUT, J. The De-
sign and Implementation of a Log-Structured File
System. In Proc. of the 18th Symposium on Oper-
ating Systems Principles (Oct. 1991), pp. 1-15.

SELTZER, M., Bostic, K., McKusick, M., AND
STAELIN, C. An Implementation of a Log-
Structured File System for UNIX. In Proc. of the
1998 Winter USENIX (Jan. 1993), pp. 307-326.

[23]

24]

[25]

[26]

[27]

28]

[29]

[30]

SELTZER, M., CHEN, P., AND OUSTERHOUT, J.
Disk Scheduling Revisited. In Proc. of the 1990
Winter USENIX (Washington, D.C., Jan. 1990),
Usenix Association, pp. 313-323.

SELTZER, M., SmitH, K., BALAKRISHNAN, H.,
CHANG, J., MCMAINS, S., AND PADMANABHAN, V.
File System Logging Versus Clustering: A Perfor-
mance Comparison. In Proc. of the 1995 Winter
USENIX (Jan. 1995).

STODOLSKY, D., HoOLLAND, M., AND GIBSON,
G. A. Parity Logging: Overcoming the Small Write
Problem in Redundant Disk Arrays. In Proc. of the
21st International Symposium on Computer Archi-
tecture (1993), pp. 64-75.

TERADATA CORP. DBC/1012 Database Computer
System Manual Release 2.0, November 1985.

TRANSACTION PROCESSING PERFORMANCE COUN-
CIL. TPC Benchmark C Standard Specification. Wa-
terside Associates, Fremont, CA, August 1996.

WaNG, R. Y., ANDERSON, T. E.; AND PATTERSON,
D. A. Virtual Log Based File Systems for a Pro-
grammable Disk. In Proc. of the Third Symposium
on Operating Systems Design and Implementation
(New Orleans, LA, February 1999), Operating Sys-
tems Review, Special Issue, pp. 29-43.

WILKES, J., GOLDING, R., STAELIN, C., AND SUL-
LIVAN, T. The HP AutoRAID Hierarchical Storage
System. ACM Transactions on Computer Systems
14, 1 (February 1996).

Yu, X., GuMm, B., CHEN, Y., WanG, R. Y., Li,
K., KRISHNAMURTHY, A., AND ANDERSON, T. E.
Trading Capacity for Performance in a Disk Array.
In Proc. of the Fourth Symposium on Operating Sys-
tems Design and Implementation (San Diego, CA,
October 2000).

