
Secure	and	Efficient	Application	
Monitoring	and	Replication

Stijn	Volckaert,	Bart	Coppens,	Alexios Voulimeneas,	Andrei	Homescu,	
Per	Larsen,	Bjorn	De	Sutter,	Michael	Franz

immunant

2

Possible	Solutions

• Type-Safe	Languages	(e.g.	Rust)

3

• Type-Safe	Languages	(e.g.	Rust)

• Mitigations:
• Integrity-Based	(e.g.	CFI)
• Randomization-Based	(e.g.	ASLR)
• Integrity-Based	(e.g.	CFI)
• Randomization-Based	(e.g.	ASLR)

• Mitigations:

• Multi-Variant	Execution	Environments	(MVEEs)

Input

Stack

Program

Stack

Program

4

Memory	Corruption	Attacks

0:		void	foo()	{
1:						char buf[256];
2:						gets(buf);
3:						printf(“%s”,	buf);
4:		}

0: int main(int argc,	char**	argv)	{
1:						foo();
2: return 0;
3:		}	

Stack

Program

buf

return	
addressmain	+	2execve

5

Stack

Program

main	+	2

0x7f00beef

0x7f00dead

0x7ffffffff

Stack

Program

main	+	2

0x7f00beef

0x7f00dead

0x7ffffffff

6

Multi-Variant	Execution	Environments	(MVEEs)
Program

Program

Monitor

Kernel

t t

In	a	nutshell:

• Run	multiple	program	variants	in	parallel

• Variant	system	calls	executed	in	lock-step

• Suspend	them	at	every	system	call

• Compare	system	call	numbers/arguments

• Master/Slave	replication	for	I/O

brk brk

7

write write

Performance	Considerations

Stack

Program

Stack

Program

Monitor

Kernel

Programs	can	execute	at	native	speed
(assuming	you	have	enough	idle	CPU	
cores	and	memory	bandwidth)

BUT	system	call	interception	is	SLOW!

brk brk

8

t t

write write

Alternative	Design
Program

Program

Kernel

9

Monitor
Monitor

write

write

Efficient Monitoring:

• Load	monitor	into	variants’	address	spaces

• Replicate	results	through	a	shared	buffer

• Let	master	run	ahead	of	slaves

BUT:

• Malicious	syscalls	can	circumvent	monitor

• Shared	buffer	data	can	be	tampered	with

ReMon

10

Program
Program

Kernel

Cross-Process	Monitor

Syscall	Broker

opengetpid

Split-Monitor	Design:

• Handle	security-sensitive	system	calls	in	
Cross-Process	Monitor	(CP-MON)

• Handle	non-sensitive	system	calls	in	
In-Process	Monitor	(IP-MON)

• Configurable	relaxation	policies

In-Process	
Monitor

In-Process	
Monitor

Relaxation	Policies

• 3	different	policies:
• Syscalls unconditionally	handled	by	IP-MON	(e.g.	sys_getpid)

• Syscalls conditionally	handled	by	IP-MON	(e.g.	sys_write for	non-socket	files)

• Syscalls probabilistically	handled	by	IP-MON	(not	implemented)

11

Initializing	the	In-Process	Monitor

12

Program
Program

Kernel

CP-MON

Syscall	Broker

prctl(PR_REGISTER_IPMON,
<list	of	system	calls>)

Registering	IP-MON:

• Call	sys_prctl	with	list	of	
non-security-sensitive	system	calls	as
argument

• This	sys_prctl	call	will	ALWAYS be	reported
to	CP-MON

• If	the	call	succeeds,	all	of	the	syscalls	in	the
list	will	be	forwarded	to	IP-MON	
from	that	point	onward

IP-MON

IP-MON

ReMon Components

13

System	Call	Broker:

• Intercept	system	calls	as	they	enter	kernel

• Forward	them	to	appropriate	monitor	
based	on	active	relaxation	policy

• Authenticate	system	calls	when	resumed	
by	monitor

Program
Program

Kernel

CP-MON

Syscall	Broker

opengetpid

IP-MON

IP-MON

ReMon Components

In-Process	Monitor:

• Authorized	to	execute	forwarded	calls	
w/o	intervention	by	cross-process	monitor

• Replicates	system	call	results	through	
shared	buffer

Program
Program

Kernel

CP-MON

Syscall	Broker

getpid

IP-MON

IP-MON

14

ReMon Components

15

Cross-Process	Monitor:

• Standard	ptrace-basedmonitor

• Completely	isolated	from	variants

Program
Program

Kernel

CP-MON

Syscall	Broker

open

IP-MON

IP-MON

In-Process	Monitor	Security

16

No	abuse	of	monitor	privileges:

• Monitor	cannot	execute	system	calls	that
did	not	pass	through	the	broker	first

• Broker	generates	authentication	key	
and	loads	it	into	register	when	forwarding	
call	to	monitor

• Key	must	be	intact	to	finish	execution
of	forwarded	call

Program
Program

Kernel

CP-MON

Syscall	Broker

getpid

IP-MON

IP-MON

In-Process	Monitor	Security

17

No	tampering	with	monitor	data:

• Locations	of	monitor	and	shared	buffer	are
only	known	to	broker

• Pointers	to	monitor	and	buffer	are	never
visible	in	user	space

Program
Program

Kernel

CP-MON

Syscall	Broker

IP-MON

IP-MON

getpid

In-Process	Monitor	Security

18

Leak	Prevention:

• Sensitive	values	(e.g.	pointers,	
authorization	key)	only	stored	in	registers
and	never	leaked	or	spilled

• Monitor	has	no	indirect	branches	
=>	control	flow	cannot	be	diverted	
to	malicious	code

Program
Program

Kernel

CP-MON

Syscall	Broker

IP-MON

IP-MON

getpid

Performance

• Dual	Intel	Xeon	E5-2660	– 20Mb	Cache	each
• 64Gb	ECC	DDR3	RAM
• Linux	3.13.11
• Server	Benchmarks:
• Local	loopback
• Gbit Link	– 2ms
• Gbit Link	– 5ms

• 2	variants	of	the	protected	program
• 4	worker	threads	for	multi-threaded	benchmark	suites	
(PARSEC/SPLASH-2x)

19

Performance

20

Benchmark CP-MON	only ReMon
SPEC	CPU	2006 6.37% 3%
PARSEC	2.1 22% 11%
SPLASH-2x 29% 10%
Server	Benchmarks up	to	1249% <3.5%

Conclusions

• Existing	Security-Oriented	MVEEs:
• Secure	but	SLOW

• Existing	Reliability-Oriented	MVEEs:
• Fast	but	INSECURE

• ReMon:
• FAST and	SECURE

https://github.com/stijn-volckaert/ReMon

21

