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Possible	Solutions

• Type-Safe	Languages	(e.g.	Rust)
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• Type-Safe	Languages	(e.g.	Rust)

• Mitigations:
• Integrity-Based	(e.g.	CFI)
• Randomization-Based	(e.g.	ASLR)
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• Mitigations:

• Multi-Variant	Execution	Environments	(MVEEs)
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Memory	Corruption	Attacks

0:		void	foo()	{
1:						char buf[256];
2:						gets(buf);
3:						printf(“%s”,	buf);
4:		}

0: int main(int argc,	char**	argv)	{
1:						foo();
2: return 0;
3:		}	
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Multi-Variant	Execution	Environments	(MVEEs)
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In	a	nutshell:

• Run	multiple	program	variants	in	parallel

• Variant	system	calls	executed	in	lock-step

• Suspend	them	at	every	system	call

• Compare	system	call	numbers/arguments

• Master/Slave	replication	for	I/O

brk brk
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Performance	Considerations
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Programs	can	execute	at	native	speed
(assuming	you	have	enough	idle	CPU	
cores	and	memory	bandwidth)

BUT	system	call	interception	is	SLOW!

brk brk
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Alternative	Design
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Efficient Monitoring:

• Load	monitor	into	variants’	address	spaces

• Replicate	results	through	a	shared	buffer

• Let	master	run	ahead	of	slaves

BUT:

• Malicious	syscalls	can	circumvent	monitor

• Shared	buffer	data	can	be	tampered	with



ReMon

10

Program
Program

Kernel

Cross-Process	Monitor

Syscall	Broker

opengetpid

Split-Monitor	Design:

• Handle	security-sensitive	system	calls	in	
Cross-Process	Monitor	(CP-MON)

• Handle	non-sensitive	system	calls	in	
In-Process	Monitor	(IP-MON)

• Configurable	relaxation	policies

In-Process	
Monitor

In-Process	
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Relaxation	Policies

• 3	different	policies:
• Syscalls unconditionally	handled	by	IP-MON	(e.g.	sys_getpid)

• Syscalls conditionally	handled	by	IP-MON	(e.g.	sys_write for	non-socket	files)

• Syscalls probabilistically	handled	by	IP-MON	(not	implemented)
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Initializing	the	In-Process	Monitor
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prctl(PR_REGISTER_IPMON,
<list	of	system	calls>)

Registering	IP-MON:

• Call	sys_prctl	with	list	of	
non-security-sensitive	system	calls	as
argument

• This	sys_prctl	call	will	ALWAYS be	reported
to	CP-MON

• If	the	call	succeeds,	all	of	the	syscalls	in	the
list	will	be	forwarded	to	IP-MON	
from	that	point	onward

IP-MON
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ReMon Components
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System	Call	Broker:

• Intercept	system	calls	as	they	enter	kernel

• Forward	them	to	appropriate	monitor	
based	on	active	relaxation	policy

• Authenticate	system	calls	when	resumed	
by	monitor
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ReMon Components

In-Process	Monitor:

• Authorized	to	execute	forwarded	calls	
w/o	intervention	by	cross-process	monitor

• Replicates	system	call	results	through	
shared	buffer
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ReMon Components

15

Cross-Process	Monitor:

• Standard	ptrace-basedmonitor

• Completely	isolated	from	variants
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In-Process	Monitor	Security
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No	abuse	of	monitor	privileges:

• Monitor	cannot	execute	system	calls	that
did	not	pass	through	the	broker	first

• Broker	generates	authentication	key	
and	loads	it	into	register	when	forwarding	
call	to	monitor

• Key	must	be	intact	to	finish	execution
of	forwarded	call
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In-Process	Monitor	Security
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No	tampering	with	monitor	data:

• Locations	of	monitor	and	shared	buffer	are
only	known	to	broker

• Pointers	to	monitor	and	buffer	are	never
visible	in	user	space
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In-Process	Monitor	Security
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Leak	Prevention:

• Sensitive	values	(e.g.	pointers,	
authorization	key)	only	stored	in	registers
and	never	leaked	or	spilled

• Monitor	has	no	indirect	branches	
=>	control	flow	cannot	be	diverted	
to	malicious	code
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Performance

• Dual	Intel	Xeon	E5-2660	– 20Mb	Cache	each
• 64Gb	ECC	DDR3	RAM
• Linux	3.13.11
• Server	Benchmarks:
• Local	loopback
• Gbit Link	– 2ms
• Gbit Link	– 5ms

• 2	variants	of	the	protected	program
• 4	worker	threads	for	multi-threaded	benchmark	suites	
(PARSEC/SPLASH-2x)
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Performance
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Benchmark CP-MON	only ReMon
SPEC	CPU	2006 6.37% 3%
PARSEC	2.1 22% 11%
SPLASH-2x 29% 10%
Server	Benchmarks up	to	1249% <3.5%



Conclusions

• Existing	Security-Oriented	MVEEs:
• Secure	but	SLOW

• Existing	Reliability-Oriented	MVEEs:
• Fast	but	INSECURE

• ReMon:
• FAST and	SECURE

https://github.com/stijn-volckaert/ReMon
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