
Quiver: An informed storage
cache for Deep Learning

Abhishek Vijaya Kumar, Muthian Sivathanu

Microsoft Research India

Deep Learning: Important systems workload

• Already powers many real-world applications
• Voice assistants

• Web search

• Compute intensive – expensive hardware e.g. GPUs

Deep Learning: Important systems workload

• Already powers many real-world applications
• Voice assistants

• Web search

• Compute intensive – expensive hardware e.g. GPUs

Storage

Deep Learning: Important systems workload

• Already powers many real-world applications
• Voice assistants

• Web search

• Compute intensive – expensive hardware e.g. GPUs

Storage

Same setting
on Cloud

Deep Learning: Important systems workload

• Already powers many real-world applications
• Voice assistants

• Web search

• Compute intensive – expensive hardware e.g. GPUs

Storage

Same setting
on Cloud

Deep Learning: Important systems workload

• Already powers many real-world applications
• Voice assistants

• Web search

• Compute intensive – expensive hardware e.g. GPUs

Storage

1V100 = 140
tflops/s

Same setting
on Cloud

Example workload

• Resnet50 is a popular vision model

• Process 10,500 images/sec on 8 Nvidia V100s

• Goal: Keep GPUs busy and utilize them efficiently

Remote store
with several TBs
of training data

2GB /s

Example workload

• Resnet50 is a popular vision model

• Process 10,500 images/sec on 8 Nvidia V100s

• Goal: Keep GPUs busy and utilize them efficiently

Remote store
with several TBs
of training data

JOB K

.

.

.

JOB 1

Hyper-parameter
tuning

2GB /s * K

Example workload

• Resnet50 is a popular vision model

• Process 10,500 images/sec on 8 Nvidia V100s

• Goal: Keep GPUs busy and utilize them efficiently

Remote store
with several TBs
of training data

JOB K

.

.

.

JOB 1

Hyper-parameter
tuning

Load on
Storage

Load on
Network

2GB /s * K

Example workload

• Resnet50 is a popular vision model

• Process 10,500 images/sec on 8 Nvidia V100s

• Goal: Keep GPUs busy and utilize them efficiently

Remote store
with several TBs
of training data

JOB K

.

.

.

JOB 1

• Cheap Preemptible
VMs => Job Migration

• Large datasets

Hyper-parameter
tuning

Load on
Storage

Load on
Network

2GB /s * K

Quiver: Key ideas

• Domain specific intelligence at caching layer
• Substitutability – Use existing contents of the cache to avoid thrashing

• Hash-based content addressing for security

• Co-designed with deep-learning framework (PyTorch)

• Dynamically manages cache allocation

• Improve cluster throughput up-to 2.3x

Structure

• Introduction & Motivation

• Background

• Design

• Implementation

• Evaluation

Background: Deep Learning

• Learn a model to represent training data

• Iterate over random subsets of input data – Mini batch

• Perform Gradient Descent (SGD) on each mini-batch

• Process the entire dataset in random order – Epoch

A cache for DLT jobs

• DLT datasets are accessed multiple times
• Within same job: Multiple epochs read the entire dataset

• Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)

• Good fit for caching

A cache for DLT jobs

• DLT datasets are accessed multiple times
• Within same job: Multiple epochs read the entire dataset

• Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)

• Good fit for caching

• Challenges
• Random access within epoch => Partial caching can cause thrashing (e.g. LRU)

• Job Heterogeneity => Not all jobs benefit the same from caching

• Secure inter-job data access

A cache for DLT jobs

• DLT datasets are accessed multiple times
• Within same job: Multiple epochs read the entire dataset
• Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)

• Good fit for caching

• Challenges
• Random access within epoch => Partial caching can cause thrashing (e.g. LRU)
• Job Heterogeneity => Not all jobs benefit the same from caching
• Secure inter-job data access

• Quiver: Use domain intelligence to address these challenges

#1: Thrashing-proof partial caching

• Two I/O properties
• Each input touched once in an epoch

• Every mini-batch needs to be randomly sampled

• Substitutable hits
• I/O is substitutable

• Mini-batch samples order does not matter, as long as it is random

#1: Thrashing-proof partial caching

• Substitutability while sampling

• Looks up more than the number of indices and returns whatever is in
the cache (substitutable hits)

#1: Thrashing-proof partial caching

• Substitutability while sampling

• Looks up more than the number of indices and returns whatever is in
the cache (substitutable hits)

Default Sampling
(1 hit, 2 misses)

#1: Thrashing-proof partial caching

• Substitutability while sampling

• Looks up more than the number of indices and returns whatever is in
the cache (substitutable hits)

Quiver Sampling
(3 hits, 6 misses)

Default Sampling
(1 hit, 2 misses)

#2: Job heterogeneity and caching

• Benefit-aware caching to handle Job heterogeneity
• Time per mini-batch is an application-specific metric for performance

• Allows cheap profiling to measure benefits from cache

• Predictability
• Measure time per minibatch with different caching modes

• Given total space budget, the manager allocates cache per dataset

#3: Secure Inter-Job Data access

• Multiple jobs and users share cache

• Data needs reuse/sharing while retaining isolation

• Each file is addressed by its hash instead of its name

#3: Secure Inter-Job Data access

• Multiple jobs and users share cache

• Data needs reuse/sharing while retaining isolation

• Each file is addressed by its hash instead of its name

#3: Secure Inter-Job Data access

• Multiple jobs and users share cache

• Data needs reuse/sharing while retaining isolation

• Each file is addressed by its hash instead of its name

User1/imagenet/file.jpg

User2/imgnt/file.jpg

#3: Secure Inter-Job Data access

• Multiple jobs and users share cache

• Data needs reuse/sharing while retaining isolation

• Each file is addressed by its hash instead of its name

User1/imagenet/file.jpg

User2/imgnt/file.jpg

hash(file.jpg)

hash(file.jpg)

Structure

• Introduction & Motivation

• Background

• Design

• Implementation

• Evaluation

Architecture of Quiver

• Quiver cache server

• Quiver cache client co-
designed with PyTorch

• Quiver cache manager

• Quiver instance types
1. Entire cluster

2. Each rack

PyTorch
Quiver Client

Quiver
Server

Hash
Lookup /

Insert

Cache Miss

Quiver Cache Manager

Co-ordinated
Eviction

Mini-batch time
probing for Benefit
aware caching

Set caching
policy for
datasets

Architecture of Quiver

• Quiver cache server

• Quiver cache client co-
designed with PyTorch

• Quiver cache manager

• Quiver instance types
1. Entire cluster

2. Each rack

PyTorch
Quiver Client

Quiver
Server

Hash
Lookup /

Insert

Cache Miss

Quiver Cache Manager

Co-ordinated
Eviction

Mini-batch time
probing for Benefit
aware caching

Set caching
policy for
datasets

PyTorch
Quiver Client

Quiver
Server

Hash
Lookup /

Insert

PyTorch
Quiver Client

Quiver
Server

Hash
Lookup /

Insert

Architecture of Quiver

• Quiver cache server

• Quiver cache client co-
designed with PyTorch

• Quiver cache manager

• Quiver instance types
1. Entire cluster

2. Each rack

PyTorch
Quiver Client

Quiver
Server

Hash
Lookup /

Insert

Cache Miss

Quiver Cache Manager

Co-ordinated
Eviction

Mini-batch time
probing for Benefit
aware caching

Set caching
policy for
datasets

PyTorch
Quiver Client

Quiver
Server

Hash
Lookup /

Insert

PyTorch
Quiver Client

Quiver
Server

Hash
Lookup /

Insert

VM Boundary Container Boundary

Cache Access

• Client is integrated with PyTorch data-layer
• Fetches files from remote on misses

• Populates the cache servers

• Works with hash-digest file

• Incorporates substitutable hits and co-operative miss handling

Hash digest and Partition

• Dataset is represented by a hash-digest

• Major components of an entry in the hash-file
• <content_hash: file_location>

• Key space is partitioned across servers

Hash digest and Partition

• Dataset is represented by a hash-digest

• Major components of an entry in the hash-file
• <content_hash: file_location>

• Key space is partitioned across servers

Cache server 1 Cache server 2

F1 F5F3F2 F4

Hash digest and Partition

• Dataset is represented by a hash-digest

• Major components of an entry in the hash-file
• <content_hash: file_location>

• Key space is partitioned across servers

Cache server 1 Cache server 2

F1 F5F3F2 F4

Co-operative miss handling

• Misses are sharded across jobs using same dataset.
• Sharding is implicit by randomizing indices

• Happens naturally in DLT access pattern

• Jobs benefit from other jobs as they progress

Co-operative miss handling

• Misses are sharded across jobs using same dataset.
• Sharding is implicit by randomizing indices

• Happens naturally in DLT access pattern

• Jobs benefit from other jobs as they progress

Co-operative miss handling

• Misses are sharded across jobs using same dataset.
• Sharding is implicit by randomizing indices

• Happens naturally in DLT access pattern

• Jobs benefit from other jobs as they progress

0

1

2

3

4

5

Co-operative miss handling

• Misses are sharded across jobs using same dataset.
• Sharding is implicit by randomizing indices

• Happens naturally in DLT access pattern

• Jobs benefit from other jobs as they progress

0

1

2

3

4

5

Co-ordinated eviction

• Dataset partition
• Digest file is partitioned into

given number of chunks

• Double buffering of chunks
• Chunks allow coordinated

access of cache

• Co-ordinated eviction
• Mark for eviction – no new refs

• Then evict

• Similar to UNIX unlink call

Double buffer of
a Cache server

J1 J2

Co-ordinated eviction

• Dataset partition
• Digest file is partitioned into

given number of chunks

• Double buffering of chunks
• Chunks allow coordinated

access of cache

• Co-ordinated eviction
• Mark for eviction – no new refs

• Then evict

• Similar to UNIX unlink call

C1
Double buffer of
a Cache server

J1 J2

Co-ordinated eviction

• Dataset partition
• Digest file is partitioned into

given number of chunks

• Double buffering of chunks
• Chunks allow coordinated

access of cache

• Co-ordinated eviction
• Mark for eviction – no new refs

• Then evict

• Similar to UNIX unlink call

C1
Double buffer of
a Cache server

J1 J2

Co-ordinated eviction

• Dataset partition
• Digest file is partitioned into

given number of chunks

• Double buffering of chunks
• Chunks allow coordinated

access of cache

• Co-ordinated eviction
• Mark for eviction – no new refs

• Then evict

• Similar to UNIX unlink call

C2 C1
Double buffer of
a Cache server

J1 J2

Co-ordinated eviction

• Dataset partition
• Digest file is partitioned into

given number of chunks

• Double buffering of chunks
• Chunks allow coordinated

access of cache

• Co-ordinated eviction
• Mark for eviction – no new refs

• Then evict

• Similar to UNIX unlink call

C2 C1
Double buffer of
a Cache server

J1 J2 J3

Co-ordinated eviction

• Dataset partition
• Digest file is partitioned into

given number of chunks

• Double buffering of chunks
• Chunks allow coordinated

access of cache

• Co-ordinated eviction
• Mark for eviction – no new refs

• Then evict

• Similar to UNIX unlink call

C2C3
Double buffer of
a Cache server

J1 J2 J3

Structure

• Introduction & Motivation

• Design

• Implementation & Evaluation

Implementation

• Cache client (900 LoC)
• Dataloader of PyTorch (v 1.1.0)

• Dataset of PyTorch

• Sampler of PyTorch

• Cache server (1200 LOC)
• A C++ key value store

• Cache manager
• A python program

Evaluation Setup

• Cluster (48 GPUs)
• 6 VMs with 4 NVIDIA P100 GPUs

• 6 VMs with 4 NVIDIA P40 GPUs

• Workloads
• Resnet50 on Imagenet dataset (154 GB)

• Inception_V3 on openimages dataset (531 GB)

• DeepSpeech2 on LibriSpeech dataset (90 GB)

Impact on accuracy

RESNET50 on Imagenet

Config Word Error Rate (WER)

Baseline Sampling 22.29

Quiver Sampling 22.32

DeepSpeech2 on LibriSpeech

Similar curves

Throughput increase because of quvier

Resnet50

Time for 7000 mini-batches (s)Workload

Resnet50 2505 646 (3.88x) 1064 (2.35x)
Baseline HIT CO-OP

Throughput increase because of quvier

Resnet50 InceptionV3 DeepSpeech2

Baseline Quiver (HIT) Quiver (CO-OP)
Resnet50 2505 646 (3.88x) 1064 (2.35x)
Inception 2874 1274 (2.26x) 1817 (1.58x)

DeepSpeech 1614 1234 (1.31x) 1265 (1.28x)

Time for 7000 mini-batches (s)Workload

Resnet50 2505 646 (3.88x) 1064 (2.35x)
Baseline HIT CO-OP

Co-ordinated eviction in action
(s

ec
)

Co-ordinated eviction in action

• 2 Chunks cached at a time

• New jobs start using 3rd chunk

(s
ec

)

Co-ordinated eviction in action

• 2 Chunks cached at a time

• New jobs start using 3rd chunk

(s
ec

)

Benefit aware caching

Benefit aware caching

• Mixed workload – 12 Different jobs
• Quiver preferentially allocates cache to different datasets
• Quiver yields sizeable benefits even with tiny cache (100G)
• Improvement in cluster throughput ranges between 1.6x to 2.3x

Summary

• Quiver is a domain-specific storage cache for DLT jobs

• Utilizes I/O behavior of deep learning training jobs
• Substitutable hits => New thrash-proof partial caching

• Predictability => Benefit-aware caching

• Improves cluster GPU utilization by reducing I/O wait time

• Implemented in PyTorch

