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• Resnet50 is a popular vision model

• Process 10,500 images/sec on 8 Nvidia V100s

• Goal: Keep GPUs busy and utilize them efficiently

Remote store 
with several TBs 
of training data

JOB K
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JOB 1

• Cheap Preemptible 
VMs => Job Migration

• Large datasets
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Quiver: Key ideas

• Domain specific intelligence at caching layer
• Substitutability – Use existing contents of the cache to avoid thrashing

• Hash-based content addressing for security

• Co-designed with deep-learning framework (PyTorch)

• Dynamically manages cache allocation

• Improve cluster throughput up-to 2.3x



Structure

• Introduction & Motivation

• Background

• Design

• Implementation

• Evaluation



Background: Deep Learning

• Learn a model to represent training data 

• Iterate over random subsets of input data – Mini batch

• Perform Gradient Descent (SGD) on each mini-batch

• Process the entire dataset in random order – Epoch
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A cache for DLT jobs

• DLT datasets are accessed multiple times
• Within same job:  Multiple epochs read the entire dataset
• Across jobs:  Hyperparameter exploration, popular datasets (e.g. ImageNet)

• Good fit for caching

• Challenges
• Random access within epoch => Partial caching can cause thrashing (e.g. LRU)
• Job Heterogeneity => Not all jobs benefit the same from caching
• Secure inter-job data access

• Quiver: Use domain intelligence to address these challenges



#1: Thrashing-proof partial caching

• Two I/O properties
• Each input touched once in an epoch

• Every mini-batch needs to be randomly sampled

• Substitutable hits
• I/O is substitutable

• Mini-batch samples order does not matter, as long as it is random
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#1: Thrashing-proof partial caching

• Substitutability while sampling

• Looks up more than the number of indices and returns whatever is in 
the cache (substitutable hits)

Quiver Sampling
(3 hits, 6 misses)

Default Sampling
(1 hit, 2 misses)



#2: Job heterogeneity and caching 

• Benefit-aware caching to handle Job heterogeneity
• Time per mini-batch is an application-specific metric for performance

• Allows cheap profiling to measure benefits from cache

• Predictability
• Measure time per minibatch with different caching modes

• Given total space budget, the manager allocates cache per dataset
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• Multiple jobs and users share cache

• Data needs reuse/sharing while retaining isolation
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#3: Secure Inter-Job Data access

• Multiple jobs and users share cache

• Data needs reuse/sharing while retaining isolation

• Each file is addressed by its hash instead of its name

User1/imagenet/file.jpg

User2/imgnt/file.jpg

hash(file.jpg)
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Cache Access

• Client is integrated with PyTorch data-layer
• Fetches files from remote on misses

• Populates the cache servers

• Works with hash-digest file 

• Incorporates substitutable hits and co-operative miss handling
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Implementation

• Cache client (900 LoC)
• Dataloader of PyTorch (v 1.1.0)

• Dataset of PyTorch

• Sampler of PyTorch

• Cache server (1200 LOC)
• A C++ key value store

• Cache manager 
• A python program



Evaluation Setup

• Cluster (48 GPUs)
• 6 VMs with 4 NVIDIA P100 GPUs

• 6 VMs with 4 NVIDIA P40 GPUs

• Workloads
• Resnet50 on Imagenet dataset (154 GB)

• Inception_V3 on openimages dataset (531 GB)

• DeepSpeech2 on LibriSpeech dataset (90 GB)



Impact on accuracy

RESNET50 on Imagenet

Config Word Error Rate (WER)

Baseline Sampling 22.29

Quiver Sampling 22.32

DeepSpeech2 on LibriSpeech

Similar curves
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Time for 7000 mini-batches (s)Workload

Resnet50 2505 646 (3.88x) 1064 (2.35x)
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Throughput increase because of quvier

Resnet50 InceptionV3 DeepSpeech2

Baseline Quiver (HIT) Quiver (CO-OP)
Resnet50 2505 646 (3.88x) 1064 (2.35x)
Inception 2874 1274 (2.26x) 1817 (1.58x)

DeepSpeech 1614 1234 (1.31x) 1265 (1.28x)

Time for 7000 mini-batches (s)Workload

Resnet50 2505 646 (3.88x) 1064 (2.35x)
Baseline HIT CO-OP
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Benefit aware caching

• Mixed workload – 12 Different jobs
• Quiver preferentially allocates cache to different datasets
• Quiver yields sizeable benefits even with tiny cache (100G)
• Improvement in cluster throughput ranges between 1.6x to 2.3x



Summary

• Quiver is a domain-specific storage cache for DLT jobs

• Utilizes I/O behavior of deep learning training jobs
• Substitutable hits => New thrash-proof partial caching

• Predictability => Benefit-aware caching

• Improves cluster GPU utilization by reducing I/O wait time

• Implemented in PyTorch


