Quiver: An informed storage cache for Deep Learning

Abhishek Vijaya Kumar, Muthian Sivathanu

Microsoft Research India

- Already powers many real-world applications
 - Voice assistants
 - Web search
- Compute intensive expensive hardware e.g. GPUs

- Already powers many real-world applications
 - Voice assistants
 - Web search
- Compute intensive expensive hardware e.g. GPUs

- Already powers many real-world applications
 - Voice assistants
 - Web search
- Compute intensive expensive hardware e.g. GPUs

Same setting on Cloud

- Already powers many real-world applications
 - Voice assistants
 - Web search
- Compute intensive expensive hardware e.g. GPUs

Same setting on Cloud

- Already powers many real-world applications
 - Voice assistants
 - Web search
- Compute intensive expensive hardware e.g. GPUs

Same setting on Cloud

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- Goal: Keep GPUs busy and utilize them efficiently

Remote store with several TBs of training data

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- Goal: Keep GPUs busy and utilize them efficiently

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- Goal: Keep GPUs busy and utilize them efficiently

- Resnet50 is a popular vision model
- Process 10,500 images/sec on 8 Nvidia V100s
- Goal: Keep GPUs busy and utilize them efficiently

Quiver: Key ideas

- Domain specific intelligence at caching layer
 - Substitutability Use existing contents of the cache to avoid thrashing
- Hash-based content addressing for security
- Co-designed with deep-learning framework (PyTorch)
- Dynamically manages cache allocation
- Improve cluster throughput up-to 2.3x

Structure

- Introduction & Motivation
- Background
- Design
- Implementation
- Evaluation

Background: Deep Learning

- Learn a model to represent training data
- Iterate over random subsets of input data Mini batch
- Perform Gradient Descent (SGD) on each mini-batch
- Process the entire dataset in random order **Epoch**

A cache for DLT jobs

- DLT datasets are accessed multiple times
 - Within same job: Multiple epochs read the entire dataset
 - Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)
- Good fit for caching

A cache for DLT jobs

- DLT datasets are accessed multiple times
 - Within same job: Multiple epochs read the entire dataset
 - Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)
- Good fit for caching

- Challenges
 - Random access within epoch => Partial caching can cause thrashing (e.g. LRU)
 - Job Heterogeneity => Not all jobs benefit the same from caching
 - Secure inter-job data access

A cache for DLT jobs

- DLT datasets are accessed multiple times
 - Within same job: Multiple epochs read the entire dataset
 - Across jobs: Hyperparameter exploration, popular datasets (e.g. ImageNet)
- Good fit for caching
- Challenges
 - Random access within epoch => Partial caching can cause thrashing (e.g. LRU)
 - Job Heterogeneity => Not all jobs benefit the same from caching
 - Secure inter-job data access
- Quiver: Use domain intelligence to address these challenges

- Two I/O properties
 - Each input touched once in an epoch
 - Every mini-batch needs to be randomly sampled

Substitutable hits

- I/O is substitutable
- Mini-batch samples order does not matter, as long as it is random

- Substitutability while sampling
- Looks up more than the number of indices and returns whatever is in the cache (*substitutable hits*)

- Substitutability while sampling
- Looks up more than the number of indices and returns whatever is in the cache (*substitutable hits*)

- Substitutability while sampling
- Looks up more than the number of indices and returns whatever is in the cache (*substitutable hits*)

#2: Job heterogeneity and caching

- Benefit-aware caching to handle Job heterogeneity
 - Time per mini-batch is an application-specific metric for performance
 - Allows cheap profiling to measure benefits from cache

Predictability

- Measure time per minibatch with different caching modes
- Given total space budget, the manager allocates cache per dataset

- Multiple jobs and users share cache
- Data needs reuse/sharing while retaining isolation
- Each file is addressed by its hash instead of its name

- Multiple jobs and users share cache
- Data needs reuse/sharing while retaining isolation
- Each file is addressed by its hash instead of its name

- Multiple jobs and users share cache
- Data needs reuse/sharing while retaining isolation
- Each file is addressed by its hash instead of its name

- Multiple jobs and users share cache
- Data needs reuse/sharing while retaining isolation
- Each file is addressed by its hash instead of its name

Structure

- Introduction & Motivation
- Background
- Design
- Implementation
- Evaluation

Architecture of Quiver

- Quiver cache server
- Quiver cache client codesigned with PyTorch
- Quiver cache manager
- Quiver instance types
 - 1. Entire cluster
 - 2. Each rack

Architecture of Quiver

- Quiver cache server
- Quiver cache client codesigned with PyTorch
- Quiver cache manager
- Quiver instance types
 - 1. Entire cluster
 - 2. Each rack

Architecture of Quiver

- Quiver cache server
- Quiver cache client codesigned with PyTorch
- Quiver cache manager
- Quiver instance types
 - 1. Entire cluster
 - 2. Each rack

Cache Access

- Client is integrated with PyTorch data-layer
 - Fetches files from remote on misses
 - Populates the cache servers
- Works with hash-digest file
- Incorporates substitutable hits and co-operative miss handling

Hash digest and Partition

- Dataset is represented by a hash-digest
- Major components of an entry in the hash-file
 - <content_hash: file_location>
- Key space is partitioned across servers

Hash digest and Partition

- Dataset is represented by a hash-digest
- Major components of an entry in the hash-file
 - <content_hash: file_location>
- Key space is partitioned across servers

Hash digest and Partition

- Dataset is represented by a hash-digest
- Major components of an entry in the hash-file
 - <content_hash: file_location>
- Key space is partitioned across servers

Co-operative miss handling

- Misses are sharded across jobs using same dataset.
 - Sharding is implicit by randomizing indices
 - Happens naturally in DLT access pattern
 - Jobs benefit from other jobs as they progress

Co-operative miss handling

- Misses are sharded across jobs using same dataset.
 - Sharding is implicit by randomizing indices
 - Happens naturally in DLT access pattern
 - Jobs benefit from other jobs as they progress

Co-operative miss handling

- Misses are sharded across jobs using same dataset.
 - Sharding is implicit by randomizing indices
 - Happens naturally in DLT access pattern
 - Jobs benefit from other jobs as they progress

Co-operative miss handling

- Misses are sharded across jobs using same dataset.
 - Sharding is implicit by randomizing indices
 - Happens naturally in DLT access pattern
 - Jobs benefit from other jobs as they progress

- Dataset partition
 - Digest file is partitioned into given number of chunks
- Double buffering of chunks
 - Chunks allow coordinated access of cache
 - Co-ordinated eviction
 - Mark for eviction no new refs
 - Then evict
 - Similar to UNIX unlink call

a Cache server

J1

- Dataset partition
 - Digest file is partitioned into given number of chunks
- Double buffering of chunks
 - Chunks allow coordinated access of cache
 - Co-ordinated eviction
 - Mark for eviction no new refs
 - Then evict
 - Similar to UNIX unlink call

- Dataset partition
 - Digest file is partitioned into given number of chunks
- Double buffering of chunks
 - Chunks allow coordinated access of cache
 - Co-ordinated eviction
 - Mark for eviction no new refs
 - Then evict
 - Similar to UNIX unlink call

- Dataset partition
 - Digest file is partitioned into given number of chunks
- Double buffering of chunks
 - Chunks allow coordinated access of cache
 - Co-ordinated eviction
 - Mark for eviction no new refs
 - Then evict
 - Similar to UNIX unlink call

- Dataset partition
 - Digest file is partitioned into given number of chunks
- Double buffering of chunks
 - Chunks allow coordinated access of cache
 - Co-ordinated eviction
 - Mark for eviction no new refs
 - Then evict
 - Similar to UNIX unlink call

- Dataset partition
 - Digest file is partitioned into given number of chunks
- Double buffering of chunks
 - Chunks allow coordinated access of cache
 - Co-ordinated eviction
 - Mark for eviction no new refs
 - Then evict
 - Similar to UNIX unlink call

Structure

- Introduction & Motivation
- Design
- Implementation & Evaluation

Implementation

- Cache client (900 LoC)
 - Dataloader of PyTorch (v 1.1.0)
 - Dataset of PyTorch
 - Sampler of PyTorch
- Cache server (1200 LOC)
 - A C++ key value store
- Cache manager
 - A python program

Evaluation Setup

- Cluster (48 GPUs)
 - 6 VMs with 4 NVIDIA P100 GPUs
 - 6 VMs with 4 NVIDIA P40 GPUs
- Workloads
 - Resnet50 on Imagenet dataset (154 GB)
 - Inception_V3 on openimages dataset (531 GB)
 - DeepSpeech2 on LibriSpeech dataset (90 GB)

Impact on accuracy

RESNET50 on Imagenet

Config	Word Error Rate (WER)
Baseline Sampling	22.29
Quiver Sampling	22.32

DeepSpeech2 on LibriSpeech

Similar curves

Throughput increase because of quvier

Resnet50

Workload	Time for 7000 mini-batches (s)			
	Baseline	HIT	CO-OP	
Resnet50	2505	646 (3.88x)	1064 (2.35x)	

Throughput increase because of quvier

Workload	Time for 7000 mini-batches (s)		
	Baseline	HIT	CO-OP
Resnet50	2505	646 (3.88x)	1064 (2.35x)
Inception	2874	1274 (2.26x)	1817 (1.58x)
DeepSpeech	1614	1234 (1.31x)	1265 (1.28x)

Co-ordinated eviction in action

Co-ordinated eviction in action

- 2 Chunks cached at a time
- New jobs start using 3rd chunk

Co-ordinated eviction in action

- 2 Chunks cached at a time
- New jobs start using 3rd chunk

Benefit aware caching

Benefit aware caching

- Mixed workload 12 Different jobs
- Quiver preferentially allocates cache to different datasets
- Quiver yields sizeable benefits even with tiny cache (100G)
- Improvement in cluster throughput ranges between 1.6x to 2.3x

Summary

- Quiver is a domain-specific storage cache for DLT jobs
- Utilizes I/O behavior of deep learning training jobs
 - Substitutable hits => New thrash-proof partial caching
 - Predictability => Benefit-aware caching
- Improves cluster GPU utilization by reducing I/O wait time
- Implemented in PyTorch