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Persistent Memory (PM) Has Arrived

 Memory-like performance
 ~100x faster than SSDs
 Byte-addressability

 Storage-like characteristics
 Non-volatility
 High density 
 Each socket can have as much as 4.5 TB
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PM Architecture & Performance Characterization
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 Reducing write traffic on PM is critical

Write bandwidth to DRAM reaches 60 
GB/s but only 13 GB/s to Optane PM

 PM microarchitecture (e.g., internal buffer and data block size) has a significant 
impact on the write performance of PM
 Avoid small random writes

 Leverage the combining buffer hardware to coalesce writes inside PM



Transactions on Persistent Memory

 Failure-atomic transaction is a critical mechanism for accessing and 
manipulating data on PM

 Existing PM transaction systems are implemented into two major 
paradigms – logging (undo & redo) and copy-on-write
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 Both paradigms do not consider the performance impact of PM 
architecture characteristics



Issues of Existing PM Transactions
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Issues of Memory Allocation for PM Transactions

 Existing memory allocation implementations use multiple 
free lists, each for a different allocation size

 Multiple free lists could cause consecutive allocation requests of 
different sizes to go to different free lists

 Return freed memory blocks to thread-local free lists for reuse
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Reduce the opportunity to leverage the combining buffer hardware to 
coalesce writes inside PM

1-2

3

…
4

Noncontiguous 
memory blocks



Design Goals of ArchTM
9

 ArchTM: an architecture-aware PM transaction system

 Reduce write traffic on PM

 Avoid small writes on PM

 Encourage coalescable writes on PM

Logless Use copy-on-write



 Minimize metadata modifications on PM 
with guaranteed crash consistency

Avoid Small Writes on PM
10
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 Minimize metadata modifications on PM 
with guaranteed crash consistency
 Buffer metadata on DRAM 
 Allocator metadata 
 Object mapping metadata

 Object lookup table

Avoid Small Writes on PM
11

DataTX
State   

Data

PM

NewOldAllocator Meta

DRAM …
Object 
lookup 
table



 Minimize metadata modifications on PM 
with guaranteed crash consistency
 Buffer metadata on DRAM 
 Annotation
 Add transaction ID into the transaction state 

variable
 Add object metadata (e.g, Object ID, size, and 

transaction ID) into the object header  

Avoid Small Writes on PM
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Encourage Coalescable Writes on PM
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 Consecutive allocation requests get contiguous memory blocks but 
minimize memory fragmentation
 Contiguous memory allocation
 Use a regular data path for large allocations and reclamations
 Use a locality-aware data path for small allocations and reclamations to encourage sequential 

writes in transactions 
 A single free list
 Global recycling 

 Online memory defragmentation
 Examines memory usage by regions and reduces fragmentation on PM during the runtime



Encourage Coalescable Writes on PM
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 Locality-aware data path & online memory defragmentation
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Recovery Management
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 Step 1: detect uncommitted transactions 
 Check the state of each transaction state variable on PM

 Step 2: rebuild object lookup table
 Scan persistent object pool on PM to find persistent objects
 Insert the location information (i.e., pointers to the object on PM) into the lookup 

table
 Discard the object copies in uncommitted transactions (collected from Step 1)
 Only keep the latest object copy by comparing the transaction ID annotated in the 

object copies 



Other Optimization Techniques
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 Scalable object referencing 
 Non-blocking read
 Reduce recovery time by incorporating an incremental checkpoint 

Please find more details in our paper!



Evaluation Setup

 Real PM platform (Intel Optane DC PMM)
 2nd Gen Intel Xeon Scabble processor (24 cores on each socket)
 192 GB DRAM and 1.5 TB PM

 Run TPC-C and TATP against PMEMKV (from Intel)

 Comparison: PMDK [Intel], Romulus [SPAA’18], DUDETM [ASPLOS’17] and 
the Oracle system (copy-on-write-based, OCoW)
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Evaluation: TPC-C & TATP
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 On average, ArchTM significantly outperforms DUDETM, Romulus, OCoW
and PMDK by 3x, 7x, 8x and 75x, respectively

TPC-C TATP100% update rate

Please find more evaluation in our paper!



Conclusion

 Pinpoint performance problems in common transaction implementations 
on real PM hardware

 Highlight the importance of considering PM architecture characteristics 
for transaction performance

 ArchTM: an architecture-aware PM transaction system
 Avoid small writes on PM 
 Encourage coalescable writes on PM
 Outperform the four state-of-the-art PM transaction systems
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