
ARCHTM: ARCHITECTURE-AWARE, HIGH
PERFORMANCE TRANSACTION FOR

PERSISTENT MEMORY

Kai Wu, Jie Ren, Ivy Peng+, Dong Li

University of California, Merced
Lawrence Livermore National Laboratory+

Persistent Memory (PM) Has Arrived

 Memory-like performance
 ~100x faster than SSDs
 Byte-addressability

 Storage-like characteristics
 Non-volatility
 High density
 Each socket can have as much as 4.5 TB

Cache

DRAM

PM

SSD

HDD

Memory &
Storage Hierarchy

Increasing
C

apacityIn
cr

ea
si

ng
Sp

ee
d

2

PM Architecture & Performance Characterization
3

 Reducing write traffic on PM is critical

Write bandwidth to DRAM reaches 60
GB/s but only 13 GB/s to Optane PM

 PM microarchitecture (e.g., internal buffer and data block size) has a significant
impact on the write performance of PM
 Avoid small random writes

 Leverage the combining buffer hardware to coalesce writes inside PM

Transactions on Persistent Memory

 Failure-atomic transaction is a critical mechanism for accessing and
manipulating data on PM

 Existing PM transaction systems are implemented into two major
paradigms – logging (undo & redo) and copy-on-write

4

 Both paradigms do not consider the performance impact of PM
architecture characteristics

Issues of Existing PM Transactions
5

A B A
LogData

A B
LogData

A B
Data

1. Copy data to logs

2. Data is updated in-place

3. Commit

A B A
LogData

A B A
LogData

A B
Data

1. Write updates to logs

2. Apply logs to the data

3. Commit

1. Allocate and initialize new copies

2. Write updates to new copies

A

Data

BA

Ptr (A)

A

Reset pointers and
free old copy

3. Commit

Undo-logging Redo-logging

Ptr (B)

Data

BA

Ptr (A)

A

Ptr (B)

Data

BA

Ptr (A) Ptr (B)

Copy-on-Write

Newly written data

X
X
X The new copy of data

Data from last commit

Issues of Existing PM Transactions
6

A B A
LogData

A B
LogData

A B
Data

1. Copy data to logs

2. Data is updated in-place

3. Commit

A B A
LogData

A B A
LogData

A B
Data

1. Write updates to logs

2. Apply logs to the data

3. Commit

1. Allocate and initialize new copies

2. Write updates to new copies

A

Data

BA

Ptr (A)

A

Reset pointers and
free old copy

3. Commit

Undo-logging Redo-logging

Newly written data

X
X
X The new copy of data

Data from last commit

Ptr (B)

Data

BA

Ptr (A)

A

Ptr (B)

Data

BA

Ptr (A) Ptr (B)

Copy-on-Write

 Write data twice
 In-place update to the data could cause concurrent random writes

Issues of Existing PM Transactions
7

A B A
LogData

A B
LogData

A B
Data

1. Copy data to logs

2. Data is updated in-place

3. Commit

A B A
LogData

A B A
LogData

A B
Data

1. Write updates to logs

2. Apply logs to the data

3. Commit

1. Allocate and initialize new copies

2. Write updates to new copies

A

Data

BA

Ptr (A)

A

Reset pointers and
free old copy

3. Commit

Undo-logging Redo-logging

Newly written data

X
X
X The new copy of data

Data from last commit

Ptr (B)

Data

BA

Ptr (A)

A

Ptr (B)

Data

BA

Ptr (A) Ptr (B)

Copy-on-Write

 Write data twice
 In-place update to the data could cause concurrent random writes
 Frequent metadata updates causes many small random writes

Issues of Memory Allocation for PM Transactions

 Existing memory allocation implementations use multiple
free lists, each for a different allocation size

 Multiple free lists could cause consecutive allocation requests of
different sizes to go to different free lists

 Return freed memory blocks to thread-local free lists for reuse

8

Reduce the opportunity to leverage the combining buffer hardware to
coalesce writes inside PM

1-2

3

…
4

Noncontiguous
memory blocks

Design Goals of ArchTM
9

 ArchTM: an architecture-aware PM transaction system

 Reduce write traffic on PM

 Avoid small writes on PM

 Encourage coalescable writes on PM

Logless Use copy-on-write

 Minimize metadata modifications on PM
with guaranteed crash consistency

Avoid Small Writes on PM
10

NewOld

DataTX
State

Data

Allocator Meta PM…

 Minimize metadata modifications on PM
with guaranteed crash consistency
 Buffer metadata on DRAM
 Allocator metadata
 Object mapping metadata

 Object lookup table

Avoid Small Writes on PM
11

DataTX
State

Data

PM

NewOldAllocator Meta

DRAM …
Object
lookup
table

 Minimize metadata modifications on PM
with guaranteed crash consistency
 Buffer metadata on DRAM
 Annotation
 Add transaction ID into the transaction state

variable
 Add object metadata (e.g, Object ID, size, and

transaction ID) into the object header

Avoid Small Writes on PM
12

NewOld

OBJ
Header DataTXID State Data

Allocator Meta

DRAM

PM
OBJ

Header

…
Object
lookup
table

Persist together

Encourage Coalescable Writes on PM
13

 Consecutive allocation requests get contiguous memory blocks but
minimize memory fragmentation
 Contiguous memory allocation
 Use a regular data path for large allocations and reclamations
 Use a locality-aware data path for small allocations and reclamations to encourage sequential

writes in transactions
 A single free list
 Global recycling

 Online memory defragmentation
 Examines memory usage by regions and reduces fragmentation on PM during the runtime

Encourage Coalescable Writes on PM
14

 Locality-aware data path & online memory defragmentation

GC manager

Collect

Merge & Sort

Global free list

Defragmentation
manager

Allocate Allocate

T1 T2
DeallocateDeallocate

Merge & Sort

Collect

…

…
Global recycle list

…

Monitor the fragmentation
ratio periodically

Deallocate

Allocate “Mock” write TX

Refill

Private
deallocation list

Private
deallocation list

Private
deallocation list

Aggregate persistent
objects in underutilized
regions and migrates
them to a newly allocated
memory region

Collect

Recovery Management
15

 Step 1: detect uncommitted transactions
 Check the state of each transaction state variable on PM

 Step 2: rebuild object lookup table
 Scan persistent object pool on PM to find persistent objects
 Insert the location information (i.e., pointers to the object on PM) into the lookup

table
 Discard the object copies in uncommitted transactions (collected from Step 1)
 Only keep the latest object copy by comparing the transaction ID annotated in the

object copies

Other Optimization Techniques
16

 Scalable object referencing
 Non-blocking read
 Reduce recovery time by incorporating an incremental checkpoint

Please find more details in our paper!

Evaluation Setup

 Real PM platform (Intel Optane DC PMM)
 2nd Gen Intel Xeon Scabble processor (24 cores on each socket)
 192 GB DRAM and 1.5 TB PM

 Run TPC-C and TATP against PMEMKV (from Intel)

 Comparison: PMDK [Intel], Romulus [SPAA’18], DUDETM [ASPLOS’17] and
the Oracle system (copy-on-write-based, OCoW)

17

Evaluation: TPC-C & TATP
18

 On average, ArchTM significantly outperforms DUDETM, Romulus, OCoW
and PMDK by 3x, 7x, 8x and 75x, respectively

TPC-C TATP100% update rate

Please find more evaluation in our paper!

Conclusion

 Pinpoint performance problems in common transaction implementations
on real PM hardware

 Highlight the importance of considering PM architecture characteristics
for transaction performance

 ArchTM: an architecture-aware PM transaction system
 Avoid small writes on PM
 Encourage coalescable writes on PM
 Outperform the four state-of-the-art PM transaction systems

19

	ArchTM: Architecture-Aware, High Performance Transaction for Persistent Memory
	Persistent Memory (PM) Has Arrived
	PM Architecture & Performance Characterization
	Transactions on Persistent Memory
	Issues of Existing PM Transactions
	Issues of Existing PM Transactions
	Issues of Existing PM Transactions
	Issues of Memory Allocation for PM Transactions
	Design Goals of ArchTM
	Avoid Small Writes on PM
	Avoid Small Writes on PM
	Avoid Small Writes on PM
	Encourage Coalescable Writes on PM
	Encourage Coalescable Writes on PM
	Recovery Management
	Other Optimization Techniques
	Evaluation Setup
	Evaluation: TPC-C & TATP
	Conclusion

