
ARCHTM: ARCHITECTURE-AWARE, HIGH
PERFORMANCE TRANSACTION FOR

PERSISTENT MEMORY

Kai Wu, Jie Ren, Ivy Peng+, Dong Li

University of California, Merced
Lawrence Livermore National Laboratory+

Persistent Memory (PM) Has Arrived

 Memory-like performance
 ~100x faster than SSDs
 Byte-addressability

 Storage-like characteristics
 Non-volatility
 High density
 Each socket can have as much as 4.5 TB

Cache

DRAM

PM

SSD

HDD

Memory &
Storage Hierarchy

Increasing
C

apacityIn
cr

ea
si

ng
Sp

ee
d

2

PM Architecture & Performance Characterization
3

 Reducing write traffic on PM is critical

Write bandwidth to DRAM reaches 60
GB/s but only 13 GB/s to Optane PM

 PM microarchitecture (e.g., internal buffer and data block size) has a significant
impact on the write performance of PM
 Avoid small random writes

 Leverage the combining buffer hardware to coalesce writes inside PM

Transactions on Persistent Memory

 Failure-atomic transaction is a critical mechanism for accessing and
manipulating data on PM

 Existing PM transaction systems are implemented into two major
paradigms – logging (undo & redo) and copy-on-write

4

 Both paradigms do not consider the performance impact of PM
architecture characteristics

Issues of Existing PM Transactions
5

A B A
LogData

A B
LogData

A B
Data

1. Copy data to logs

2. Data is updated in-place

3. Commit

A B A
LogData

A B A
LogData

A B
Data

1. Write updates to logs

2. Apply logs to the data

3. Commit

1. Allocate and initialize new copies

2. Write updates to new copies

A

Data

BA

Ptr (A)

A

Reset pointers and
free old copy

3. Commit

Undo-logging Redo-logging

Ptr (B)

Data

BA

Ptr (A)

A

Ptr (B)

Data

BA

Ptr (A) Ptr (B)

Copy-on-Write

Newly written data

X
X
X The new copy of data

Data from last commit

Issues of Existing PM Transactions
6

A B A
LogData

A B
LogData

A B
Data

1. Copy data to logs

2. Data is updated in-place

3. Commit

A B A
LogData

A B A
LogData

A B
Data

1. Write updates to logs

2. Apply logs to the data

3. Commit

1. Allocate and initialize new copies

2. Write updates to new copies

A

Data

BA

Ptr (A)

A

Reset pointers and
free old copy

3. Commit

Undo-logging Redo-logging

Newly written data

X
X
X The new copy of data

Data from last commit

Ptr (B)

Data

BA

Ptr (A)

A

Ptr (B)

Data

BA

Ptr (A) Ptr (B)

Copy-on-Write

 Write data twice
 In-place update to the data could cause concurrent random writes

Issues of Existing PM Transactions
7

A B A
LogData

A B
LogData

A B
Data

1. Copy data to logs

2. Data is updated in-place

3. Commit

A B A
LogData

A B A
LogData

A B
Data

1. Write updates to logs

2. Apply logs to the data

3. Commit

1. Allocate and initialize new copies

2. Write updates to new copies

A

Data

BA

Ptr (A)

A

Reset pointers and
free old copy

3. Commit

Undo-logging Redo-logging

Newly written data

X
X
X The new copy of data

Data from last commit

Ptr (B)

Data

BA

Ptr (A)

A

Ptr (B)

Data

BA

Ptr (A) Ptr (B)

Copy-on-Write

 Write data twice
 In-place update to the data could cause concurrent random writes
 Frequent metadata updates causes many small random writes

Issues of Memory Allocation for PM Transactions

 Existing memory allocation implementations use multiple
free lists, each for a different allocation size

 Multiple free lists could cause consecutive allocation requests of
different sizes to go to different free lists

 Return freed memory blocks to thread-local free lists for reuse

8

Reduce the opportunity to leverage the combining buffer hardware to
coalesce writes inside PM

1-2

3

…
4

Noncontiguous
memory blocks

Design Goals of ArchTM
9

 ArchTM: an architecture-aware PM transaction system

 Reduce write traffic on PM

 Avoid small writes on PM

 Encourage coalescable writes on PM

Logless Use copy-on-write

 Minimize metadata modifications on PM
with guaranteed crash consistency

Avoid Small Writes on PM
10

NewOld

DataTX
State

Data

Allocator Meta PM…

 Minimize metadata modifications on PM
with guaranteed crash consistency
 Buffer metadata on DRAM
 Allocator metadata
 Object mapping metadata

 Object lookup table

Avoid Small Writes on PM
11

DataTX
State

Data

PM

NewOldAllocator Meta

DRAM …
Object
lookup
table

 Minimize metadata modifications on PM
with guaranteed crash consistency
 Buffer metadata on DRAM
 Annotation
 Add transaction ID into the transaction state

variable
 Add object metadata (e.g, Object ID, size, and

transaction ID) into the object header

Avoid Small Writes on PM
12

NewOld

OBJ
Header DataTXID State Data

Allocator Meta

DRAM

PM
OBJ

Header

…
Object
lookup
table

Persist together

Encourage Coalescable Writes on PM
13

 Consecutive allocation requests get contiguous memory blocks but
minimize memory fragmentation
 Contiguous memory allocation
 Use a regular data path for large allocations and reclamations
 Use a locality-aware data path for small allocations and reclamations to encourage sequential

writes in transactions
 A single free list
 Global recycling

 Online memory defragmentation
 Examines memory usage by regions and reduces fragmentation on PM during the runtime

Encourage Coalescable Writes on PM
14

 Locality-aware data path & online memory defragmentation

GC manager

Collect

Merge & Sort

Global free list

Defragmentation
manager

Allocate Allocate

T1 T2
DeallocateDeallocate

Merge & Sort

Collect

…

…
Global recycle list

…

Monitor the fragmentation
ratio periodically

Deallocate

Allocate “Mock” write TX

Refill

Private
deallocation list

Private
deallocation list

Private
deallocation list

Aggregate persistent
objects in underutilized
regions and migrates
them to a newly allocated
memory region

Collect

Recovery Management
15

 Step 1: detect uncommitted transactions
 Check the state of each transaction state variable on PM

 Step 2: rebuild object lookup table
 Scan persistent object pool on PM to find persistent objects
 Insert the location information (i.e., pointers to the object on PM) into the lookup

table
 Discard the object copies in uncommitted transactions (collected from Step 1)
 Only keep the latest object copy by comparing the transaction ID annotated in the

object copies

Other Optimization Techniques
16

 Scalable object referencing
 Non-blocking read
 Reduce recovery time by incorporating an incremental checkpoint

Please find more details in our paper!

Evaluation Setup

 Real PM platform (Intel Optane DC PMM)
 2nd Gen Intel Xeon Scabble processor (24 cores on each socket)
 192 GB DRAM and 1.5 TB PM

 Run TPC-C and TATP against PMEMKV (from Intel)

 Comparison: PMDK [Intel], Romulus [SPAA’18], DUDETM [ASPLOS’17] and
the Oracle system (copy-on-write-based, OCoW)

17

Evaluation: TPC-C & TATP
18

 On average, ArchTM significantly outperforms DUDETM, Romulus, OCoW
and PMDK by 3x, 7x, 8x and 75x, respectively

TPC-C TATP100% update rate

Please find more evaluation in our paper!

Conclusion

 Pinpoint performance problems in common transaction implementations
on real PM hardware

 Highlight the importance of considering PM architecture characteristics
for transaction performance

 ArchTM: an architecture-aware PM transaction system
 Avoid small writes on PM
 Encourage coalescable writes on PM
 Outperform the four state-of-the-art PM transaction systems

19

	ArchTM: Architecture-Aware, High Performance Transaction for Persistent Memory
	Persistent Memory (PM) Has Arrived
	PM Architecture & Performance Characterization
	Transactions on Persistent Memory
	Issues of Existing PM Transactions
	Issues of Existing PM Transactions
	Issues of Existing PM Transactions
	Issues of Memory Allocation for PM Transactions
	Design Goals of ArchTM
	Avoid Small Writes on PM
	Avoid Small Writes on PM
	Avoid Small Writes on PM
	Encourage Coalescable Writes on PM
	Encourage Coalescable Writes on PM
	Recovery Management
	Other Optimization Techniques
	Evaluation Setup
	Evaluation: TPC-C & TATP
	Conclusion

