Eidetic Systems

David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, Peter Chen

University of Michigan

What is an Eidetic System?

Eidetic – Having "Perfect memory" or "Total Recall"

Eidetic System – A system which can recall and trace through the lineage of any past computation

Motivation - Heartbleed

- Was Heartbleed exploited?
- What data was leaked?

Motivation - Heartbleed

- Was Heartbleed exploited? Yes
- What data was leaked?

Motivation - Heartbleed

- Was Heartbleed exploited? Yes
- What data was leaked?

• How did I get the wrong citation?

• How did I get the wrong citation?

• How did I get the wrong citation?

- How did I get the wrong citation?
- What else did this affect?

• What else did this affect?

Arnold

- First practical eidetic computer system
 - Efficiently records & recalls all user-space computation
 - Process register/memory state
 - Inter-process communication
 - Handles lineage queries
 - What data was affected?
 - What states and outputs were affected?
- Targeted towards desktop/workstation use
- Reasonable overheads
 - Record 4 years of data on \$150 commodity HD
 - Under 8% performance overhead on most benchmarks

Overview

- Introduction
- Motivation
- How Arnold remembers all state
- How Arnold supports lineage queries
- Conclusion

Remembering State

• Requirements:

- Store years of state on a single disk
 - Memory/register space within a process
 - Inter process communication
 - File state
- Recall any state in reasonable time
- Solution:
 - Deterministic record & replay
 - "Process group" based replay
 - "Process graph" to track inter-process lineage
 - Log compression

• What granularity is best to record our system?

Whole system recording

 ✓ Low space overhead
 × Costly to replay

×No Inter-process tracking

Implementation – Process Graph

Implementation – Process Graph

Recording

Model-Based Compression

- Formulate a model of a typical execution
 - Only record deviations from that model

- Idea: Partial determinism
 - Encourage the program to conform to the model

Semi-Deterministic Time

- Frequent time queries are non-deterministic
- Use partially deterministic clock at record time
 - Real time clock & deterministic clock
 - Bound deviation

if (deterministic_clock - real_time_clock < threshold) {
 adjust deterministic_clock
 record deviation</pre>

return deterministic_clock

Performance Evaluation

Overview

- Introduction
- Motivation
- How Arnold remembers all state
- How Arnold supports lineage queries
- Conclusion

Querying Lineage

- •Two types of queries:
 - Reverse: Where did this data come from?
 - Forward: What did this data affect?
- How does Arnold support these queries?
 - User specifies initial state
 - Trace the lineage of the computation
 - Intra-process tracking
 - Inter-process tracking

- Use taint tracking for intra-process causality
 - Run retroactively, on recorded execution
 - Parallelizable
- Arnold supports several notions of causality:

Which linkage tool should Arnold use?

David Devecsery

- Two notions of inter-process linkage
- Process graph
 - Tracks lineage through inter-process communication
 - Precise
 - Captures group to group communication
- Human linkage
 - Handles relations between user inputs and outputs
 - Infers linkages based on data content and time
 - Imprecise may have false negatives and false positives
 - Can capture linkages the process graph can miss

Evaluation – Wrong Reference

- Few false positives (font files, latex sty files, libc.so, libXt.so)
- No false negatives

Record Time	Replay Time	Replay + Pin Time	Query Time
96.1s	2.2s	70.0s	209.5s

Evaluation – Heartbleed

Data + Index Data + Index Data + Index

• No false positives or negatives

Record Time	Replay Time	Replay + Pin Time	Query Time
230.3s	0.4s	139.5s	235.1s

Conclusion

- Eidetic Systems are powerful tools
 - Complete vision into past computation
 - Answer powerful queries about state's lineage
- Arnold First practical Eidetic System
 - Low runtime overhead
 - 4 years of computation on a commodity HD
 - Supports powerful lineage queries
- Code is released https://github.com/endplay/omniplay

Questions?

Backup Slides

Cloud Storage

- Future work
- Two approaches:
 - Statically served content
 - Distributed replay system

Related Works

- Execution Mining (Tralfamadore)
- DejaVu
- RAIL

User Study Log-Sizes

Users	Days	Groups Per Day	Storage Utilization (MB)			
			RAW File Cache	Logs	Filemap	Total
А	25	995	475	267	36	779
В	24	475	1095	936	339	2064
С	21	26122	869	350	690	1910
D	16	3339	1675	838	838	2594

