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Abstract
Memory-mapped I/O provides several potential advantages

over explicit read/write I/O, especially for low latency de-
vices: (1) It does not require a system call, (2) it incurs almost
zero overhead for data in memory (I/O cache hits), and (3)
it removes copies between kernel and user space. However,
the Linux memory-mapped I/O path suffers from several scal-
ability limitations. We show that the performance of Linux
memory-mapped I/O does not scale beyond 8 threads on a
32-core server. To overcome these limitations, we propose
FastMap, an alternative design for the memory-mapped I/O
path in Linux that provides scalable access to fast storage
devices in multi-core servers, by reducing synchronization
overhead in the common path. FastMap also increases de-
vice queue depth, an important factor to achieve peak device
throughput. Our experimental analysis shows that FastMap
scales up to 80 cores and provides up to 11.8× more IOPS
compared to mmap using null_blk. Additionally, it provides
up to 5.27× higher throughput using an Optane SSD. We
also show that FastMap is able to saturate state-of-the-art fast
storage devices when used by a large number of cores, where
Linux mmap fails to scale.

1 Introduction

The emergence of fast storage devices, with latencies in the
order of a few µs and IOPS rates in the order of millions per
device is changing the I/O landscape. The ability of devices
to cope well with random accesses leads to new designs for
data storage and management that favor generating small and
random I/Os to improve other system aspects [2, 35, 42, 43].
Although small and random I/Os create little additional pres-
sure to the storage devices, they result in significantly higher
CPU overhead in the kernel I/O path. As a result, the overhead
of performing I/O operations to move data between memory
and devices is becoming more pronounced, to the point where

1Also with the Department of Computer Science, University of Crete,
Greece.

a large fraction of server CPU cycles are consumed only to
serve storage devices [11, 46].

In this landscape, memory-mapped I/O, i.e. Linux mmap,
is gaining more attention [8, 13, 24, 42, 43] for data inten-
sive applications because of its potentially lower overhead
compared to read/write system calls. An off-the-shelf NVMe
block device [28] has access latency close to 10 µs and is
capable of more than 500 KIOPS for reads and writes. Byte-
addressable, persistent memory devices exhibit even better
performance [29]. The traditional read/write system calls in
the I/O path incur overheads of several µs [11, 46] in the best
case and typically even higher, when asynchronous operations
are involved.

In contrast, when using memory-mapped I/O a file is
mapped to the process virtual address space where the user
can access data with processor load/store instructions. The
kernel is still responsible for moving data between devices
and memory; mmap removes the need for an explicit system
call per I/O request and incurs the overhead of an implicit
page fault only when data does not reside in memory. In the
case when data reside in memory, there is no additional over-
head due to I/O cache lookups and system calls. Therefore,
the overhead for hits is reduced dramatically as compared to
both the kernel buffer cache but also to user-space I/O caches
used in many applications. In several cases memory-mapped
I/O removes the need to serialize and deserialize user data,
by allowing applications to have the same format for both
in-memory and persistent data, and also the need for memory
copies between kernel and user space.

A major reason for the limited use of memory-mapped
I/O, despite its advantages, has been that mmap may generate
small and random I/Os. With modern storage devices, such
as NVMe and persistent memory, this is becoming less of a
concern. However, Figure 1 shows that the default memory-
mapped I/O path (mmap backed by a device) for random
page faults does not scale well with the number of cores.
In this experiment (details in Section 4), we use null_blk, a
Linux driver that emulates a block device but does not issue
I/Os to a real device (we use 4TB dataset and 192GB of
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Figure 1: Scalability of random page faults using two ver-
sions of Linux memory-mapped I/O path (v4.14 & v5.4) and
FastMap, over the null_blk device.

DRAM cache). Using null_blk allows us to stress the Linux
kernel software stack while emulating a low-latency, next-
generation storage device. Linux mmap scales up to only 8
cores, achieving 7.6 GB/s (2M random IOPS), which is about
5× less compared to a state-of-the-art device [29]; servers
with multiple storage devices need to cope with significantly
higher rates. We observe that from Linux kernel 4.14 to 5.4
the performance and the scalability of the memory-mapped
I/O path has not improved significantly. Limited scalability
also results in low device queue depth. Using the same micro-
benchmark for random read page faults with 32 threads on an
Intel Optane SSD DC P4800X, we see that the average device
queue depth is 27.6. A large queue depth is essential for fast
storage devices to provide their peak device throughput.

In this paper, we propose FastMap, a novel design for the
memory-mapped I/O path that overcomes these two limita-
tions of mmap for data intensive applications on multi-core
servers with fast storage devices. FastMap (a) separates clean
and dirty-trees to avoid all centralized contention points, (b)
uses full reverse mappings instead of Linux object-based re-
verse mappings to reduce CPU processing, and (c) introduces
a scalable DRAM cache with per-core data structures to re-
duce latency variability. FastMap achieves both higher scala-
bility and higher I/O concurrency by (1) avoiding all central-
ized contention points that limit scalability, (2) reducing the
amount of CPU processing in the common path, and (3) us-
ing dedicated data-structures to minimize interference among
processes, thus improving tail latency. As a further extension
to mmap, we introduce a user-defined read-ahead parameter
to proactively map pages in application address space and
reduce the overhead of page faults for large sequential I/Os.

We evaluate FastMap using both micro-benchmarks and
real workloads. We show that FastMap scales up to 80
cores and provides up to 11.8× more random IOPS com-
pared to Linux mmap using null_blk. FastMap achieves

2× higher throughput on average for all YCSB workloads
over Kreon [43], a persistent key-value store designed to use
memory-mapped I/O. Moreover, we use FastMap to extend
the virtual address space of memory intensive applications be-
yond the physical memory size over a fast storage device.
We achieve up to 75× lower average latency for TPC-C
over Silo [54] and 5.27× better performance with the Ligra
graph processing framework [50]. Finally, we achieve 6.06%
higher throughput on average for all TPC-H queries over
MonetDB [8] that mostly issue sequential I/Os.

In summary, our work optimizes the memory-mapped I/O
path in the Linux kernel with three main contributions:

1. We identify severe performance bottlenecks of Linux
memory-mapped I/O in multi-core servers with fast stor-
age devices.

2. We propose FastMap, a new design for the memory-
mapped I/O path.

3. We provide an experimental evaluation and analysis of
FastMap compared to Linux memory-mapped I/O using
both micro-benchmarks and real workloads.

The rest of the paper is organized as follows. §2 provides
the motivation behind FastMap. §3 presents the design of
FastMap along with our design decisions. §4 and §5 present
our experimental methodology and results, respectively. Fi-
nally, §6 reviews related work and §7 concludes the paper.

2 Motivation

With storage devices that exhibit low performance for random
I/Os, such as hard disk drives (HDDs), mmap results in small
(4KB) random I/Os because of the small page size used in
most systems today. In addition, mmap does not provide a way
for users to manage page writebacks in the case of high mem-
ory pressure, which leads to unpredictable tail latencies [43].
Therefore, historically the main use of mmap has been to load
binaries and shared libraries into the process address space;
this use-case does not require frequent I/O, uses read-mostly
mappings, and exhibits a large number of shared mappings
across processes, e.g. libc is shared by almost all processes
of the system. Reverse mappings provide all page table trans-
lations for a specific page and they are required in order to
unmap a page during evictions. Therefore, Linux mmap uses
object-based reverse mappings [37] to reduce memory con-
sumption and enable fast fork system calls, as they do not
require copying full reverse mappings.

With the introduction of fast storage devices, where the
throughput gap between random and sequential I/O is small,
memory-mapped I/O has the potential to reduce I/O path over-
head in the kernel, which is becoming the main bottleneck
for data-intensive applications. However, data intensive appli-
cations, such as databases or key-value stores, have different
requirements compared to loading binaries: they can be write-
intensive, do not require large amount of sharing, and do not
use fork system calls frequently. These properties make the
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Figure 2: Linux (left) and FastMap (right) high-level architecture for memory-mapped files (acronyms: PFD=Per-File-Data,
PVE=Per-Vma-Entry, PPR=Per-Pve-Rmap).

use of full reverse mappings a preferred approach. In addition,
data intensive applications use datasets that do not fit in main
memory and thus, the path of reading and writing a page from
the device becomes the common case. Most of these applica-
tions are also heavily multithreaded and modern servers have
a large number of cores.

3 Design of FastMap

The Linux kernel provides the mmap and munmap system
calls to create and destroy memory mappings. Linux distin-
guishes memory mappings in shared vs. private. Mappings
can also be anonymous, i.e. not backed by a file or device.
Anonymous mappings are used for memory allocation. In this
paper we examine I/O over persistent storage, an inherently
shared resource. Therefore, we consider only shared memory
mappings backed by a file or block device, as also required
by Linux memory-mapped I/O.

Figure 2(a) shows the high-level architecture of shared
memory mappings in the Linux kernel. Each virtual memory
region is represented by a struct vm_area_struct (VMA). Each
VMA points to a struct file (file) that represents the backing
file or device and the starting offset of the memory mapping
to it. Each file points to (a shared between processes) struct
address_space (address_space) which contains information
about mapped pages and the backing file or device.

Figure 2(b) illustrates the high-level design of FastMap.
The most important components in our design are
per_file_data (PFD) and per_vma_entry (PVE). Combined,
these two components provide equivalent functionality as the
Linux kernel address_space structure. Each file points to a
PFD and each VMA points to a PVE. The role of a PFD is to

keep metadata about device blocks that are in the FastMap
cache and metadata about dirty pages. PVE provides full
reverse mappings.

3.1 Separate Clean and Dirty Trees in PFD

In Linux, one of the most important parts of address_space
is page_tree, a radix tree that keeps track of all pages of a
cacheable and mappable file or device, both clean and dirty.
This data structure provides an effective way to check if a
device block is already in memory when a page fault occurs.
Lookups are lock-free (RCU) but inserts and deletes require
a spinlock (named tree_lock). Linux kernel radix trees also
provide user-defined tags per entry. A tag is an integer, where
multiple values can be stored using bitwise operations. In
this case tags are used to mark pages as dirty. Marking a
previously read-only page as writable requires holding the
tree_lock to update the tag.

Using the experiments of Figure 1 and lockstat we see
that tree_lock is by far the most contended lock: Using the
same multithreaded benchmark as in Figure 1, over a single
memory mapped region, tree_lock has 126× more contended
lock acquisitions, which involve cross-cpu data, and 155×
more time waiting to acquire the lock, compared to the second
most contended lock. The second more contended lock is a
spinlock that protects concurrent modifications in PTEs (4th
level entries in the page table). This design has remained
essentially unchanged from Linux kernel 2.6 up to 5.4 (latest
stable version at the time of this writing).

To remove the bottleneck in tree_lock, FastMap uses a
new structure for per-file data, PFD. The most important
aspects of PFD are: (i) a per-core radix tree (page_tree) that
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keeps all (clean and dirty) pages and (ii) a per-core red-black
tree (dirty_tree) that keeps only dirty pages. Each of these
data structures is protected by a separate (per core) spinlock,
different for the radix and red-black trees. We assign pages to
cores in a round-robin manner and we use the page offset to
identify the per-core structure that holds each page.

We use page_tree to provide lock-free lookups (RCU),
similar to the Linux kernel. We use per-core data structures
to reduce contention in case we need to add or remove a
page. On the other hand, we do not use tags to mark pages
as dirty but we use the dirty_tree for this purpose. In the
case where we have to mark a previously read-only page as
read-write, we only acquire the appropriate lock of dirty_tree
without performing any additional operations to the page_tree.
Furthermore, having all dirty pages in a sorted data structure
(red-black tree) enables efficient I/O merging for the cases of
writebacks and the msync system call.

3.2 Full Reverse Mappings in PVE

Reverse (inverted) mappings are also an important part of
mmap. They are used in the case of evictions and writebacks
and they provide a mechanism to find all existing virtual
memory mappings of a physical page. File-backed memory
mappings in Linux use object-based reverse mappings [37].
The main data structure for this purpose is a red-black tree,
i_mmap. It contains all VMAs that map at least one page of
this address_space. A read-write semaphore, i_mmap_rwsem,
protects concurrent accesses to the i_mmap red-black tree.
The main function that removes memory mappings for a spe-
cific page is try_to_unmap. Each page has two fields for this
purpose: (i) a pointer to the address_space that it belongs to
and (ii) an atomic counter (_mapcount) that keeps the number
of active page mappings. Using the pointer to address_space,
try_to_unmap gets access to i_mmap and then iterates over
all VMAs that belong to this mapping. Through each VMA, it
has access to mm_struct which contains the root of the pro-
cess page table (pgd). It calculates the virtual address of the
mapping based on the VMA and the page, which is required
for traversing the page table. Then it has to check all active
VMAs of i_mmap if the specific page is mapped, which results
in many useless page table traversals. This is the purpose of
_mapcount, which limits the number of traversals. This strat-
egy is insufficient in some cases but it requires a very small
amount of memory for the reverse mappings. More specifi-
cally, in the case where _mapcount is greater than zero, we
may traverse the page table for a VMA where the requested
page is not mapped. This can happen in the case where a page
is mapped in several different VMAs in the same process, i.e.
with multiple mmap calls, or mapped in the address space
of multiple different processes. In such a case, we have un-
necessary page table traversals that introduce overheads and
consume CPU cycles. Furthermore, during this procedure,
i_mmap_rwsem is held as a read lock and as a write lock only

during mmap and munmap system calls. Previous research
shows that even a read lock can limit scalability in multicore
servers [15].

The current object-based reverse mappings in Linux have
two disadvantages: (1) with high likelihood they result in
unnecessary page table traversals, originating from i_mmap,
and (2) they require a coarse grain read lock to iterate i_mmap.
Other works have shown that in multi-core servers locks can
be expensive, even for read-write locks when acquired as read
locks [15]. These overheads are more pronounced in servers
with a NUMA memory organization [10].

To overcome these issues FastMap provides finer grained
locking, as follows: FastMap uses a structure with an entry
for each VMA, PVE. Each PVE keeps a per-core list of all
pages that belong to this VMA. A separate (per core) spin-
lock protects each of these lists. The lists are append-only
as unmapping a page from a different page table does not
require any ordering. We choose the appropriate list based on
the core that runs the append operation (smp_processor_id()).
These lists contain per_pve_rmap (PPR) entries. Each PPR
contains a tuple (V MA,virtual_address). These metadata are
sufficient to allow iterating over all mapped pages of a spe-
cific memory mapping in the case of an munmap operation.
Furthermore, each page contains an append-only list of active
PPRs, which are shared both for PVEs and pages. This list is
used when we need to evict a page that is already mapped in
one or more address spaces, in the event of memory pressure.

3.3 Dedicated DRAM Cache

An mmap address_space contains information about the back-
ing file or device and the required functions to interact with
the device in case of page reads and writes. To write back a
set of pages of a memory mapping, Linux iterates page_tree
in a lock-free manner with RCU and writes only the pages
that have the dirty tag enabled. Linux also keeps a per-core
LRU to find out which pages to evict. In the case of evictions,
Linux tries to remove clean pages in order not to wait for dirty
pages to do the writeback [37].

The Linux page-cache is tightly coupled with the swap-
per. For the memory-mapped I/O path, this dependency re-
sults in unpredictable evictions and bursty I/O to the stor-
age devices [43]. Therefore, FastMap implements its own
DRAM cache, managing evictions via an approximation
of LRU. FastMap has two types of LRU lists: one con-
taining only clean pages (clean_queue) and one containing
only dirty pages (dirty_queue). FastMap maintains per-core
clean_queues to reduce lock contention. We identify the ap-
propriate clean_queue as clean_queue_id = page_offset %
num_cores.

When there are no free pages during a page fault, FastMap
evicts only clean pages, similar to the Linux kernel [37], from
the corresponding clean_queue. We evict a batch (with a
configurable size, currently set to 512) of clean pages to amor-
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tize the cost of page table manipulation and TLB invalida-
tions. Each page eviction requires a TLB invalidation with the
flush_tlb function, if the page mapping is cached. flush_tlb
sends an IPI (Inter-Processor-Interrupt) to all cores, incurring
significant overheads and limiting scalability [3,4]. We imple-
ment a mechanism to reduce the number of calls to flush_tlb
function, using batching, as follows.

A TLB invalidation requires a pointer to the page table and
the page_offset. FastMap keeps a pointer to the page table
and a range of page_offsets. Then, we invoke flush_tlb for the
whole range. This approach may invalidate more pages, but
reduces the number of flush_tlb calls by a factor of the batch-
size of page evictions (currently 512). As the file mappings
are usually contiguous in the address space in data intensive
applications, in the common case false TLB invalidations
are infrequent. Thus, FastMap manages to maintain a high
number of concurrent I/Os to devices and increase device
throughput. LATR [33] proposes the use of an asynchronous
TLB invalidation mechanism based on message passing. In
our case, we cannot delay TLB invalidations as the pages
should be used immediately for page fault handling.

FastMap uses multiple threads to write dirty pages to the
underlying storage device (writeback). Each of these manages
its own dirty_queue. This design removes the need of syn-
chronization when we remove dirty pages from a dirty_queue.
During writebacks, FastMap merges consecutive I/O requests
to generate large I/O operations to the underlying device. To
achieve this, we use dirty_trees that keep dirty pages sorted
based on the device offset. As we have multiple dirty_trees,
we initialize an iterator for each tree and we combine the
iterator results using a min-max heap. When a writeback oc-
curs, we also move the page to the appropriate clean_queue
to make it available for eviction. As page writeback also re-
quires a TLB invalidation, we use the same mechanism as in
the eviction path to reduce the number of calls to the kernel
flush_tlb function. Each writeback thread checks the ratio of
dirty to clean pages and starts the writeback when the percent-
age is higher than 75% of the total cache pages. The cache
in FastMap currently uses a static memory buffer, allocated
upon module initialization and does not create any further
memory pressure to the Linux page cache. We also provide
a way to grow and shrink this cache at runtime, but we have
not yet evaluated alternative sizing policies.

To keep track of free pages FastMap uses a per-core free
list with a dedicated spinlock. During a major page fault i.e.,
when the page does not reside in the cache, the faulting thread
first tries to get a page from its local free list. If this fails, it
tries to steal a page from another core’s free list (randomly
selected). After num_cores unsuccessful tries, FastMap forces
page evictions to cleanup some pages. To maintain all free
lists balanced, each evicted page is added to the free list from
which we originally obtained the page.

Overall, FastMap with per-core data structures requires
more memory compared to the native Linux mmap. FastMap
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Figure 3: FastMap I/O path.

requires a single PFD, which is 1120 bytes, per file for all
memory mappings. A single PVE is about 512 bytes and a
single PPR is 24 bytes. We require a single PVE for each
mmap call, i.e. 1 : 1 with the Linux VMA struct. FastMap
requires a single PPR entry per PVE for each mapped page,
independently of how many threads access the same page.
In the setups we target, there is little sharing of files across
processes and we can therefore, assume that we only need one
PPR entry for each page in our DRAM cache. For instance,
assume that a single application maps 1000 files and uses
8GB of DRAM cache. This results in 1.64MB of additional
memory, independently of the size of files and the number of
threads. FastMap targets storage servers with large memory
spaces and can be applied selectively for the specific mount
points that hold the files of data-intensive applications. While
it is, in principle, possible to allow more fine-grain uses of
FastMap in Linux, we leave this possibility for future work.

Finally, the Linux kernel also provides private, file-backed
memory mappings. These are Copy-On-Write mappings and
writes to them do not reach the underlying file/device. Such
mappings are outside the scope of this paper, but they share
the same path in the Linux kernel to a large extent. Our pro-
posed techniques also apply to private file-backed mappings.
However, these mappings are commonly used in Linux kernel
to load binaries and shared libraries, resulting in a large degree
of sharing. We believe that it is not beneficial to use the in-
creased amount of memory required by FastMap to optimize
this relatively uncommon path.

3.4 Implementation
Figure 3 shows the I/O path in the Linux kernel and indicates
where FastMap is placed. FastMap is above VFS and thus is
independent of the underlying file system. This means that
common file systems such as XFS, EXT4, and BTRFS 1 can
benefit from our work.

FastMap provides a user interface for accessing both a
block device but also a file system through a user-defined
mount point. For the block device case, we implement a vir-
tual block device that uses our custom mmap function. All
other block device requests (e.g. read/write) are forwarded to

1FastMap has been successfully tested with all of these file systems.
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the underlying device. Requests for fetching or evicting pages
from FastMap are issued directly to the underlying device.

For the file system implementation we use WrapFS [59], a
stackable file system that intercepts all mmap calls to a spe-
cific mount point so that FastMap is used instead of the native
Linux mmap implementation. For fetching or evicting pages
from within FastMap we use direct I/O to the underlying file
system, bypassing the Linux page cache. All other file system
calls are forwarded to the underlying file system.

4 Experimental Methodology

In this section, we present the experimental methodology we
use to answer the following questions:

1. How does FastMap perform compared to Linux mmap?
2. How much does FastMap improve storage I/O?
3. How sensitive is FastMap to (a) file system choice and

(b) false TLB invalidations?
Our main testbed consists of a dual-socket server that is

equipped with two Intel(R) Xeon(R) CPU E5-2630 v3 CPUs
running at 2.4 GHz, each with 8 physical cores and 16 hyper-
threads for a total of 32 hyper-threads. The primary storage
device is a PCIe-attached Intel Optane SSD DC P4800X se-
ries [28] with 375 GB capacity. For the purposes of evaluating
scalability, we use an additional four-socket server. This four-
socket server is equipped with four Intel(R) Xeon(R) CPU
E5-4610 v3 CPUs running at 1.7 GHz, each with 10 physical
cores and 20 hyper-threads for a total of 80 hyper-threads.
Both servers are equipped with 256 GB of DDR4 DRAM at
2400 MHz and run CentOS v7.3, with kernel 4.14.72.

During our evaluation we limit the available capacity of
DRAM (using a kernel boot parameter) as required by differ-
ent experiments. In our evaluation we use datasets that both
fit and do not fit in main memory. This allows us to provide a
more targeted evaluation and separate the costs of the page-
fault path and the eviction path. To reduce variability in our
experiments, we disable swap and Transparent Huge Pages
(THP), and we set the CPU scaling governor to "performance".
In experiments where we want to stress the software path of
the Linux kernel we also use the null_blk [40] and pmem [47]
block devices. null_blk emulates a block device but ignores
the I/O requests issued to it. For null_blk we use the bio-
based configuration. pmem emulates a fast block device that
is backed by DRAM.

In our evaluation we first use a custom multithreaded mi-
crobenchmark. It uses a configurable number of threads that
issue load/store instructions at randomly generated offsets
within the memory mapped region. We ensure that each
load/store results in a page fault.

Second, we use a persistent key-value store. We choose
Kreon [43], a state-of-the-art persistent key-value store that
is designed to work with memory-mapped I/O. The design of
Kreon is similar to the LSM-tree, but it maintains a separate
B-Tree index per-level to reduce I/O amplification. Kreon

Workload
A 50% reads, 50% updates
B 95% reads, 5% updates
C 100% reads
D 95% reads, 5% inserts
E 95% scans, 5% inserts
F 50% reads, 50% read-modify-write

Table 1: Standard YCSB Workloads.

uses a log to keep user data. It uses memory-mapped I/O
to perform all I/O between memory and (raw) devices. Fur-
thermore, it uses Copy-On-Write (COW) for persistence, in-
stead of Write-Ahead-Logging. Kreon follows a single-writer,
multiple-reader concurrency model. Readers operate concur-
rently with writers using Lamport counters [34] per node for
synchronization to ensure correctness. For inserts and updates,
it uses a single lock per database; however, by using multiple
databases Kreon can support concurrent updates.

To improve single-database scalability in Kreon and make
it more suitable for evaluating FastMap, we implement the
second protocol that Bayer et al. propose [7]. This protocol
requires a read-write lock per node. It acquires the lock as
a read lock in every traversal from the root node to a leaf.
In the case of inserts or rebalance operations it acquires the
corresponding lock as a write lock. As every operation has to
acquire the root node read lock, this limits scalability [15]. To
overcome this limitation, we replace the read/write lock of the
root node with a Lamport counter and a lock. Every operation
that modifies the root node acquires the lock, changes the
Lamport counter, performs a COW operation, and then writes
the update in the COW node.

For Kreon we use the YCSB [18] workloads and more
specifically a C++ implementation [48] to remove overheads
caused by the JNI framework, as Kreon is highly efficient
and is designed to take advantage of fast storage devices. Ta-
ble 1 summarizes the YCSB workloads we use. These are the
proposed workloads, and we execute them in the author’s pro-
posed sequence [18], as follows: LoadA, RunA, RunB, RunC,
RunF, RunD, clear the database, and then LoadE, RunE.

Furthermore, we use Silo [54], an in-memory database
that also provides scalable transactions for modern multicore
machines. In this case, we use TPC-C [52], a transactional
benchmark, which models a retail operation and is a com-
mon benchmark for OLTP workloads. We also use Ligra [50],
a lightweight graph processing framework for shared mem-
ory with OpenMP-based parallelization. Specifically, we use
the Breadth First Search (BFS) algorithm. We use Silo and
Ligra to evaluate FastMap’s effectiveness in extending the
virtual address space of an application beyond physical mem-
ory over fast storage devices. For this reason we convert all
malloc/free calls of Ligra and Silo to allocate space over a
memory-mapped file on a fast storage device. We use the lib-
vmmalloc library from the Persistent Memory Development
Kit (PMDK) [45]. libvmmalloc transparently converts all dy-
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Figure 4: Scalability of random page faults for Linux and
FastMap, with up to 80 threads, using the null_blk device.

namic memory allocations to persistent memory allocations.
This allows the use of persistent memory as volatile mem-
ory without modifying the target application. The memory
allocator of libvmmalloc is based on jemalloc [30].

Finally, we evaluate FastMap using MonetDB-11.31.7 [8,
39], a column-oriented DBMS that is designed to use mmap
to access files instead of using the read/write API. We use the
TPC-H [53] benchmark, a warehouse read-mostly workload.

We run all experiments three times and we report the aver-
ages. In all cases the variation observed across runs is small.

5 Experimental Results

5.1 How does FastMap perform compared to
Linux mmap?

Microbenchmarks: Figure 1 shows that Linux mmap fails
to scale beyond eight threads on our 32-core server. FastMap
provides 3.7× and 6.6× more random read and write IOPS,
respectively, with 32 threads compared to Linux mmap. Fur-
thermore, both versions 4.14 and 5.4 of the Linux kernel
achieve similar performance. To further stress FastMap, we
use our 80-core server and the null_blk device. Figure 4 shows
that with 80 threads, FastMap provides 4.7× and 7× higher
random read and write IOPS respectively, compared to Linux
mmap. Furthermore, in both cases FastMap performs up to
38% better even in the case where there is little or no concur-
rency, when using a single thread.

Figure 4 shows that not only FastMap scales better com-
pared to Linux mmap, but also that FastMap sustains more
page faults per second. On the other hand FastMap does not
achieve perfect scalability. For this reason, we profile FastMap
using the random read page faults microbenchmark. We find
that the bottleneck is the read-write lock (mmap_sem) that
protects the red-black tree of active VMAs. This is the problem
that Bonsai [15] tackles. Specifically, with 10 cores the cost
of read_lock and read_unlock is 7.6% of the total execution
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Figure 5: FastMap and Linux mmap breakdown for read and
write page faults, with null_blk and 32 cores.

time, with 20 cores it becomes 25.4%, with 40 cores 32%,
and with 80 cores 37.4%. To confirm this intuition, we apply
Speculative Page Faults (SPF) [20], and attempt to use SRCU
(Sleepable RCU) instead of the read-write lock to protect the
red-black tree of active VMAs, an approach similar to Bonsai.
We use the Linux kernel patches from [19] as, at the time
of writing, they have not been merged in the Linux mainline.
As SPF works only for anonymous mappings, we modify it
to use FastMap for block-device backed memory-mappings.
Figure 4 shows that FastMap with SPF provides even better
scalability: 2.51× and 11.89× higher read IOPS compared to
FastMap without SPF and to Linux kernel, respectively. We
do not provide an evaluation of SPF without FastMap as it
(1) works only for anonymous mappings and (2) it could use
the same Linux kernel path that has scalability bottlenecks,
as we show in Section 3.1.

Figure 5 shows the breakdown of the execution time for
both random reads and writes. We profile these runs using perf
at 999Hz and plot the number of samples (y axis) that perf re-
ports. First, we see that for random reads Linux mmap spends
almost 80% of the time in manipulating the address_space
structure, specifically in the contented tree_lock that protects
the radix_tree which keeps all the pages of the mapping (see
Section 3). In FastMap we do not observe a single high source
of overhead. In the case of writes the overhead of this lock
is even more pronounced in Linux mmap. For each page that
is converted from read-only to read-write, Linux has to ac-
quire this lock again to set the tag. FastMap removes this
contention point as we keep metadata about dirty pages only
in the per-core red-black trees (Section 3.3). Therefore, we do
not modify the radix_tree upon the conversion of a read-only
page to a read-write page.

Figure 6 shows how each optimization in FastMap affects
I/O performance. Vanilla is the Linux mmap and basic is
FastMap with all the optimizations disabled, except the per-
core red-black tree. The per-core radix-tree optimization is
important, because with increasing core counts on modern
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Figure 6: Performance gains from different optimizations in
FastMap, as compared to "vanilla" Linux using null_blk and
32 cores.

servers (Section 3.1) the single radix tree lock is by far the
most contended lock. per-core cleanQ enables the per-core
LRU list for clean pages. The per-core freelists optimization
allows for scalable page allocation, resulting in significant
performance gains. Finally, the main purpose of per-core
dirtyQ is to enable higher concurrency when we convert a
page from read-only to read-write and allow for multiple evic-
tion threads with minimal synchronization. This optimization
mainly improves the write path, as is shown in Figure 6.

In-memory Graph Processing: We evaluate FastMap as
a mechanism to extend the virtual address space of an ap-
plication beyond the physical memory and over fast storage
devices. Using mmap (and FastMap) a user can easily map a
file over fast storage and provide an extended address space,
limited only by device capacity. We use Ligra [50], a graph
processing framework, a demanding workload in terms of
memory accesses and commonly operating on large datasets.
Ligra assumes that the dataset (and metadata) fit in main
memory. For our evaluation we generate a R-Mat [12] graph
of 100M vertices, with the number of directed edges is set
to 10× the number of vertices. We run BFS on the result-
ing 18GB graph, thus generating a read-mostly random I/O
pattern. Ligra requires about 64GB of DRAM throughout
execution. To evaluate FastMap and Linux mmap, we limit
the main memory of our 32-core server to 8 GB and we use
the Optane SSD device.

Figure 7 shows that BFS completes in 6.42s with FastMap
compared to 21.3s with default mmap and achieves a 3.31×
improvement. FastMap requires less than half the system time
(10.3% for FastMap vs. 27.38% for Linux) and stresses more
the underlying storage device as seen in iowait time (19.31%
for FastMap vs. 9.5% for Linux). This leaves 2.11× more
user-time available for the Ligra workload execution. Using a
pmem device the benefits of FastMap are even higher. Linux
mmap requires 21.9s for BFS, while FastMap requires only
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Figure 7: Execution time for Ligra running BFS with 32
threads and using an Optane SSD and a pmem device.

4.15s, i.e. a 5.27× improvement. Overall, Ligra induces a
highly concurrent I/O pattern that stresses the default mmap,
resulting in lock contention as described in Section 3.1 and as
evidenced by the increased system time. The default mmap
results in a substantial slowdown, even with a pmem device
that has throughput comparable to DRAM.

5.2 How much does FastMap improve storage
I/O?

Kreon Persistent Key-value Store: In this section we eval-
uate FastMap using Kreon, a persistent key-value store that
uses memory-mapped I/O and a dataset of 80M records. The
keys are 30 bytes long, with 1000 byte values. This results
in a total footprint of about 76GB. We issue 80M operations
for each of the YCSB workloads. For the in-memory experi-
ment, we use the entire DRAM space (256GB) of the testbed,
whereas for the out-of-memory experiment we limit available
memory to 16GB. In all cases we use the Optane SSD device.

Figure 8(a) illustrates the scalability of Kreon, using
FastMap, Linux mmap, and mmap-filter, with a dataset that fits
in main memory. The mmap-filter configuration is the default
Linux mmap implementation augmented with a custom kernel
module we have created to remove the unnecessary read I/O
from the block device for newly allocated pages. Using 32
threads (on the 32-core server), FastMap achieves 1.55× and
2.77× higher throughput compared to mmap-filter and mmap
respectively, using the LoadA (insert only) workload. Using
the RunC (read only) workload, FastMap achieves 9% and
28% higher throughput compared to mmap-filter and mmap
respectively. As we see mmap-filter performs always better,
therefore, for the rest of the Kreon evaluation we use this
configuration as our baseline.

Figure 8(b) shows the scalability of Kreon with FastMap
and mmap-filter (denoted as mmap) using a dataset that does
not fit in main memory. Using 32 threads (on the 32-core
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Figure 9: Kreon breakdown using FastMap and Linux mmap
for an out-of-memory experiment for LoadA YCSB workload,
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server) FastMap achieves 3.08× higher throughput compared
to mmap using LoadA (insert only) workload. Using the
RunC (read only) workload, FastMap achieves 1.65× higher
throughput compared to mmap. We see that even for the lower
core counts, FastMap outperforms mmap significantly. Next,
we provide an analysis on what affects scalability in mmap
and how FastMap behaves with an increasing number of cores.

Figure 9 shows the execution time breakdown for the out-
of-memory experiment with an increasing number of threads
for LoadA. kworker denotes the time spent in the eviction
threads both for Linux mmap and FastMap. pthread refers
to pthread locks, both mutexes and read-write locks as de-
scribed in Section 4. First, we observe here that in the case of
Linux mmap both iowait and idle time increases. For iowait
time, the small queue depth that mmap generates (discussed
in detail later) leads to sub-optimal utilization of the storage
device. Furthermore, the idle time comes from sleeping in
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Figure 10: Kreon breakdown using FastMap and Linux mmap
for an out-of-memory experiment with the RunC YCSB work-
load, with increasing number of cores (and equal number of
YCSB threads) and the Optane SSD.

mutexes in the Linux kernel. We also observe that the pgfault
time is lower in FastMap and this is more pronounced with
32 threads. In summary, the optimized page-fault path results
in 2.64× lower pgfault time and 12.3× lower iowait time
due to higher concurrency and larger average request size. In
addition, the optimized page-fault path results in 3.39× lower
idle time due to spinning instead of sleeping in the common
path. This is made possible as we apply per-core locks to
protect our data structures, which are less contended in the
common case. Similar to the previous figure, Figure 10 shows
the same metrics for RunC. In this case the breakdown is
similar both for FastMap and Linux mmap. With 32 threads
the notable differences are in pgfault and iowait. Linux mmap
spends 2.88× and 1.41× more time for pgfault and iowait, re-
spectively. The difference in pgfault comes from our scalable
design for the memory-mapped I/O path. As in this case both
systems always issue 4KB requests (page size), the difference
in iowait comes from the higher queue depth achieved on
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average by FastMap.
Figure 8(c) shows the average queue depth and average

request size for both FastMap and Linux mmap. Using 32
threads, FastMap produces higher queue depths for both
LoadA and RunC, which is an essential aspect for high
throughput with fast storage devices. With 32 threads in
LoadA FastMap results in an average queue size of 39.2,
while Linux mmap results in an average queue size of 17.5.
Furthermore, FastMap also achieves a larger request size of
100.2 sectors (51.2KB) compared to 51.8 sectors (26.5KB)
for Linux mmap. For RunC, the average request size is 8
sectors (4KB) for both FastMap and Linux mmap. However,
FastMap achieves (with 32 threads) an average queue size of
13 compared to 3 for Linux mmap.

For all YCSB workloads, Kreon with FastMap outperforms
Linux mmap by 2.48× on average (between 1.25−3.65×).

MonetDB: In this section we use TPC-H over MonetDB,
a column oriented DBMS that uses memory-mapped I/O in-
stead of read/write system calls. We focus on out-of-memory
workloads, using a TPC-H dataset with a scale factor SF = 50
(around 50GB in size). We limit available server memory to
16GB and we use the Optane SSD device. In all 22 queries
of TPC-H, system-time is below 10%. The use of FastMap
further decreases the system time (between 5.4% and 48.6%)
leaving more CPU cycles for user-space processing. In all
queries, the improvement on average is 6.06% (between
−7.2% and 45.7%). There are 4 queries where we have a
small decrease in performance. Using profiling we see that
this comes from the map_pages function that is responsi-
ble for the fault-around page mappings, and which is not as
optimized in the current prototype. In some cases we see
greater performance improvements compared to the reduc-
tion in system time. This comes from higher concurrency
to the devices (I/O depth) which also results in higher read
throughput. Overall, our experiments with MonetDB show
that a complex real-life memory-based DBMS can benefit
from FastMap. The queries produce a sequential access pat-
tern to the underlying files which shows the effectiveness of
FastMap also for this case.

5.3 How sensitive is FastMap to (a) file system
choice and (b) false TLB invalidations?

In this section we show how underlying file system affects
FastMap performance. Furthermore, we also evaluate the im-
pact of batched TLB invalidations. For these purposes we
use Silo [54], an in-memory key-value store that provides
scalable transactions for multicores. We modify Silo to use a
memory-mapped heap over both mmap and FastMap.

File system choice: Table 2 shows the throughput and av-
erage latency of TPC-C over Silo. We use both EXT4 and

Table 2: Throughput and average latency for TPC-C.
xput (kops/sec) latency (ms)

mmap-EXT4-Optane SSD 4.3 7.43
mmap-EXT4-pmem 4.2 7.62

FastMap-EXT4-Optane SSD 226 0.141
FastMap-EXT4-pmem 319 0.101
FastMap-NOVA-pmem 344 0.009
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Figure 11: Execution time breakdown for Silo running TPC-C
using different file systems and the pmem device.

NOVA. We also use XFS and BTRFS but we do not include
these as they exhibit lower performance. We see that FastMap
with EXT4 provides 52.5× and 75.9× higher throughput us-
ing an NVMe and a pmem device respectively, compared
to mmap. We also see similar improvement in the average
latency of TPC-C queries. With NOVA and a pmem de-
vice, FastMap achieves 1.07× higher throughput compared to
EXT4. In all cases we do not use DAX mmap, as we have to
provide DRAM caching over the persistent device. Therefore,
FastMap improves performance of memory-mapped files over
all file systems, although the choice of a specific file system
does affect performance. In this case we see even larger per-
formance improvements compared to Ligra and Kreon. Silo
requires more page faults and it accesses a smaller portion of
each page. Therefore, Silo is closer to a scenario with a single
large file/device and a large number of threads generating
page faults at random offsets. Consequently, it exhibits more
of the issues we identify with Linux mmap compared to the
other benchmarks: Kreon performs mostly sequential I/O for
writes and a large part of a page is indeed needed when we
do reads. From our evaluation we see that Ligra has better
spatial locality compared to Silo and this explains the larger
improvements we observe in Silo.

Figure 11 shows the breakdown of execution time for the
previous experiments. In the case of Linux mmap with EXT4,
most of the system time goes to buffer management: alloca-
tion of pages, LRUs, evictions, etc. In FastMap, this percent-
age is reduced from 74.2% to 10.3%, for both NOVA and
EXT4. This results in more user-time available to TPC-C and
increased performance. Finally, NOVA reduces system time
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compared to EXT4 and results in the best performance for
TPC-C over Silo.

False TLB invalidations: FastMap uses batched TLB in-
validations to provide better scalability and thus increased
performance. Our approach reduces the number of calls to
flush_tlb_mm_range(). This function uses Interprocessor In-
terrupts (IPI) to invalidate TLB entries in all cores and can
result in scalability bottlenecks [3, 4, 16]. Batching of TLB
invalidations can potentially result in increased TLB misses.
In TPC-C over Silo, batching for TLB invalidations results in
25.5% more TLB misses (22.6% more load and 50.5% more
store TLB misses). On the other hand, we have 24% higher
throughput (ops/s) and 23.8% lower latency (ms). Using pro-
filing, we see that without batching of TLB invalidations the
system time spent in flush_tlb_mm_range() increases from
0.1% to 20.3%. We choose to increase the number of TLB
misses in order to provide better scalability and performance.
Other works [3,4,16] present alternative techniques to provide
scalable TLB shootdown without increasing the number of
TLB invalidations and can be potentially applied in FastMap
for further performance improvements.

6 Related Work

We categorize related work in three areas: (a) replacing
read/write system calls with mmap for persistence, (b) provid-
ing scalable address spaces, and (c) extending virtual address
spaces beyond physical memory limits.

Using memory-mapped I/O in data-intensive applications:
Both MonetDB [8] and MongoDB [13] (with MMAP_v1 stor-
age engine) are popular databases that use mmap to access
data. When data fits in memory, mmap performs very well.
It allows the application to access data at memory speed and
removes the need for user-space cache lookups. Facebook’s
RocksDB [24], a persistent key-value store, provides both
read/write and mmap APIs to access files. The developers
of RocksDB state [26] that using mmap for an in-memory
database with a read-intensive workload increases perfor-
mance. However, they also state [25] that mmap sometimes
causes problems when data does not fit in memory and is
managed by a file system over a block device.

Tucana [42] and Kreon [43] are write-optimized persistent
key-value stores that are designed to use memory-mapped
I/O for persistence. The authors in [42] show that for a write-
intensive workload the memory-mapped I/O results in exces-
sive and unpredictable traffic to the devices, which results
in freezes and increases tail-latency. Kreon [43] provides a
custom memory-mapped I/O path inside the Linux kernel that
improves write-intensive workloads and reduces the latency
variability of Linux mmap. In this work, we address scalabil-
ity issues and also present results for memory-mapped I/O

with workloads beyond key-value stores.
DI-MMAP [22, 23], removes the swapper from the crit-

ical path and implements a custom (FIFO based) eviction
policy using a fixed-size memory buffer for all mmap calls.
This approach provides significant improvement compared to
the default Linux mmap for HPC applications. We evaluate
FastMap using more data-intensive applications, representa-
tive of data analytics and data serving workloads. In particular,
our work assumes higher levels of I/O concurrency, and ad-
dresses scalability concerns with higher core counts.

FlashMap [27] combines memory (page tables), storage
(file system), and device-level (FTL) indirections and checks
in a single layer. FastMap provides specific optimizations only
for the memory level and results in significant improvements
in a file system and device agnostic manner.

2B-SSD [6] leverages SSD internal DRAM and the byte
addressability of the PCIe interconnect to provide a dual,
byte and block-addressable SSD device. It provides opti-
mized write-ahead logging (WAL) over 2B-SSD for popu-
lar databases and results in significant improvements. Flat-
Flash [1] moves this approach further and provides a unified
memory-storage hierarchy that results in even larger perfor-
mance improvements. Both of these works move a large part
of their design inside the device. FastMap works in a device-
agnostic manner and provides specific optimizations in the
operating system layer.

UMap [44] is a user-space memory-mapped I/O framework
which adapts different policies to application characteristics
and storage features. Handling page faults in user-space (us-
ing userfaultfd [31]) introduces additional overheads that are
not acceptable in the case of fast storage devices. On the
other hand, techniques proposed by FastMap can also be used
in user-space memory-mapped I/O frameworks and provide
better scalability in the page-fault path.

Similar to [14], FastMap introduces a read-ahead mech-
anism to amortize the cost of pre-faulting and improve se-
quential I/O accesses. However, our main focus is to reduce
synchronization overheads in the common memory-mapped
I/O path and enhance scalability on multicore servers. A scal-
able I/O path enables us to maintain high device queue depth,
an essential property for efficient use of fast storage devices.

Byte-addressable persistent memory DIMMs, attached in
memory slots, can be accessed similarly to DRAM with the
processor load/store instructions. Linux provides Direct Ac-
cess (DAX), a mechanism that supports direct mapping of
persistent memory to user address space. File systems that
provide a DAX mmap [17, 21, 56–58] bypass I/O caching in
DRAM. On the other hand, other works [29] have shown that
DRAM caching benefits applications when the working set
fits in DRAM and can hide higher persistent memory latency
compared to DRAM (by up to ∼ 3×). Accordingly, FastMap
uses DRAM caching and supports both block-based flash
storage and byte-addressable persistent memory. FastMap
will benefit all DAX mmap file systems that need to provide
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DRAM caching for memory-mapped I/O, as FastMap is file
system agnostic.

Providing a scalable virtual address space: Bonsai [15]
shows that anonymous memory mappings, i.e. not backed by
a file or device, suffer from scalability issues. This type of
memory mapping is mainly used for user memory allocations,
e.g. malloc. The scalability bottleneck in this case is due to a
contended read-write lock, named mmap_sem, that protects
access to a red-black tree that keeps VMAs (valid virtual
address spaces ranges). In the case of page faults, this lock is
acquired as read lock. In the case of mmap/munmap this lock
is acquired as write lock. Even in the read lock case, NUMA
traffic in multicores limits scalability. Bonsai proposes the use
of RCU-based binary tree for lock-free lookups, resulting in a
system scaling up to 80 cores. Bonsai removes the bottleneck
from concurrent page faults, but still serializes mmap/munmap
operations even in non-overlapping address ranges.

In Linux, shared mappings backed by a file or device have
a different path in the kernel, thus requiring a different design
to achieve scalability. There are other locks (see Section 3.1)
that cause scalability issues and mmap_sem does not result in
any performance degradation. As we see from our evaluation
of FastMap, using 80 cores the time spent in mmap_sem is
37.4% of the total execution time; therefore, Bonsai is com-
plementary to our work and will also benefit our approach.
Furthermore, authors in [32] propose an alternative approach
to provide scalable address space operations, by introduc-
ing scalable range locks to accelerate non-conflicting virtual
address space operations in Linux.

RadixVM [16] addresses the problem of serialization of
mmap/munmap in non-overlapping address space ranges. This
work is done in the SV6 kernel and can also benefit from
FastMap in a similar way to Bonsai.

The authors in [9] propose techniques to scale Linux for
a set of kernel-intensive applications, but do not tackle the
scalability limitations of memory-mapped I/O. In pedsort
authors modify the application to use one process per core for
concurrency and avoid the contention over the shared address
space. In this paper we solve this issue at the kernel level, thus
providing benefits to all user applications.

Extending the virtual address space over storage: The
authors in [51] claim that by using mmap a user can effectively
extend the main memory with fast storage devices. They pro-
pose a page reclamation procedure with a new page recycling
method to reduce context switches. This makes it possible
to use extended vector I/O – a parallel page I/O method. In
our work, we implement a custom per-core mechanism for
managing free pages. We also preallocate a memory pool to
remove the performance bottlenecks identified in [51]. Addi-
tionally, we address scalability issues with memory-mapped
I/O, whereas the work in [51] examines setups with up to 8
cores, where Linux kernel scales well.

FlashVM [49] uses a dedicated flash device for swapping
virtual memory pages and provides flash-specific optimiza-
tions for this purpose. SSDAlloc [5] implements a hybrid
DRAM/flash memory manager and a runtime library that al-
lows applications to use flash for memory allocations in a
transparent manner. SSDAlloc proposes the use of 16−32×
more flash than DRAM compared to FlashVM and to handle
this increase they introduce a log-structured object store. In-
stead, FastMap targets the storage I/O path and reduces the
overhead of memory-mapped I/O. FastMap is not a replace-
ment for swap nor does it provide specific optimizations to
extend the process address space over SSDs.

NVMalloc [55] enables client applications in supercom-
puters to allocate and manipulate memory regions from a
distributed block-addressable SSD store (over FUSE [36]).
It exploits the memory-mapped I/O interface to access local
or remote NVM resources in a seamless fashion for volatile
memory allocations. NVMalloc uses Linux mmap. Conse-
quently, it can also benefit from FastMap at large thread
counts combined with fast storage devices.

SSD-Assisted Hybrid Memory [41] augments DRAM with
SSD storage as an efficient cache in object granularity for
Memcached [38]. Authors claim that managing a cache at a
page granularity incurs significant overhead. In our work, we
provide an application agnostic approach at page granularity
and we optimize scalability in the common path.

7 Conclusions

In this paper we propose FastMap, an optimized memory-
mapped I/O path in the Linux kernel that provides a low-
overhead and scalable way to access fast storage devices in
multi-core servers. Our design enables high device concur-
rency, which is essential for achieving high throughput in
modern servers. We show that FastMap scales up to 80 cores
and provides up to 11.8× more random IOPS compared to
mmap. Overall, FastMap addresses important limitations of
Linux mmap and makes it appropriate for data-intensive ap-
plications in multi-core servers over fast storage devices.
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