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Abstract

Cryptocurrencies, based on and led by Bitcoin, have
shown promise as infrastructure for pseudonymous on-
line payments, cheap remittance, trustless digital as-
set exchange, and smart contracts. However, Bitcoin-
derived blockchain protocols have inherent scalability
limits that trade off between throughput and latency,
which withhold the realization of this potential.

This paper presents Bitcoin-NG (Next Generation), a
new blockchain protocol designed to scale. Bitcoin-NG
is a Byzantine fault tolerant blockchain protocol that is
robust to extreme churn and shares the same trust model
as Bitcoin.

In addition to Bitcoin-NG, we introduce several novel
metrics of interest in quantifying the security and effi-
ciency of Bitcoin-like blockchain protocols. We imple-
ment Bitcoin-NG and perform large-scale experiments
at 15% the size of the operational Bitcoin system, us-
ing unchanged clients of both protocols. These exper-
iments demonstrate that Bitcoin-NG scales optimally,
with bandwidth limited only by the capacity of the indi-
vidual nodes and latency limited only by the propagation
time of the network.

1 Introduction

Bitcoin has emerged as the first widely-deployed, de-
centralized global currency, and sparked hundreds of
copycat currencies. Overall, cryptocurrencies have gar-
nered much attention from the financial and tech sec-
tors, as well as academics; achieved wide market pen-
etration in underground economies [38]; reached a $12B
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market cap; and attracted close to $1B in venture cap-
ital [15]. The core technological innovation power-
ing these systems is the Nakamoto consensus proto-
col for maintaining a distributed ledger known as the
blockchain. The blockchain technology provides a de-
centralized, open, Byzantine fault-tolerant transaction
mechanism, and promises to become the infrastructure
for a new generation of Internet interaction, including
anonymous online payments [14], remittance, and trans-
action of digital assets [16]. Ongoing work explores
smart digital contracts, enabling anonymous parties to
programmatically enforce complex agreements [31, 56].

Despite its potential, blockchain protocols face a sig-
nificant scalability barrier [51, 36, 19, 5]. The maximum
rate at which these systems can process transactions is
capped by the choice of two parameters: block size and
block interval. Increasing block size improves through-
put, but the resulting bigger blocks take longer to propa-
gate in the network. Reducing the block interval reduces
latency, but leads to instability where the system is in
disagreement and the blockchain is subject to reorganiza-
tion. Bitcoin currently targets a conservative 10 minutes
between blocks, yielding 10-minute expected latencies
for transactions to be encoded in the blockchain. The
block size is currently set at IMB, yielding only 1 to 3.5
transactions per second for Bitcoin for typical transac-
tion sizes. Proposals for increasing the block size are
the topic of heated debate within the Bitcoin commu-
nity [47].

In this paper, we present Bitcoin-NG, a scalable
blockchain protocol, based on the same trust model as
Bitcoin. Bitcoin-NG’s latency is limited only by the
propagation delay of the network, and its bandwidth is
limited only by the processing capacity of the individual
nodes. Bitcoin-NG achieves this performance improve-
ment by decoupling Bitcoin’s blockchain operation into
two planes: leader election and transaction serialization.
It divides time into epochs, where each epoch has a sin-
gle leader. As in Bitcoin, leader election is performed
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randomly and infrequently. Once a leader is chosen, it is
entitled to serialize transactions unilaterally until a new
leader is chosen, marking the end of the former’s epoch.

While this approach is a significant departure from
Bitcoin’s operation, Bitcoin-NG maintains Bitcoin’s se-
curity properties. Implicitly, leader election is already
taking place in Bitcoin. But in Bitcoin, the leader is in
charge of serializing history, making the entire duration
of time between leader elections a long system freeze.
In contrast, leader election in Bitcoin-NG is forward-
looking, and ensures that the system is able to continually
process transactions.

Evaluating the performance and functionality of new
consensus protocols is a challenging task. To help per-
form this quantitatively and provide a foundation for
the comparison of alternative consensus protocols, we
introduce several metrics to evaluate implementations
of Nakamoto consensus. These metrics capture perfor-
mance metrics such as protocol goodput and latency, as
well as various aspects of its security, including its ability
to maintain consensus and resist centralization.

We evaluate the performance of Bitcoin-NG on a large
emulation testbed consisting of 1000 nodes, amount-
ing to over 15% of the current operational Bitcoin net-
work [41]. This testbed enables us to run unchanged
clients, using realistic Internet latencies. We com-
pare Bitcoin-NG with the original Bitcoin client, and
demonstrate the critical trade-offs inherent in the original
Bitcoin protocol. Controlling for network bandwidth, re-
ducing Bitcoin’s latency by decreasing the block interval
and improving its throughput by increasing the block size
both yield adverse effects. In particular, fairness suffers,
giving large miners an advantage over small miners. This
anomaly leads to centralization, where the mining power
tends to be concentrated under a single controller, break-
ing the basic premise of the decentralized cryptocurrency
vision. Additionally, mining power is lost, making the
system more vulnerable to attacks. In contrast, Bitcoin-
NG improves latency and throughput to the maximum al-
lowed by network conditions and node processing limits,
while avoiding the fairness and mining power utilization
problems.

In summary, this paper makes three contributions.
First, it outlines the Bitcoin-NG scalable blockchain pro-
tocol, which achieves significantly higher throughput and
lower latency than Bitcoin while maintaining the Bit-
coin trust assumptions. Second, it introduces quantita-
tive metrics for evaluating Nakamoto consensus proto-
cols. These metrics are designed to ground the ongoing
discussion over parameter selection in Bitcoin-derived
currency. Finally, it quantifies, through large-scale ex-
periments, Bitcoin-NG’s robustness and scalability.

2 Model and Goal

The system is comprised of a set of nodes .#” connected
by a reliable peer-to-peer network. Each node can poll
a random oracle [6] as a random bit source. Nodes can
generate key-pairs, but there is no trusted public key in-
frastructure.

The system employs a cryptopuzzle system, defined
by a cryptographic hash function H. The solution to
a puzzle defined by the string y is a string x such that
H(y|x) — the hash of the concatenation of the two —
is smaller than some target. Each node i has a limited
amount of compute power, called mining power, mea-
sured by the number of potential puzzle solutions it can
try per second. A solution to a puzzle constitutes a proof
of work, as it statistically indicates the amount of work a
node had to perform in order to find it.

At any time 7, a subset of nodes B(r) C .4 are Byzan-
tine and behave arbitrarily, controlled by a single adver-
sary. The other nodes are honest — they abide by the
protocol. The mining power of each node i is m(i). The
mining power of the Byzantine nodes is less than 1/4 of
the total compute power at any given time:

W Y m(b)<% Y min)

beB(r) neN

because proof-of-work blockchains, Bitcoin-NG in-
cluded, are vulnerable to selfish mining by attackers
larger than 1/4 of the network [25].

Nakamoto Consensus

The nodes are to implement a replicated state machine
(RSM) [33, 50]. Properties of the system can be com-
pared to those of classical consensus [46]:

Termination There exists a time difference function
A(-) such that, given a time f and a value 0 < € < 1,
the probability is smaller than € that at times ¢/,7" >
t + A(€) a node returns two different states for the
machine at time ¢.

Agreement There exists a time difference function A(+)
such that, given a 0 < € < 1, the probability that at
time ¢ two nodes return different states for t — A(g)
is smaller than &.

Validity If the fraction of mining power of Byzantine
. . . ZheB(1)m(b>

nodes is bounded by f, ie., Vt: Toey mln) < f.7

then the average fraction of state machine transi-

tions that are not inputs of honest nodes is smaller

than f.

3 Bitcoin and its Blockchain Protocol

Bitcoin is a distributed, decentralized crypto-currency [7,
8, 9, 43], which implicitly defined and implemented
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Nakamoto consensus. Bitcoin uses the blockchain pro-
tocol to serialize transactions of the Bitcoin currency
among its users. The replicated state machine maintains
the balances of the different users, and its transitions are
transactions that move funds among them. This state ma-
chine is managed by the system nodes, called miners.

Each user commands addresses, and sends Bitcoins
by forming a transaction from her address to another’s
address and sending it to the nodes. More explicitly, a
transaction is from the output of a previous transaction
to a specific address. An output is spent if it is the in-
put of another transaction. A client owns x Bitcoins at
time 7 if the aggregate of unspent outputs to its address
is x. Transactions are protected with cryptographic tech-
niques that ensure only the rightful owner of a Bitcoin
address can transfer funds from it. Miners accept trans-
actions only if their sources have not been spent, thereby
preventing users from double-spending their funds. The
miners commit the transactions into a global append-
only log called the blockchain.

The blockchain records transactions in units of blocks.
Each block includes a unique ID, and the ID of the pre-
ceding block. The first block, dubbed the genesis block,
is defined as part of the protocol. A valid block contains
(1) a solution to a cryptopuzzle involving the hash of
the previous block, (2) the hash (specifically, the Merkle
root) of the transactions in the current block, which have
to be valid, and (3) a special transaction, called the coin-
base, crediting the miner with the reward for solving the
cryptopuzzle. This process is called Bitcoin mining, and,
by slight abuse of terminology, we refer to the creation
of blocks as block mining. The specific cryptopuzzle is
a double-hash of the block header whose result has to be
smaller than a set value. The problem difficulty, set by
this value, is dynamically adjusted such that blocks are
generated at an average rate of one every ten minutes.

Mining When a miner creates a block, she is compen-
sated for her efforts with Bitcoins. This compensation
includes a per-transaction fee paid by the users whose
transactions are included, as well as an amount of new
Bitcoins that did not exist before.

Forks Any miner may add a valid block to the chain
by simply publishing it over an overlay network to all
other miners. If multiple miners create blocks with the
same preceding block, the chain is forked into branches,
forming a tree. Other miners may subsequently add new
valid blocks to any of these branches. When a miner
tries to add a new block after an existing block, we say
it mines on the existing block. If this block is a leaf of a
branch, we say he mines on the branch.

To resolve forks, the protocol prescribes on which
chain the miners should mine. The criterion is that the
winning chain is the heaviest one, that is, the one that

required (in expectancy) the most mining power to gen-
erate. All miners add blocks to the heaviest chain of
which they know, with random tie-breaking. We note
that choosing a longest branch at random is suggested
by Eyal and Sirer [25]. The operational client currently
chooses the first branch it has heard of, making it more
vulnerable in the general case. The heaviest chain a node
knows is the serialization of RSM inputs it knows, and
hence describes the RSM’s state. The formation of forks
is undesirable, as they indicate that there is no globally-
agreed RSM state.

Branches and blocks outside the main chain are called
pruned (and not orphans, as is common in informal dis-
cussions, since they have a parent in the block tree).
Transactions in pruned blocks are ignored. They can be
placed in the main chain at any later time, unless a con-
tradicting transaction (that spends the same outputs) was
placed there in the meantime.

Block dissemination over the Bitcoin overlay network
takes seconds, whereas the average mining interval is ten
minutes. Therefore, accidental bifurcation occurs on av-
erage about once every 60 blocks [18].

We are now ready to describe Bitcoin-NG.

4 Bitcoin-NG

Bitcoin-NG is a blockchain protocol that serializes trans-
actions, much like Bitcoin, but allows for better latency
and bandwidth without sacrificing other properties.

The protocol divides time into epochs. In each epoch,
a single leader is in charge of serializing state machine
transitions. To facilitate state propagation, leaders gener-
ate blocks. The protocol introduces two types of blocks:
key blocks for leader election and microblocks that con-
tain the ledger entries. Each block has a header that con-
tains, among other fields, the unique reference of its pre-
decessor; namely, a cryptographic hash of the predeces-
sor header.

We detail the operation of the protocol in this section
and explain its incentive system in Section 5.

4.1 Key Blocks and Leader Election

Key blocks are used to choose a leader. Like a Bitcoin
block, a key block contains the reference to the previ-
ous block (either a key block or a microblock, usually
the latter), the current Unix time, a coinbase transaction
to pay out the reward, a target value, and a nonce field
containing arbitrary bits. As in Bitcoin, for a key block
to be valid, the cryptographic hash of its header must be
smaller than the target value. Unlike Bitcoin, a key block
contains a public key that will be used in subsequent mi-
croblocks.

As in Bitcoin, for a miner to generate a key block, it
must iterate through nonce values until the crypto-puzzle
condition is met. Consequently, the interval between
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Figure 1: Structure of the Bitcoin-NG chain. Mi-
croblocks (circles) are signed with the private key match-
ing the public key in the last key block (squares). Fee is
distributed 40% to the leader and 60% to the next one.

consecutive key blocks is exponentially distributed. To
maintain a set average rate, the difficulty is adjusted by
deterministically changing the target value based on the
Unix time in the key block headers.

In case of a fork, just as in Bitcoin, the nodes pick
the branch with the most work, aggregated over all key
blocks, with random tie breaking.

4.2 Microblocks

Once a node generates a key block it becomes the leader.
As a leader, the node is allowed to generate microblocks
at a set rate smaller than a predefined maximum. The
maximum rate is deterministic, and can be much higher
than the average interval between key blocks. The size
of microblocks is bounded by a predefined maximum.
Specifically, if the timestamp of a microblock is in the fu-
ture, or if its difference with its predecessor’s timestamp
is smaller than the minimum, then the microblock is in-
valid. This bound prohibits a leader (malicious, greedy,
or broken) from swamping the system with microblocks.

A microblock contains ledger entries and a header.
The header contains the reference to the previous block,
the current Unix time, a cryptographic hash of its ledger
entries, and a cryptographic signature of the header. The
signature uses the private key that matches the public key
in the latest key block in the chain. For a microblock to
be valid, all its entries must be valid according to the
specification of the state machine, and the signature has
to be valid. Figure 1 illustrates the structure.

Note that microblocks do not affect the weight of the
chain, as they do not contain proof of work. This is crit-
ical for keeping the incentives aligned, as explained in
Section 5.

4.3 Confirmation Time

When a miner generates a key block, he may not have
heard of all microblocks generated by the previous
leader. If microblock generation is frequent, this can
be the common case on leader switching. The result
is a short microblock fork, as illustrated in Figure 2.
Such a fork is observed by any node that receives the
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o . D .
tA, 224,
413 . w1y -

- [FO-OTO-©-

Figure 2: When microblocks are frequent, short forks
occur on almost every leader switch.

to-be-pruned microblock (blocks Az and A4 in the fig-
ure) before the new key block (block B in the figure). It
is resolved once the key block propagates to that node.
Therefore, a user that sees a microblock should wait for
the propagation time of the network before considering
it in the chain, to make sure it is not pruned by a new key
block.

4.4 Remuneration

To motivate mining, a leader is compensated for her ef-
forts by the protocol. Remuneration is comprised of two
parts. First, each key block entitles its generator a set
amount. Second, each ledger entry carries a fee. This
fee is split by the leader that places this entry in a mi-
croblock, and the subsequent leader that generates the
next key block. Specifically, the current leader earns 40%
of the fee, and the subsequent leader earns 60% of the
fee, as illustrated in Figure 1. The choice of this distribu-
tion is explained in Section 5.

In practice, the remuneration is implemented by hav-
ing each key block contain a single coinbase transaction
that mints new coins and deposits the funds to the current
and previous leaders. As in Bitcoin, this transaction can
only be spent after a maturity period of 100 key blocks,
to avoid non-mergeable transactions following a fork.

4.5 Microblock Fork Prevention

Since microblocks do not require mining, they can be
generated cheaply and quickly by the leader, allowing
it to split the brain of the system, publishing differ-
ent replicated-state-machine states to different machines.
This allows for double spending attacks, where different
nodes believe the same coins were spent with different
transactions.

To demotivate such behavior, we use a dedicated
ledger entry that invalidates the revenue of fraudulent
leaders. Past work has used such entries in different
contexts [22, 4, 13]. In Bitcoin-NG, the entry is called
a poison transaction, and it contains the header of the
first block in the pruned branch as a proof of fraud. The
poison transaction has to be placed on the blockchain
within the maturity window of the misbehaving leader’s
key block, and before the revenue is spent by the mali-
cious leader. Besides invalidating the compensation sent
to the leader that generated the fork, a poison transaction
grants the current leader a fraction of that compensation,
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e.g., 5%. The choice of this value is explained in Sec-
tion 5.

Only one poison transaction can be placed per cheater,
even if the cheater creates many forks. The cheater’s rev-
enue that is not relayed to the poisoner is lost.

5 Security Analysis

5.1 Incentives

This section describes how miners with capacity smaller
than 1/4 of the total network are incentivized to follow
the protocol. Specifically, miners are motivated to (1)
include transactions in their microblocks, (2) extend the
heaviest chain, and (3) extend the longest chain. Unlike
in Bitcoin, the latter two points are not identical.

Heaviest Chain Extension The motivation for extend-
ing the heaviest chain is the same as in Bitcoin. Since
the honest majority will extend the heaviest chain, it will
remain the main chain with high probability. A dishon-
est majority may arbitrarily switch to any branch and
win [32]. A minority choosing to mine on another branch
will not catch up with an honest majority, therefore it will
mine on the main chain to ensure its revenues. We there-
fore argue that the guarantees of Bitcoin-NG are similar
to those of Bitcoin [40] with respect to the Termination
and Agreement properties of Nakamoto consensus.

Microblocks carry no weight, not even as a secondary
index. If they did, it would increase the system’s vul-
nerability to selfish mining [24, 44, 49]. In selfish min-
ing, an attacker withholds blocks it has mined and pub-
lishes them judiciously to obtain a superior presence in
the main chain. If microblocks carried weight, an at-
tacker could keep secret microblocks and gain advantage
by mining on microblocks unpublished to anyone else.

We conclude that Bitcoin-NG does not introduce a
new vulnerability to selfish mining strategies, and so
Bitcoin-NG is resilient to selfish mining against attack-
ers with less than 1/4 of the mining power. We therefore
argue that the guarantees of Bitcoin-NG are similar to
those of Bitcoin with respect to the validity property of
Nakamoto consensus.

Transaction Inclusion A leader earns 40% of a trans-
action’s revenue by placing it in a microblock. However,
he could potentially improve his revenue by secretly try-
ing to earn 100% of the fee. To do so, first, the leader
creates a microblock with the transaction, but does not
publish it. Then, he tries to mine on top of this se-
cret microblock, while other miners mine on older mi-
croblocks. If the leader succeeds in mining the subse-
quent key block, he obtains 100% of the transaction fees.
Otherwise, he waits until the transaction is placed in a
microblock by another miner and tries to mine on top of
it.

Consider a miner whose mining power ratio out of
all mining power in the system is . Denote by 7ieader
the revenue of the leader from a transaction, leaving
(1 — Fleader) for the next miner. In Bitcoin-NG, we have
Feader = 40%. The value of rieager has to be such that
the average revenue of a miner trying the above attack
is smaller than his revenue placing the transaction in a
public microblock as it should:

Win 100% Lose 100%, but mine after txn

—
o x 100%+ (1 — OC) X o X (100%_rleader) < Fleader >

therefore rieager > 1 — 1 J:;f‘az. Assuming the power of

an attacker is bounded by 1/4 of the mining power, we
obtain rieadqer > 37%, hence rieader = 40% is within range.

Longest Chain Extension To increase his revenue
from a transaction, a miner could avoid the transaction’s
microblock and mine on a previous block. Then he
would place the transaction in its own microblock and
try mining the subsequent key block. His revenue in this
case must be smaller than his revenue by mining on the
transaction’s microblock as prescribed:

Mine next

Mine on existing
key block

microblock

Place in
microblock

—~ =
Meader + OC(]OO% - rleader) < 100% — ricader

therefore rieader < %:—g Assuming the power of an at-
tacker is bounded by 1/4 of the mining power, we obtain
Fleader < 43%, hence rieaqer = 40% is within range.

Optimal Network Assumption Incentive compatibil-
ity cannot be maintained in Bitcoin-NG for an attacker
larger than about 29%. For larger attackers, the inter-
section of the two conditions is empty. But this limit
does not come into play in the general case, where
Bitcoin-NG, like Nakamoto’s blockchain with random
tie breaking [25], are secure only against attackers
smaller than 23.2% [49] due to selfish mining attacks.
However, under optimal network assumptions, Bit-
coin’s blockchain is more resilient than Bitcoin-NG: As-
suming a zero latency network where an attacker cannot
rush messages — i.e., receive a message and send its own
such that other nodes receive the attacker’s message be-
fore the original one — Bitcoin is believed to be secure
against selfish mining attackers of size up to almost 1/3.

Bypassing Fee Distribution We note that a user can
circumvent the 40 — 60% transaction fee distribution by
paying no transaction fee, and instead paying the current
leader directly, using the coinbase address of the leader’s
key block. However, a user does not gain a significant ad-
vantage by doing so. As we have seen above, paying only
the current leader increases the direct motivation of the
current leader to place the transaction in a microblock,
but reduces the motivation of future miners to mine on
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this microblock. Moreover, if the leader does not include
the transaction before the end of its epoch, subsequent
leaders will have no motivation to place the transaction.

Other motives for fee manipulation, such as paying a
large fee to encourage miners to choose a certain branch
after a fork, apply to Bitcoin as well as Bitcoin-NG, and
are outside the scope of this work.

5.2 Other concerns

Wallet Security The possibility of placing a poison
transaction allows an attacker that obtains a leader’s pri-
vate key to revoke his revenue retroactively and earn a
small amount. However, such an attacker is better off
trying to steal the full leader’s revenue when it becomes
available, therefore the introduction of the poison trans-
action does not add a significant vulnerability.

Censorship Resistance A central goal of Bitcoin is to
prevent a malicious discriminating miner from dropping
a user’s transactions. Censorship resistance is not im-
pacted by the frequent microblocks of Bitcoin-NG.

First, we note that a leader’s absolute power is lim-
ited to his epoch of leadership. A malicious leader can
perform a DoS attack by placing no transactions in mi-
croblocks. Similarly, a benign leader that crashes dur-
ing his epoch of leadership will publish no microblocks.
Their influence ends once the next leader publishes his
key block. The impact of such behaviors is therefore
similar to that in Bitcoin, where nodes may mine empty
blocks, but rarely do.

Assuming an honest majority and no backlog, a user
will have her transaction placed in the first block gener-
ated by an honest miner. Since at least 3/4 of the blocks
are generated by honest miners, the user will have to wait
for 4/3 blocks on average, or 13.33 minutes. Key block
intervals can be set to a rate that would reduce censorship
to the minimum allowed by the network without incur-
ring prohibitive deterioration of other metrics.

Resilience to Mining Power Variation Following Bit-
coin’s success, hundreds of alternative currencies were
created [57], most with Bitcoin’s exact blockchain struc-
ture, and many with the same proof-of-work mechanism.
To maintain a stable rate of blocks, different instances of
the blockchain tune their proof of work difficulty at dif-
ferent rates: Bitcoin once every 2016 blocks — about 2
weeks, Litecoin [37] every 2016 blocks (produced at a
higher rate) — about 3.5 days, and Ethereum [56] on ev-
ery block — about 12 seconds. However, whichever ad-
justment rate is chosen, these protocols are all sensitive
to sudden mining power drops. Such drops happen when
miners are incentivized to stop mining due to a drop in
the currency’s exchange rate, or to mine for a different
currency that becomes more profitable due to a change
in mining difficulty or exchange rate of either currency.

Figure 3: Key block fork. Blocks B and C have the
same chain weight, and the fork is not resolved until key
block D is published.

Such changes are especially problematic for small alt-
coins. When their value rises, they observe a rapid rise in
mining power, and subsequently a drop in mining power
once the difficulty rises. Then, since the difficulty is high,
the remaining miners need a longer time to generate the
next block, potentially orders of magnitude longer.

In Bitcoin-NG, difficulty adjustments can create a sim-
ilar problem; however, it only affects key blocks. Mi-
croblocks are generated at the same constant rate. As a
consequence, in case of a sudden mining power drop,
Bitcoin-NG’s censorship resistance is reduced, as key
blocks are generated infrequently. If a malicious miner
becomes a leader, it will generate microblocks until an
honest leader finds a key block. Nevertheless, transaction
processing continues at the same rate, in microblocks.
Additionally, even until the difficulty is tuned to a correct
value, the ratio of time during which malicious miners
are leaders remains proportional to their mining power.

Forks When issuing microblocks at a high frequency,
Bitcoin-NG observes a fork almost on every key block
generation, as the previous leader keeps generating mi-
croblocks until it receives the key block (Figure 2).
These forks are resolved quickly — once the new key
block arrives at a node, it switches to the new leader.
In comparison, when running Bitcoin at such high fre-
quency, forks are only resolved by the heaviest chain ex-
tension rule, and since different miners may mine on dif-
ferent branches, branches remain extant for a longer time
compared to Bitcoin-NG.

Bitcoin-NG may also experience key block forks,
where multiple key blocks are generated after the same
prefix of key blocks, as shown in Figure 3. This rarely
happens, due to the low frequency and quick propagation
of the small key blocks. The duration of such a fork may
be long, lasting until the next key block. The result is
therefore infrequent, but long, key block forks.

Although such long forks are undesirable, they are not
dangerous. The knowledge of the fork is propagated
through the network, and once it reaches the nodes, they
are aware of the undetermined state. All transactions that
appear only on one branch are therefore uncertain until
one branch gains a lead.

Double Spending Double-spending attacks remain a
vulnerability in Bitcoin-NG, though to a lesser extent
than in Bitcoin.
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Consider a Nakamoto blockchain and a Bitcoin-
NG blockchain with the same bandwidth, where the
Nakamoto block interval is the same as the key-block
interval. A double-spending attacker publishes a trans-
action #4, receives a service from a merchant, and pub-
lishes an alternative conflicting transaction fg. A mer-
chant that requires very high confidence should wait for
several Nakamoto blocks, or an equivalent number of
Bitcoin-NG key blocks. With lower confidence require-
ments, the guarantees of the protocols differ.

In Nakamoto’s blockchain, blocks are infrequent, and
transactions are collected by miners until they find a
block. Until that time, a transaction 74 can be replaced by
another transaction rg without cost. Publication of con-
flicting transactions with different destinations is prohib-
ited by the standard Bitcoin software, which also warns
the user of conflicting transactions propagating in the
network [30].

In contrast, in Bitcoin-NG, microblocks are frequent,
and so a leader commits to a transaction by placing it in
a microblock. It cannot place tp without forming a fork
and subsequently losing all of its prize from its leader-
ship epoch via a poison transaction.

Other attacks are still possible, where a miner mines
before the microblock of transaction 4 and later places
a conflicting tg. Here, the attacker loses the fees of
all transactions in pruned microblocks, but this may be
worthwhile since the loot from the double-spend can be
arbitrarily high. An attacker can mine to prune the chain
in advance, and then place a conflicting transaction, or
try to prune after the fact.

Reasoning about such attacks calls for a formaliza-
tion of the attacker’s incentives and power. We defer
formal analysis that quantifies the security guarantees of
Bitcoin-NG and Nakamoto’s blockchain to future work.
In practice, merchants perform risk analysis to choose a
strategy appropriate for their business.

6 Metrics

We now detail novel metrics by which blockchains can
be evaluated. These metrics are designed to evaluate the
unique properties of Nakamoto consensus.

Consensus Delay Intuitively, consensus delay is the
time it takes for a system to reach agreement. We start
by defining, for a specific execution and time, how long
back nodes have to look to find a point where they agree
on the state.

In a specific execution of an algorithm, given a time ¢
and a ratio 0 < € < 1, the € point consensus delay is the
smallest time difference A such that at least € - |.4| of
the nodes at time ¢ report the same state machine transi-
tion prefix up to time ¢ — A. An example for the Bitcoin
protocol is illustrated in Figure 4.

t t2

2
O o

NS

1 <—A2—>

Figure 4: Point-consensus delay example with three Bit-
coin nodes a, b, and c that generate blocks at heights 1, 2,
and 3 (explosions) and learn that these blocks are in the
main chain (clouds). Intervals A; and A; are the 50%-
point consensus delays at times #; and t,, respectively:
At least a majority of the nodes at #; agree on the history
until t; — A;.

The consensus delay is the best point-consensus-delay
the system achieves for a certain fraction of the time, on
average. More formally, the (g,0) consensus delay of a
system is the §-percentile €-point-consensus-delay. For
example, if 90% of the time, 50% of the nodes agree on
the state of the state machine 10 seconds ago (but not less
than that), then the (50%,90%)-consensus delay is 10
seconds.

Fairness We calculate two ratios: (1) the ratio of tran-
sitions not coming from the largest miner with respect
to all transitions, and (2) the ratio of mining power not
owned by the largest miner with respect to all mining
power. We call the ratio of these ratios the fairness.
Optimally the fairness is 1.0: The largest miner and
the non-largest miners’ representation in the transitions
set should be the same as their respective mining powers.

Mining Power Utilization The security of a proof-of-
work system derives from the mining power used to se-
cure it; that is, the mining power an attacker has to out-
run to obtain disproportionate control. The mining power
utilization is the ratio between the mining power that
secures the system and the total mining power. Min-
ing power wasted on work that does not appear on the
blockchain accounts for the difference.

Subjective Time to Prune Due to the probabilistic na-
ture of Nakamoto consensus, a node may learn of a state
machine transition and subsequently learn that this tran-
sition has not occurred — that it was pruned from history.
This is the case with pruned branches in Bitcoin.

The & time to prune is the §-percentile of the differ-
ence between the time a node learns about a transition
that will eventually be pruned, and the time it learns that
this transition has not occurred. This implies what time a
user has to wait to be confident a transition has occurred.
Note that this metric only considers transitions that are
eventually pruned. Figure 5 illustrates an example with
the Nakamoto Blockchain.
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Figure 5: A fork in the blockchain with blocks drawn at
their generation times, on a time X axis. Subjective time
to prune is measured from when a node learns of a block
in a branch until it realizes what the main chain is. Time
to win is measured from the creation time of a block until
the last time a node generated a conflicting block.

Time to Win The 0 time to win is the § percentile of
the difference between the first time a node believes a
never-to-be-pruned-transition has occurred and the last
time a (different) node disagrees, believing an alternative
transition has occurred. It is zero if there are no disagree-
ments, or if the latter time is earlier. Figure 5 illustrates
an example for the Bitcoin protocol.

7 Experimental Setup

We evaluate Bitcoin and Bitcoin-NG with 1000-node ex-
periments running in real time on an emulated network.

Implementation For Bitcoin we run the standard
client (release 0.10.0), hereinafter Bitcoin, with minimal
instrumentation to log sufficient information.

We implemented all Bitcoin-NG elements that are sig-
nificant for a performance analysis in the absence of an
adversary, by modifying the standard Bitcoin client (re-
lease 0.10.0). We did not implement the fee distribu-
tion and the microblock signature check. Both elements
have negligible impact on performance — fee distribu-
tion requires about one fixed point operation per trans-
action and signature checking adds several milliseconds
per microblock.

Simulated Mining The time it takes a miner to find
a solution follows a geometric probability distribution,
which can be approximated as an exponential distribu-
tion due to the improbability of a success in each guess
and the rate of guessing.

In our experiments we replace the proof of work mech-
anism with a scheduler that triggers block generation at
different miners with exponentially distributed intervals.

Mining Power The probability of mining a block is
proportional on average to the mining power used for
solving the cryptopuzzle. Since blocks are generated
at average set intervals and the total amount of min-
ing power is large, the interval between block genera-
tion events of a small miner is extremely large. A single
home miner using dedicated hardware is unlikely to mine
a block for years [54].

o 30%
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Figure 6: Error bars represent the 75th, 5S0th and 25th
percentiles of the corresponding batch.

Consequently, mining power tends to centralize in the
form of industrial mining and open mining pools. In-
dustrial miners are companies that operate large-scale
mining facilities. Smaller miners that run private min-
ing rigs typically join forces and form mining pools. All
members of a pool work together to mine each block,
and share their revenues when one of them successfully
mines a block.

To reflect in our setup the varying power of miners,
we examined the hash power distribution among Bitcoin
mining entities. The information we require for the anal-
ysis, the identity of the entities generating each block,
is voluntarily provided by miners. We used a public
API [10] to gather this information for the year ending
on August 31, 2015. We note that about 9% of the blocks
are unidentified. We considered each such block as gen-
erated by a different individual miner.

For each week of the year, we calculate the weekly
mining power of each entity, and assign rank 1 to the
largest weekly mining power, rank 2 to the second
largest, and so on. Figure 6 shows the weekly mining
power of each entity by rank up to 20. Bars of the same
shade at different ranks show the distribution of a spe-
cific week. Each batch of bars represents the collection
of ratios for the n™ highest block generating pool. We
note that the ranks of different entities is not preserved
throughout the weeks. The y-axis represents the weekly
ratio of blocks generated by a pool.

To model the size distribution of mining entities, we
approximate it with an exponential distribution with an
exponent of —0.27. It yields a 0.99 coefficient of deter-
mination compared with the medians of each rank.

Network The structure of Bitcoin’s overlay network
is complicated, and much of it is intentionally hidden
to preserve Bitcoin’s security against denial of service
(DoS) and to maintain participants’ privacy. (Other
work [29, 41] discusses details on the peer-to-peer net-
work.) Nodes do not reveal their neighbors, but provide
superset of nodes they have discovered. Many of the
nodes are hidden behind firewalls making it difficult to
even estimate the full size of the network. The latency
among nodes is unknown. Moreover, for many of the
metrics that we measure, a critical measure is the time it
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Figure 7: In our system, block propagation time grows
linearly with block size. This qualitatively matches the
linear relation observed in measurements of the opera-
tional Bitcoin network [18].

takes between the generation of a block by some miner
and the time at which another miner starts mining on it.
The block not only has to be propagated and verified by
the second miner, but that second miner must also prop-
agate the details to its mining hardware. In the case of
mining pools with many distant worker miners, this may
incur a non-negligible delay.

Lacking an existing model of the system, we construct
a random network by connecting each node to at least 5
other nodes, chosen uniformly at random. We measured
the latency to all visible Bitcoin nodes from a single van-
tage point on April 7th, 2015, and created a latency his-
togram. We then set the latency among each pair of
nodes in the experiments based on this histogram. The
bandwidth is set to about 100kbit/sec among each pair of
nodes.

To verify the validity of our setup and topology, we
compare Bitcoin’s propagation properties in our setup
and in the operational system. We perform experiments
with different block sizes while changing the block fre-
quency so that the transaction-per-second load is con-
stant. Figure 7 shows a linear relation between the block
size and the propagation time, similar to the linear re-
lation measured in the Bitcoin operational network by
Decker and Wattenhofer [18].

No Transaction Propagation The goal of this work is
to optimize the consensus mechanism of the Blockchain.
However, when generating blocks at high frequencies,
the overhead of filling in the blocks by generating and
propagating transactions becomes a dominant factor with
Bitcoin’s current implementation. This is not an inherent
property of Bitcoin’s protocol, or of a Blockchain proto-
col in general. To reduce the noise caused by the transac-
tion generation and propagation mechanism, we reduce
transaction handling to the minimum. Before starting an
experiment, we initialize the blockchain with artificial
transactions and top up the mempools (the data struc-
ture storing yet-to-be-serialized transactions) of all nodes

with the same set of transactions. The transactions are of
identical size; the operational Bitcoin system as of today,
at IMB blocks every 10 minutes, has a bandwidth of 3.5
such transactions per second.

8 Evaluation

We evaluate Bitcoin-NG and compare it with Bitcoin in
two sets of experiments, varying block frequency and
block size.

Overall, the experiments show that it is possible to
improve Bitcoin’s consensus delay and bandwidth by
tuning its parameters, but its performance deteriorates
dangerously on all security-related metrics. Bitcoin-NG
qualitatively outperforms Bitcoin, as it suffers no such
deterioration, while enjoying superior performance in al-
most all metrics across the entire measured range. The
bandwidth of Bitcoin-NG is only limited by the process-
ing speed of the individual nodes, as higher throughput
does not introduce key-block forks. The consensus delay
is determined directly by the network propagation time,
because in the common case all nodes agree on the main
chain once they receive the latest key block.

In the experiments that follow, we choose the 90th
percentile. Lower percentiles maintain the same trends,
and very low percentiles show excellent performance —
there is always a small subset of nodes that has the cor-
rect chain. However, with higher percentiles, the results
are lost in the noise. With 1000 nodes and at high per-
centiles, e.g., 99%, we are measuring the 10th slowest
node. Since there are always a few nodes that lag be-
hind, either consistently or temporarily, the results then
are dominated by this random behavior, and the trends
are not visible.

We measure the metrics we introduced by instantiat-
ing them to Nakamoto’s blockchain and to Bitcoin-NG
as follows.

Consensus delay We take the (90%,90%)-consensus
delay based on block generation times. Point-con-
sensus-delay for Bitcoin is illustrated in Figure 4.
As mentioned in Section 5, a user who requires
high confidence (e.g., 99%) will not gain better la-
tency with Bitcoin-NG, and must wait for several
key blocks to accept a transaction as completed.
The guarantees in such cases are similar to those
of Bitcoin with the same block interval as Bitcoin-
NG’s key-block interval.

Fairness We calculate the proportion of (1) the ratio of
blocks in the main chain not generated by the largest
miner with respect to all blocks in the main chain,
and (2) the ratio of blocks not generated by the
largest miner with respect to all generated blocks.

Mining power utilization We calculate the proportion
between the aggregate work of the main chain
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Figure 8: Reducing latency.

blocks and all blocks. In Bitcoin-NG, difficulty is
only accrued in key blocks, so microblock forks do
not reduce mining power utilization.

Time to prune For each node and for each branch, we
measure the time it took for the node to prune this
branch. This is the time between the receipt of the
first branch block and the receipt of the main chain
block that is longer than this branch (Figure 5). We
take the 90th percentile of all samples.

Time to win We take the 90th percentile of the time
from the generation of each main-chain block to the
last time another miner generates a block that is not
its descendant (Figure 5).

Experiments We run multiple experiments with differ-
ent parameters. The figures show the average value for
each group of measurements with error bars marking the
extreme values. The sampled values are shown as mark-
ers.

For each execution we run for 50-100 Bitcoin blocks
or Bitcoin-NG microblocks. We perform multiple short
runs since all transactions are preloaded for each ex-
ecution. The mean key-block interval in our experi-
ments is 10 seconds, so each experiment includes leader
changes. We do not consider cases where key-block
forks occur, since in reality one would choose a much
larger key-block interval, e.g., 10 minutes, making key-
block forks extremely rare (more rare than with the op-
erational Bitcoin system).

8.1 Block Frequency

First, we run experiments targeted at improving the con-
sensus delay. For Bitcoin, we vary the frequency of block
generation by reducing the proof-of-work difficulty. For
Bitcoin-NG, keeping the key block generation at one ev-
ery 100 seconds, we vary the frequency of microblock
generation. For each frequency, we choose the block
size (microblock size for Bitcoin-NG) such that the pay-
load throughput is identical to that of Bitcoin’s opera-
tional system, that is, one 1MB block every 10 minutes.
Figure 8 shows the results.

We confirm that the bandwidth, measured as transac-
tion frequency, is close to 3.5, the operational Bitcoin
rate of for such transactions. In our experiments, Bit-
coin’s bandwidth is smaller than that of Bitcoin-NG, giv-
ing Bitcoin an advantage with respect to the other met-
rics.

As expected, a higher block frequency reduces Bit-
coin’s consensus latency as transactions are placed in the
ledger at a higher frequency. Time to prune improves
significantly as block frequency increases. Nevertheless,
Bitcoin’s frequent forks leave it with higher consensus
latency and time to prune than Bitcoin-NG. We note that
although they can be made arbitrarily rare, key block
forks do occur. Such key-block forks are only resolved
once one branch has more key blocks than the others, re-
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sulting in a long time to prune if key block intervals are
long.

Bitcoin’s mining power utilization drops quickly as
frequency increases, tending towards 1/4, the size of the
largest miner. At the extreme, block generation is so
fast that by the time a miner learns of a block generated
by another miner, that other miner has generated more
blocks. Then, only the largest miner generates main
chain blocks, and the other miners catch up. This also
implies the deterioration of fairness, as forks are likely to
be resolved by the largest miner extending its preferred
branch. As miners struggle to catch up with the leading
pack, slow miners mine on old blocks and the time to win
metric increases.

Since contention in Bitcoin-NG is limited to key block
generation, forks remain rare despite high frequencies
of microblocks. Increasing the microblock frequency
achieves reduction of both consensus delay and time to
prune. All other metrics are unaffected and remain at the
optimal level.

In the low-frequency experiments of Bitcoin-NG, we
observe a slight mining power utilization decrease and
time to prune increase. This is an artifact of the exper-
imental setup. We run the experiments over a set num-
ber of blocks, therefore these low contention experiments
run for an extended period, enough to observe key block
forks. Note, however, that a realistic Bitcoin-NG imple-
mentation can space the key blocks much further apart
without affecting performance. Then, due to their small
size, key-block forks are highly unlikely, even more so
than with standard blocks of Nakamoto’s blockchain at
the same rate, due to the small size of the key blocks.

8.2 Block Size

To study bandwidth scalability, we run experiments with
different block sizes. We use high frequencies, simi-
lar to those of Ethereum [12], setting Bitcoin’s block
frequency to 1/10sec and Bitcoin-NG’s microblock fre-
quency to 1/10sec and key block frequency to 1/100sec.
Figure 9 shows the result.

As expected, the transaction frequency increases with
block size; the horizontal line shows the operational Bit-
coin rate.

Large blocks take longer to verify and propagate.
Therefore, although block frequency is constant, the time
it takes for a miner to learn of a new block is longer, and
so the chance for forks increases.

These experiments demonstrate the expected trade-off
between bandwidth and latency. Consensus latency in-
creases due to forks, as it takes longer to choose the main
chain. The time to win also increases, as blocks take
longer to catch up with the larger blocks, as does time to
prune due to the many forks.
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Figure 9: Increasing throughput.

While this trade-off may be acceptable, allowing for
some hunt for a sweet spot on the trade-off curve, the
real problem pertains to security. The forks cause signif-
icant mining power loss, reaching about 80% at Bitcoin’s

USENIX Association

13th USENIX Symposium on Networked Systems Design and Implementation (NSDI "16) 55



bandwidth (though at a higher block frequency), making
the system vulnerable to attackers that are much smaller.

Even more detrimental is the reduction in fairness.
Even a minor degradation in fairness is dangerous, since
it provides incentives to miners to avoid losses by join-
ing forces to enjoy the advantage of mining in a larger
pool. This leads to centralization of the mining power,
obviating Bitcoin’s security properties.

Bitcoin-NG demonstrates qualitative improvement,
suffering no significant degradation in the security-
related metrics of fairness and mining power. Under
heavy load, however, the clients are approaching their
processing capacity, making it hard for them to keep up,
and we observe degradation in consensus latency and
time to prune.

9 Related Work

Model As in Bitcoin [43] and enhancements
thereof [56, 51, 36], the goal of Bitcoin-NG is to
implement an RSM in an open system. The exact
assumptions and guarantees are explored in different
works [11, 40, 26]. Our model is similar to those of
Aspnes et al. [2] and Garay et al. [26], and our definition
of Nakamoto Consensus is similar to that of Garay
et al. [26]. These are different from the model and
goal of classical Byzantine fault tolerant RSMs. The
latter, by and large, (1) assume static or slow-to-change
membership, allowing for quorum systems and recon-
figurations thereof, and (2) do not guarantee fairness
of representation of honest parties in the state machine
transitions.

The problem of leader election was apparently first
formulated and solved in 1977 by Gerard LeLann [34].
In 1982, Hector Garcia-Molina addressed the problem in
a distributed system that admits failures [27]. Since then
leader election has been extensively used to improve the
performance of distributed systems (e.g., [20, 42]). In
these classical consensus protocols, the leader’s role is to
propose decisions that have to be confirmed by a quorum.
This can be compared to blockchain protocols where the
block of a leader (as defined here) is confirmed in retro-
spect by subsequent blocks of subsequent leaders.

GHOST The GHOST protocol of Sompolinsky et
al. [51] improves on Bitcoin’s scalability by changing its
chain selection rule. While, in Bitcoin, the chain with the
most work (accumulated over all chain blocks, based on
their proofs of work) is the main chain, with GHOST, at
a fork, a node chooses the side whose sub-tree contains
more work (accumulated over all sub-tree blocks). The
benefit is that the heaviest sub-tree choice takes into ac-
count proof of work that does not end up in the main
chain. Thus, GHOST improves both fairness and the
mining power utilization under high contention.

However, in GHOST, blocks on pruned subtrees only
affect the selection rule at the branch point. The Bitcoin-
NG protocol maintains a small fork rate at high band-
width and throughput, allowing for better mining power
utilization and fairness. Moreover, to use GHOST in an
operational system, a challenge remains. In Bitcoin, at
any given time, at least one node knows what the main
chain is since it knows all of its blocks. In GHOST,
this is not the case, and it is possible that no single node
has enough information to determine which is the main
chain. Our technical report [23] provides an example.

One solution to finding the true main chain in GHOST
is to propagate all blocks, or all block headers [51].
However, this exposes the system to denial-of-service at-
tacks, as a malicious node can overwhelm the network
with low-difficulty blocks. There may be heuristics to
avoid the security danger; we do not address this ques-
tion, but have evaluated the system by implementing it,
propagating all blocks. Under these conditions, GHOST
performs worse than Bitcoin as the overhead of propa-
gating all blocks outweighs the benefits of the chain se-
lection rule. Nevertheless, a practical implementation of
GHOST, overcoming remaining challenges, can be used
to complement Bitcoin-NG and allow for a higher fre-
quency of key blocks.

Inclusive Blockchains Lewenberg et al. [36] replace
the blockchain structure with a directed acyclic graph.
There still is a main chain, but its blocks may refer to
pruned branches to include their transactions. Analysis
demonstrates considerable improvement of fairness and
mining power utilization. Bitcoin-NG achieves optimal
fairness and mining power utilization. Using Bitcoin-NG
with an inclusive blockchain to increase key block fre-
quency may prove problematic: Decommissioned lead-
ers could retroactively introduce transactions and have
them included by the current leader. This could allow for
DoS and double-spending attacks.

Faster Bitcoin Significant effort by Bitcoin’s core de-
velopers is put into improving the performance of the
Bitcoin client and technical aspects of its protocol. While
this work can provide significant improvement and en-
able better scaling, it does not eliminate the inherent lim-
itation that stems from forks forming at high rates.
Stathakopoulou et al. suggest reducing propagation
delay in the Bitcoin network [53]. However, their
suggestions imply significant compromises on security.
First, they have nodes propagate transaction inventories
before they know the actual transactions in each inven-
tory; this allows an attacker to swamp the network at no
cost by publishing transaction IDs for non-existent trans-
actions. Second, they form a network by having nodes
prefer connections with close neighbors — exactly the
opposite of the current security-oriented algorithm.
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Improving the efficiency of the client [1, 45, 55] can
improve propagation time and reduce the collision win-
dow (time before A hears B found a block). However, the
improvement is limited — a processing speed increase of
x% (e.g., x = 200% with [55]) allows for block size in-
crease of x% at the same fork rate. Bitcoin-NG provides
a qualitative improvement that removes the fork rate de-
pendency on block size or rate.

Corallo [17] has built a centralized fast relay for Bit-
coin, parallel to the standard peer-to-peer network. It
significantly improves network throughput and latency
but increases centralized control and reduces fairness —
miners outside the fast relay are at a disadvantage.

Off-chain solutions An alternative to improving the
bandwidth and latency of the blockchain is to perform
transactions off the chain. This basic premise appar-
ently originated in Hearn and Spilman’s two-point chan-
nel protocol [28]. The Lightning network [48] and du-
plex micropayment channels [19] allow for payment net-
works layered on top of a blockchain. The security and
privacy guarantees of such payment networks differ from
those of Bitcoin; as an extreme example, if the nodes
performing transactions over a channel crash, all their
transactions are lost, as they were never stored in the
blockchain. Moreover, the efficacy of such solutions de-
pends on properties of the emergent payment network, its
topology, the amount of value locked in payment chan-
nels, as well as the protocol’s ability to discover and use
payment paths. Overall, these solutions may be suitable
for targeted use cases where the additional layer may re-
duce the number of transactions seen at the lower layers,
but, unlike Bitcoin-NG, they do not address the funda-
mental problem of scaling a Nakamoto-consensus RSM.

Another proposition for improving performance is that
of federated chains, known as side chains [4], where
transactions can move coins from one chain to another.
Sidechains provide extensibility, as different chains can
offer different features. However, their contribution for
efficiency is limited, as they incur high latencies for
crossing chains; moreover, when the payor has funds on
one sidechain and the payee would like to spend them on
another, the funds have to cross the main chain in order
to get the value to their intended destination.

Analysis Given a cryptopuzzle difficulty and a topol-
ogy, Sompolinsky et al. [52] calculate upper and lower
bounds for the growth rate of the Bitcoin main chain.
This analysis can be translated to the expected forking
frequency at different difficulty levels when there are ex-
actly two miners. Our experiments target a larger number
of miners, modeled according to Bitcoin’s operational
system, that tune difficulty arbitrarily to reach a target
main chain extension rate.

Miller and Jansen [39] describe a methodology for
evaluating a large-scale Bitcoin blockchain system on a
single machine using an event-driven simulator. To fa-
cilitate manageable experiment times, they replace time-
consuming cryptographic operations with a delay of an
appropriate length. In our experiments, we run the
original operational client directly on the operating sys-
tem, emulating only the network properties and mining
events.

Incentives Incentive compatibility has been a key is-
sue in the investigation of cryptocurrencies. Babaioff
et al. [3] suggest a mechanism to motivate transaction
propagation. Lewenberg et al. [35] propose an alterna-
tive to the chain structure to motivate the participation
of badly-connected miners. Eyal [21] shows that a nat-
ural incentive system deters the formation of large open
mining pools.

10 Conclusion

As Bitcoin and related cryptocurrencies have become
surprisingly popular, they have hit scalability limits. The
technical debate to improve scalability has been ham-
pered by a perceived inherent trade-off between perfor-
mance metrics and security goals of the system. Con-
sequently, the discussions have become acrimonious,
long-term solutions have seemed elusive, and the current
sentiment has centered around short-term, incremental,
compromise solutions.

Bitcoin-NG shows that it is possible to improve the
scalability of blockchain protocols to the point where the
consensus latency is limited solely by the network di-
ameter and the throughput bottleneck lies only in node
processing power. Such scaling is key in allowing for
blockchain technology to fulfill its promise of imple-
menting trustless consensus for a variety of demanding
applications including payments, digital asset transac-
tions, and smart contracts — at global scale.
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