
This paper is included in the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-12-0

Open access to the Proceedings of the
18th USENIX Conference on File and

Storage Technologies (FAST ’20)
is sponsored by

Quiver: An Informed Storage Cache
for Deep Learning

Abhishek Vijaya Kumar and Muthian Sivathanu, Microsoft Research India
https://www.usenix.org/conference/fast20/presentation/kumar

the time per mini-batch is known in advance, one can predict
how sensitive each job is to I/O performance, which can in
turn allow the cache placement and eviction to give higher
priority to jobs that benefit the most from caching.

4 Design of Quiver

In this section, we present the design of Quiver, a distributed
cache that improves I/O efficiency for DLT jobs running in a
cluster of GPUs. Quiver is a co-designed cache that is tightly
coupled with the DLT framework (e.g., PyTorch or Tensor-
flow). By modifying the DLT framework, the cache client
integrates deeply into the I/O access of the DLT job, and
shares richer information with the cache server.

4.1 System Architecture
Before getting into the details of Quiver, we describe the
broader context in which Quiver fits. Quiver is designed for
a shared GPU cluster that an organization creates on GPU
VMs allocated in the cloud. Each GPU VM has a certain
amount of local SSD storage. A DLT job runs within its own
container, thus isolating jobs of multiple users from each
other. A higher level scheduler and container manager such as
Kubernetes [7] manages submission of jobs and scheduling of
DLT job containers on a specific VM. Quiver is agnostic to the
exact scheduling mechanism used, and makes no assumptions
about the scheduler.

The input training data for jobs of a particular user is stored
in the cloud storage account of the corresponding user, which
ensures privacy and access control; while general datasets
such as ImageNet do not require this, in general, users some-
times augment standard datasets with their own private train-
ing samples which may be sensitive, or train on entirely pri-
vate data (e.g., surveillance videos, enterprise data). The DLT
job running in a VM would perform random reads on this
remote storage (e.g., an Azure blob [21] or Amazon S3 [2]).

A DLT job may move across VMs, because of VM re-
deployments, because of job migration [37], or because it runs
on cheaper preemptible VMs [1, 3, 22]. Hence, the local SSD
data at each VM is soft state. Thus, even if the whole training
dataset fits in one VM’s local SSD, the simple solution of
copying data once from the remote store to local SSD does
not work. With Quiver, a job can move around across VMs
and still transparently benefit from a shared distributed cache.

4.2 Security model
Quiver is a cache that is shared across multiple jobs and mul-
tiple users, so the security semantics are important. Quiver
guarantees that a user can see only data content that she has
access to otherwise (i.e., no training data is leaked across mul-
tiple users). This requirement of data isolation conflicts with
the need to share/reuse the cache for effective performance.

Figure 1: Architecture of Quiver Cache servers run on all
VMs, but within their own container. Quiver clients run in the
address space of the DLT job, and include changes to the DLT
framework. User’s input training data is fetched from cloud
storage on a cache miss. Each job’s dataset is sharded across
multiple cache servers, and looked up using content hashes.

For example, if two different users have their own copies of
the ImageNet dataset, those would be two different sets of
files in two different cloud storage accounts and thus would
logically need to be cached separately, thus preventing reuse
across users. Quiver uses content-addressed capabilities to
achieve cache reuse while preserving isolation.

4.3 Content-addressed Cache

The cache in Quiver is addressed not by file names and off-
sets, but by content hashes, similar to content-addressed file
systems [9, 23]. The granularity of a cache entry in Quiver
is decided by the DLT job, and it could be either an individ-
ual data item (e.g., image training data where each item is
hundreds of KB) or a group of data items (e.g., in text train-
ing data). For simplicity, we assume in this paper that the
granularity is a single data item. For each data item in the
dataset, a content hash (e.g., SHA1) of that item is calculated,
and the resulting hash acts as the index for cache inserts and
lookups. The benefit of content addressing is that the same
data items across multiple copies (say copies of ImageNet
data in different storage accounts of different users), will map
to the same hash, allowing reuse across users.

To ensure isolation, Quiver uses the notion of digest files for
the input training data. For each dataset that a user owns, the
user computes the content hashes of each data item, and stores
just the hashes in a digest file. The digest file contains entries
of the form <content_hash: file_location>, where the
file_location indicates the path and offset where that par-
ticular data item resides within the cloud storage account of

286 18th USENIX Conference on File and Storage Technologies USENIX Association

this particular user. Thus, across multiple users sharing the
same data set, while the hash component would be the same,
each user will have a different entry in the file_location
component, as they would point to that particular user’s back-
ing store in the cloud. Because the DLT job is calculating
these hash digests only from data that the user already has
access to, the very presence of a hash value serves as a capa-
bility for that user to access that content. As a result, when
a cache server gets a lookup for a certain hash value, it can
safety return the data associated with that key. The user can-
not manufacture or guess legal hashes without having the
content, because of the sparsity of the hash function and its
collision-resistance properties.

As the digest file is small (few MBs), it is stored locally
within the container of the DLT job. The DLT job first looks
up the cache with the hash capabilities. If the content is not
in the cache, it fetches it from remote storage (using the
file_location corresponding to the hash entry), and then
adds that content into the cache keyed by the hash value.

4.4 Quiver Server

The cache server in Quiver is a distributed, peer-to-peer ser-
vice that runs on all GPU VMs in the cluster. The cache server
runs as a separate “privileged" user (e.g., organization admin)
in its own container, so other users running DLT jobs do not
have access to that container. DLT jobs interact with the cache
server through RPC interfaces for lookup and insert. In-
ternally, the cache server is a key-value store maintained on
local SSD. The key space is partitioned across multiple cache-
server instances via consistent hashing; each cache server
instance handles its partition of the key space.

4.5 Cache Manager

Because Quiver is a distributed cache, it needs to co-ordinate
eviction and placement decisions so that all cache servers
roughly agree on the which parts of which data sets to cache.
The cache manager in Quiver interacts with both the Quiver
clients and Quiver servers to co-ordinate these decisions. The
cache manager is also responsible for measuring the likely
benefit that each job would get from caching, by probing DLT
jobs. It does this by instructing cache servers to temporarily
return cache misses for all data read by the DLT job for a few
mini-batches. It then compares this execution time with the
time during normal operation with caching, and uses this to
prioritize cache placement (§ 5).

4.6 Quiver Client

A significant part of the intelligence in Quiver exists at the
cache client. The cache client runs as part of the DLT job
within the user’s container, in the same address space as the

DLT framework such as PyTorch, and interposes at the in-
terface used by the DLT script to access training data. For
example, in PyTorch, the DataSet abstraction is used to iter-
ate over training data, and it has a simple Next interface to
get the next set of input data items for the next mini-batch.
Internally, the DataSet abstraction maintains a randomly per-
muted list of indices that determines the order in which the
data items are fetched. Quiver augments this component to
also manage the digest-file of hashes, and when a set of in-
dices are to be fetched from the store, it first does the lookup
in the cache using the hash values in the digest.

In addition, the Quiver client also exports job-specific in-
formation to the cache servers, such as the time taken per
mini-batch on the GPU. This allows the cache servers in
Quiver to probe and perform a controlled measurement of
performance of the DLT job with and without caching, and
use that to prioritize cache placement.

4.7 Substitutable hits

Quiver incorporates the notion of substitutable I/O into the
data fetch component of the DLT framework. Today, if a mini-
batch requires 512 data items, the dataset loader provides 512
indices to be fetched from the store; if only data pertaining
to a subset of the indices was cached, some items may be
missing, resulting in remote I/O in the critical path. In Quiver,
the loader looks up lot more (e.g., 10x) indices from the cache
and fills the mini-batch opportunistically with whichever 512
it is able to fetch from the cache, so that the DLT job can
make progress without blocking on the cache misses. It then
marks the indices that missed in cache as “pending". The data
loader continues with the remaining indices for subsequent
mini-batches. Once it reaches the end of that list, it makes
additional passes over the index list, this time focusing only
on the indices previously marked pending.

To see why this would work, assume that only 10% of
the training dataset is in cache (for simplicity, a contiguous
10% in the original data set order i.e., without any random
permutation). Now, because the lookups from the DLT job
are a randomly permuted order of indices, each sequence of k
indices is expected to get cache hits for k/10 indices; hence, if
it looks up a sequence of length 10∗k, it can fill its mini-batch
of size k. During its second pass over the pending entries, a
different, non-overlapping 10% of the dataset may be in the
cache, which means it would get hits for 1/9th of the lookups.
Note that this property also holds across multiple jobs each
with their own random permutations. For the same 10% that is
cached, regardless of the permutation each job has, each job is
expected to get hits for 1/10th of its lookups. Thus, multiple
jobs can proceed at full-cache-hit speeds although each of
them is accessing a completely different random permutation.
Such a workload would normally cause thrashing on a small
cache that contains only 10% of the data items. With substi-
tutable cache hits, we prevent thrashing and provide cache-hit

USENIX Association 18th USENIX Conference on File and Storage Technologies 287

performance. Of course, this assumes an intelligent cache
eviction policy, which we describe in § 5.
Impact on Accuracy: A natural question that arises with
substitutable hits is whether it impacts training accuracy. As
we show in § 7 across multiple models, substitutable hits do
not affect accuracy of the job, as the randomness within a rea-
sonable fraction of the training data (e.g., 10%) is sufficient.

4.8 Failure recovery
The substitutability property also helps mask failures of cache
servers, such as due to VMs going away. In a traditional
cache, failure of a cache server would cause a spike in miss
traffic to fetch the lost cache items from the store. Quiver can
handle it gracefully by simply returning substitute data items,
while fetching the contents of the failed cache server in the
background. The DLT jobs do not incur the miss handling
cost in the critical path; they just continue with whatever data
is available in the live cache servers; a subsequent pass over
the list of indices will use the re-populated data.

4.9 Locality of cache servers
While the simple version of Quiver (focus of this paper) has
a unified cache spread across all VMs, the Quiver design also
permits a locality-aware cache layout. For example, datasets
used by VMs within a rack in the data center (or a top-level
switch) could be cached only within other VMs under the
same switch, so that most fetches avoid the over-subscribed
cross-rack switches. In such a setting, each rack would have
its own logical Quiver instance with its own cache manager.
Quiver can thus also help save cost for the cloud provider by
reducing cross-rack network traffic.

5 Cache Management

In this section, we describe various aspects of cache manage-
ment in Quiver.

5.1 Co-ordinated eviction
As described in § 4.7, when only a part of the dataset (say
10%) is cached, Quiver does multiple passes over the list of
permuted indices of the dataset within a single epoch. To
get good hit-rate during the second pass, a different part of
the dataset must be cached during that second pass. In a
scenario where multiple DLT jobs (e.g., a multi-job doing
hyper-parameter exploration) are accessing the same dataset,
this is tricky because different jobs may exhaust their first
pass over the list of permuted indices at different times.

Quiver handles this by allocating cache space for two
chunks of the data set, and using a technique similar to double-
buffering [35]. First, the digest file representing the complete
dataset, is partitioned into a fixed number of chunks, such

that each chunk is, say, 10% of the dataset. The chunking of
the dataset has to be done intelligently, to ensure randomness
of the input data within each chunk. Some datasets such as
LibriSpeech [24] order data items by the sequence length;
chunking them in logical byte order would result in the first
chunk comprising entirely of short sequences, thus affecting
randomness. Recurrent neural networks (RNNs) [4, 36] re-
quire all inputs within a mini-batch to be of the same sequence
length; if a mini-batch comprises of inputs with different se-
quence lengths (e.g., randomly chosen inputs), they pad all
inputs to match the length of the longest input within the
mini-batch. Thus, for compute efficiency, it makes sense for
all inputs within the mini-batch to be roughly of the same
length.1. To allow for such efficient bucketing of inputs within
a mini-batch, we define the chunk to be a striped partition;
let us refer to each contiguous 10% of the input dataset as a
partition. Each partition is chunked into 10 stripe units; a log-
ical chunk is simply the complete stripe formed by stitching
the corresponding stripe unit within each partition. As much
as possible, a mini-batch is formed purely from inputs in a
single stripe unit, for homogeneity of sequence lengths, while
also ensuring uniform distribution of inputs.

Dataset chunking allows co-ordinated access of the cache
across multiple jobs. While the jobs operate on the first chunk,
the second chunk is brought into the cache, so that it is ready
when (some of) the jobs switch to the next pass, possibly in
a staggered manner. An important question is when to evict
the first chunk from the cache. If evicted too soon, a subset of
jobs that are still in their first pass and accessing that chunk
will see misses, whereas if it remains in the cache for too long,
the next (third) chunk cannot be preloaded. Quiver uses a
two-step process to handle eviction. A chunk is marked for
eviction when another chunk of the dataset is fully loaded
into cache; all new jobs will now get hits only from the latest
chunk. However, existing jobs that are still running their pass
over the first chunk, will continue to get hits on the first chunk.
When all existing jobs have exhausted their pass over the first
chunk (and notify the cache server), the first chunk is actually
evicted. At this point, the preload for the third chunk of the
data set can start.

In the above example, note that if a job proceeds at a much
slower rate compared to other jobs accessing the same dataset,
it could continue to access the first chunk for a long time,
preventing the load of the third chunk into the cache. Different
jobs in a multi-job are typically designed to proceed at a
similar pace, so this is not a common occurrence within a
multi-job, but could happen across very different models on
the same dataset. Interestingly, a job that is much slower than
other jobs on the same dataset means that it spends more time
per mini-batch on the GPU, which means it is less sensitive
to I/O performance(§ 5.3); a cache miss would not affect that

1Dynamic graph computation in modern frameworks such as Py-
Torch [25] ensures that a mini-batch with short sequence length uses corre-
spondingly lesser computation

288 18th USENIX Conference on File and Storage Technologies USENIX Association

job by much. Hence, Quiver does a forced-eviction of a chunk
after a threshold time has expired from the completion of the
first job on that chunk.

Algorithm 1 Substitutable hits & Co-operative miss handling

1: global gChunkIndex = -1
2: . Returns: List of indices of data items to be fetched for

current mini-batch
3: function GETBATCH(SIZE)
4: . Try to randomly sample 10 x size unused elements
5: pendingIndices = getPendingIndices(size * 10)
6: cacheHits = cacheClient.lookup(pendingIndices)
7: if len(cacheHits) >= size then
8: return pickAndMarkUsed(cacheHits, size)
9: end if

10: . Not enough cache hits, perform co-operative
11: . cache miss handling
12: result = List()
13: result.addAll(

pickAndMarkUsed(cacheHits, len(cacheHits)))

14: if gChunkIndex < 0 then
15: . cacheManager returns 0 if no chunk is cached
16: gChunkIndex =

cacheManager.getCurrentChunk(datasetId)
17: end if
18: chunksChecked=0
19: while chunksChecked < totalChunks do
20: . Tell cache servers that I am using this chunk
21: . (if not done already)
22: informServers(jobId, datasetId, gChunkIndex)
23: unusedIndices = getRandomUnusedIndices (

gChunkIndex, size - len(result))
24: if len(unusedIndices) == 0 then
25: informServersDoneUsingChunk(

jobId, datasetId, gChunkIndex)
26: end if
27: result.append(unusedIndices)
28: if len(result) == size then
29: return result
30: end if
31: gChunkIndex =

(gChunkIndex + 1) % totalChunks
32: ++chunksChecked
33: end while
34: end function

5.2 Co-operative cache miss handling

A common workload that places significant demand on the
storage bandwidth, is a multi-job [37] where a DLT user
runs tens or hundreds of jobs for the same model on the
same dataset, but with different hyper-parameter configura-
tions. Without Quiver, each of these jobs will read the same

data from the remote store, causing the remote store to be-
come a bottleneck, resulting in poor I/O throughput per job.
Quiver uses co-operative miss handling, where it shards the
cache fetches across multiple jobs, to avoid multiple fetches
of the same data items by multiple jobs. This sharding is
done implicitly by simply randomizing the order of fetch of
missing files, thus avoiding direct co-ordination among the
(independent) jobs. Thus, each job first checks the cache if a
set of (say 2048) data items exist, then reads a random subset
of those items, and adds the read items into the cache. Af-
ter the additions, it performs another cache lookup, but this
time it would get hits for not only the data items it added, but
also the other (mostly non-overlapping) data items that were
added simultaneously by other jobs that performed a similar
random fetch. Thus, even in the case of a cold cache, or if the
entire dataset cannot fit in cache, Quiver provides benefits by
conserving remote store bandwidth, reading most data items
only once across multiple jobs within a single epoch.

A high-level algorithm for substitutable cache hits and co-
operative miss handling is presented in Algorithm 1.

5.3 Benefit-aware Cache placement

When total cache space is constrained, Quiver utilizes job
heterogeneity to preferentially allocate cache space to the jobs
that benefit the most from the cache. A DLT job performs both
compute (on the GPU) and I/O. Intuitively, if the compute
time is higher than the I/O time to read from the remote store,
the I/O time can be overlapped, and the job performance
would be the same whether it reads from the cache or from
the remote store. However, this is a complex phenomenon to
model, because it depends on the degree of parallelism of the
job (i.e., number of GPUs it runs on), how large the model is,
whether the model is written in a way to pipeline computation
and I/O, etc.

Interestingly, the tight integration with the DLT framework
allows Quiver to intelligently probe and measure the job’s per-
formance with and without caching. When a new job requests
for adding entries into the cache, the cache manager picks
the job for probing. Probing operates in two steps. In the first
step, the cache manager instructs all cacheservers to reject
all cache lookups for that job, thus forcing the job to fetch
from the remote store. At the end of this probing phase, e.g.,
100 mini-batches, the cache manager gets the total elapsed
time from the cache client (which runs as part of the DLT
job). The cache manager then monitors the job’s performance
periodically with the default caching policy. If the times with
the default caching policy and without caching don’t differ by
much, it concludes that the job is not bottlenecked on remote
I/O bandwidth, and decides to turn off caching for that job.
A dataset touched only by such jobs would thus never enter
the cache, freeing up space for other datasets that benefit job
performance. Quiver runs the probing phase not only at job
start time, but periodically , as effective I/O throughput may

USENIX Association 18th USENIX Conference on File and Storage Technologies 289

have reduced because of increased load on the remote store
(e.g., newer jobs reading from the same store), thus making
the job more sensitive to I/O performance, or vice versa.

Let t i
h be the average per-mini-batch time for job i under

cache hit, and t i
m be the corresponding time under cache miss.

The benefit from caching for job i is thus bi = t i
m/t i

h. Let ni

be the number of GPUs taken by job i. The GPU resources
saved for job i by caching its dataset is thus gi = bi ∗ni.

For each data set Dk, there could be multiple jobs in the clus-
ter accessing the same data set. Because the cache is shared
by all such jobs, if N jobs access Dk, the total GPU resources
saved by caching the dataset is GDk = ∑

N
i=0 gi. Interestingly,

the cache manager has to decide only among three options
for each data set: (a) fully cache (space cost is the full size of
the dataset (b) enable co-operative miss by caching a fixed
size chunk (e.g., 15G), or 10% dataset whichever is smaller
(cost is 2 chunks for double buffering), or (c) no caching (zero
cost). Note that intermediate sizes for caching are useless, as
the benefits are the same as with caching two chunks, given
the substitutable cache-hits in Quiver.

Given a total cluster-wide cache space budget of S, the
cache manager uses a greedy algorithm to preferentially as-
sign cache space to datasets or dataset chunks with the highest
ratio of benefit-to-cost.

5.4 Cache sharing scenarios
Quiver transparently benefits a variety of DLT scenarios:
Single job accessing a dataset: If the entire dataset can fit in
cache, Quiver caches the data items accessed in the first epoch
of the DLT job. As the DLT job runs several epochs over the
same data, subsequent epochs get full cache-hits from Quiver,
and run faster. If the dataset does not fit in cache, the DLT job
does not benefit from Quiver as it reads from remote store in
the steady state.
A multi-job accessing a single dataset: A multi-job is a set
of jobs run by the same user on the same dataset, but with
different configurations of hyperparameters [37]. Today, each
jobs reads the same content in different random orders from
remote storage. With Quiver, if the data fits in cache, all jobs
share the cache and get full cache-hits. Interestingly, even if
only 10% of the data fits in cache, Quiver still gives better
performance, because it shards the reads across jobs with
co-operative miss handling (§ 5.2).
Different jobs accessing the same dataset: Another sce-
nario that Quiver benefits is opportunistic sharing of pop-
ular datasets across jobs even from multiple users. By doing
so, Quiver extracts more value out of the same SSD space
especially for popular datasets such as ImageNet.

6 Implementation

The Quiver client is implemented in PyTorch 1.1.0 (about 900
LOC). Pytorch’s data model consists of three abstractions:

Config Top-1 Acc. (%) Top-5 Acc. (%)
Baseline sampling 75.87 92.82
Quiver sampling 75.89 92.76

Table 1: ResNet50 on ImageNet: Final Accuracy after 90
epochs (higher is better) Average of two runs.

Config Word error rate (WER) (%)
Baseline sampling 22.29
Quiver sampling 22.32

Table 2: Accuracy of DeepSpeech2 on LibriSpeech: Final
WER (lower is better) Average of two runs (30 epochs).

Dataset, Sampler, and DataLoader. Dataset returns a data item
corresponding to a given index. Sampler creates random per-
mutations of indices in the range of dataset length. Dataloader
fetches one mini-batch worth of indices from the sampler,
and adds these to the index queue. The worker threads of
DataLoader consume these indices, and fetch data items from
Dataset. To use Quiver, instead of torch.utils.Dataset,
the model must use QuiverDataset (same interface as exist-
ing Dataset), that handles the digest file containing hashes.
Similarly, the model must extend from QuiverDataLoader
(same interface as standard DataLoader), that probes and
monitors the job’s mini-batch progress in the __next__ rou-
tine; it also ignores the default Sampler passed into the Dat-
aLoader API, instead using its custom Sampler that handles
substitutable hits, by creating a list of hashes from indices
sampled from chunks of the dataset.

The cache client uses RPC endpoints to look up the cache
using hashes, fetch files from cache, and finally, to write to
cache and communicate mini batch times to the cache man-
ager. Data fetch from Azure blob on the cache miss path
happens over a regular TCP socket connection. QuiverDataset
uses either the cache client or the blob client depending on
whether it is looking up the cache, or filling a cache miss.

The Quiver server is a network server written in C++ in
about 1200 lines of code. In addition to batched interfaces
for lookup/insert on cache, the server also exposes interfaces
to get the current active chunk and notify “ref_chunk" and
“unref_chunk"; the cache client uses these to assist with co-
ordinated eviction at the server. The server also exposes an
interface to set the caching mode, used by the cache manager,
e.g., to disable caching for a job during probe phase.

The cache manager is a simple python server with an RPC
endpoint used by the client to report mini-batch times, and it
informs the cache servers which datasets to cache in which
mode, based on its benefit-aware allocation decisions.

7 Evaluation

In this section, we evaluate Quiver along several dimensions.
We answer the following questions in the evaluation:

290 18th USENIX Conference on File and Storage Technologies USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

T
o

p
 1

 A
cc

u
ra

cy

Epoch #

Top 1 Accuracy: Quiver Sampling v. Global Sampling

Default sampling
Quiver sampling

Figure 2: Top-1 Accuracy of ResNet50 ImageNet model
under globally random sampling and chunked sampling.

• Do substitutable cache hits impact learning accuracy?

• How much does Quiver speed up different DLT jobs?

• How effective is co-ordinated eviction in Quiver?

• How effective is benefit-aware caching in Quiver?

7.1 Experimental setup

For our evaluation, we use a cluster of 48 GPUs across 12
VMs on Azure. 6 VMs contain 4 NVidia P100 GPUs each
while the other 6 contain 4 NVidia P40 GPUs each. All VMs
contain 3 TB of local SSD. Different experiments use a subset
of these VMs or the full set. The input datasets reside in Azure
storage blobs [21] within the same region. We use a diverse
set of deep learning workloads: ResNet50 [16] on the 154
GB ImageNet dataset [14], Inception v3 [32] on the 531 GB
OpenImages dataset [10], and DeepSpeech2 [4] on the 90 GB
LibriSpeech dataset [24]. For substitutable caching, we use a
fixed chunk-size of 15GB.

7.2 Accuracy with substitutability

We first show that substitutable caching in Quiver (i.e., re-
stricting the shuffle to a fraction of the dataset rather than
the entire dataset) has no impact on accuracy. As can be
seen from Figure 2, the top-1 accuracy curves closely match.
Table 1 shows the final top-1 and top-5 accuracies in both
configurations; Quiver sampling achieves the same accuracy
as globally random sampling. Table 2 shows results for the
DeepSpeech2 model on LibriSpeech dataset. Again, the chun-
ked sampling of Quiver converges to a similar word-error-rate
compared to globally random sampling.

Workload Time for 7000 mini-batches (s)
Baseline Quiver

Cache Miss Cache Hit Co-op. Miss
ResNet50 2505 646 (3.88x) 1064 (2.35x)
Inception 2874 1274 (2.26x) 1817 (1.58x)
DeepSpeech 1614 1234 (1.31x) 1265 (1.28x)

Table 3: Speedups from Quiver across three workloads

7.3 Improvement in job throughput
We now evaluate the performance gains from Quiver, on three
different workloads: ResNet50, Inception, and DeepSpeech2.
In each workload, we run a multi-job on 28 GPUs. Recall
that a multi-job runs multiple hyper-parameter configurations
of the same model/job. For each multi-job, we run 7 jobs
(of different configurations), where each job runs on 4 GPUs
in a single VM. We show the aggregate throughput (mini-
batches/second) of the multi-jobs under three configurations:

1. The baseline configuration, where all jobs read from the
remote storage blob. This configuration is referred to as
“Cache miss” in the graphs;

2. When all data fetches result in cache hits in Quiver. This
is the best case performance with Quiver, and is shown
as “Cache hit” in the graphs;

3. When Quiver starts with a cold cache, and the DLT jobs
perform co-operative cache miss handling to avoid re-
dundant I/O on the remote store. This also represents
the performance when only a 10% or 20% slice of the
dataset is cached(§ 4.7).

Figure 3 shows the results for the three workloads. As can
be seen, the slope of the “cache hit” curve is consistently much
less compared to the “cache miss" curve. In other words, the
same number of mini-batches are processed much faster with
Quiver, resulting in better efficiency. The “co-operative miss”
curve is in between the cache hit and cache miss configura-
tions. Thus, even when starting with a cold cache, the ability
of Quiver to avoid redundant I/O to the remote store from all
7 VMs allows it to extract much higher useful bandwidth out
of the remote storage, resulting in better efficiency. Interest-
ingly, in Figure 3(c), the difference between co-operative miss
and cache hit is minor, indicating that the workload can run
equally fast with just a small slice of the cache (§ 5.3). The
overall speedups achieved by Quiver for the three workloads
is shown in Table 3.

7.4 Interaction with I/O pipelining
DLT frameworks including PyTorch pipeline I/O with com-
putation, to hide I/O latency. In particular, the data loader
maintains a queue of fetched mini-batch inputs, and the com-
putation engine picks from the in-memory queue. Both base-
line and Quiver benefit from pipelining, so the benefits from
Quiver shown in the previous subsection are in addition to

USENIX Association 18th USENIX Conference on File and Storage Technologies 291

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 a

gg
re

ga
te

 m
in

i-b
at

ch
es

 p
ro

ce
ss

ed

Time (sec)

ResNet50: Aggregate throughput of 7 4-GPU jobs

Cache Miss
Co-operative Miss

Cache Hit

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500 1000 1500 2000 2500 3000

N
um

be
r

of
 a

gg
re

ga
te

 m
in

i-b
at

ch
es

 p
ro

ce
ss

ed

Time (sec)

Inception v3: Aggregate throughput of 7 4-GPU jobs

Cache Miss
Co-operative Miss

Cache Hit

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000 1200 1400 1600 1800

N
um

be
r

of
 a

gg
re

ga
te

 m
in

i-b
at

ch
es

 p
ro

ce
ss

ed

Time (sec)

DeepSpeech2: Aggregate throughput of 7 4-GPU jobs

Cache Miss
Co-operative Miss

Cache Hit

(a) ResNet50/ImageNet (b) Inception/OpenImages (c) DeepSpeech2/LibriSpeech

Figure 3: Multi-job progress timeline with Quiver for multi-jobs of 7 jobs each in three models: ResNet50, Inception v3, and
DeepSpeech2. Each job runs on 4 GPUs within a single VM.

pipelining. We now analyze the time breakup of multiple
pipeline stages within a mini-batch, to understand how exactly
the faster I/O due to cache hits improves job performance. For
this, we zoom-in on 20 mini-batches of a single ResNet50 job
on 4 GPUs within a VM.

0 10 20 30 40 50
Time(s)

2
4
6
8

10
12
14
16
18
20

M
in

i B
at

ch
es

Zoomed in timeline of 20 mini-batches (baseline)
IO
GPU
TRANSFORM

Figure 4: Detailed timeline of 20 consecutive mini-batches
of ResNet50 (different stages), under remote I/O

Figure 4 is a Gantt chart [34] showing the micro-timeline of
a ResNet50 job execution (20 consecutive mini-batches, each
processing 512 images) when data is read from remote I/O.
The X-axis plots time, while the Y-axis plots the mini-batch
index from 1 to 20, starting from a random mini-batch during
training. The three boxes in each of the bars pertain to the
three main stages of mini-batch processing: I/O corresponds
to reading the input (from remote storage or Quiver), Trans-
form corresponds to performing transformation on the inputs,
such as image augmentation (CPU-intensive), and GPU is
the actual computation on GPU. Ideally, the GPU being the
most expensive resource, must not be idle. However, with
remote I/O, the GPU is idle most of the time (as seen from
the gap between GPU phases for mini-batch i and mini-batch

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time(s)

2
4
6
8

10
12
14
16
18
20

M
in

i B
at

ch
es

Zoomed in timeline of 20 mini-batches (Quiver)
IO
GPU
TRANSFORM

Figure 5: Detailed timeline of 20 consecutive mini-batches of
ResNet50 (different stages), under Quiver hits

i+ 1), as I/O time constrains job progress. Figure 5 shows
the micro-timeline under cache-hit in Quiver. As can be seen,
the GPU is almost fully utilized in this setting, as the I/O fin-
ishes much faster. Although data transformation takes a long
time per-mini-batch in both baseline and Quiver, because it is
parallelized (due to pipelining) across multiple mini-batches
on multiple CPU cores, it does not affect GPU utilization in
Quiver. Thus, while both cases benefit from the I/O pipelining
in PyTorch, Quiver is able to hide I/O latency much better.

7.5 Cache-constrained scenario

In this experiment, we run 4 ResNet50 jobs (each on 4 GPUs
within a single VM) accessing the same ImageNet dataset.
After about 15 minutes, we start 3 more ResNet50 jobs in
3 other VMs. We constrain the cache space to be capable
of only fitting 20% of the input data. This causes Quiver to
chop the training data into 10 chunks, and perform double
buffering with two chunks at a time (§ 4.7). Figure 7 shows

292 18th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200

F
ac

to
r

in
cr

ea
se

 in
 e

ffe
ct

iv
e

cl
us

te
r

th
ro

ug
hp

ut

Time (sec)

Aggregate cluster throughput on 48 GPUs (100G cache)

Quiver (100G)
LRU (100G)

Zero cache (baseline)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200

F
ac

to
r

in
cr

ea
se

 in
 e

ffe
ct

iv
e

cl
us

te
r

th
ro

ug
hp

ut

Time (sec)

Aggregate cluster throughput on 48 GPUs (200G cache)

Quiver (200G)
LRU (200G)

Zero cache (baseline)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 200 400 600 800 1000 1200

F
ac

to
r

in
cr

ea
se

 in
 e

ffe
ct

iv
e

cl
us

te
r

th
ro

ug
hp

ut

Time (sec)

Aggregate cluster throughput on 48 GPUs (700G cache)

Quiver (700G)
LRU (700G)

Zero cache (baseline)

(a) 100 GB cache (b) 200 GB cache (c) 700 GB cache

Figure 6: Cluster GPU Throughput under multiple simultaneous jobs on 48 GPUs with Quiver, basic LRU, and without caching
(baseline). The workload consists of 4 jobs each of ResNet50, Inception, and DeepSpeech2. Each of the 12 jobs runs on 4 GPUs,
using a total of 48 GPUs. Average cluster throughput normalized to the non-cached scenario is shown.

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000 12000

0 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
se

c)

Aggregate # mini-batches completed across all jobs

Chunk Number

Agg. job throughput
Chunk 0
Chunk 1
Chunk 2
Chunk 3
Chunk 4
Chunk 5
Chunk 6
Chunk 7
Chunk 8
Chunk 9

Figure 7: Coordinated eviction with multiple jobs sharing a
small slice of the cache.

the aggregate throughput across these jobs. Every vertical line
in the graph indicates the duration for which a specific chunk
resides in the Quiver cache (the top x-axis plots the chunk
number).

There are several aspects that can be seen from this graph.
First, if one slices the graph by drawing a line parallel to
the x-axis for any time t, it indicates the number of chunks
that were cached by Quiver at that time, just by counting the
number of vertical lines that intersect. It can be seen that at
any given time, only 2 chunks are actually resident in the
cache, demonstrating co-ordinated eviction. Second, in the
aggregate throughput, one can see an increase in the progress
rate around roughly 15 mins into the experiment (i.e., when
the number of jobs increased from 4 to 7), as more jobs now
participate in the co-operative miss handling, improving per-
job throughput. Finally, one can notice that when the three
jobs start (around t=900 sec), the first two chunks of the cache
have already been evicted. Despite that, the jobs are able to

make good progress, as they perform substitutable caching,
but starting wth the third chunk first (while the first 4 jobs
started with the first chunk). This dynamic replaceability is
ensured by the cache management policy which directs new
jobs to the currently active chunks in order to evict older
chunks that other jobs have already exhausted.

7.6 Benefit-aware caching

In this experiment, we demonstrate the efficacy of benefit-
aware caching in Quiver, and compare it with a simple LRU-
based cache replacement policy. For this, we run a workload
with a mix of three different DLT models on 48 GPUs. We
run four jobs each of ResNet50, Inception, and DeepSpeech,
where each job takes a single VM with 4 GPUs. As we previ-
ously saw in Figure 3, the three jobs benefit differently from
caching. The jobs use three datasets: ImageNet, OpenImages,
and LibriSpeech respectively.

Figure 6 shows the steady state timeline (for about 1000
seconds after cache warmup) of normalized cluster through-
put. To quantify relative cluster throughput, we calculate
the relative improvement in job progress rate (mini-batches
processed) for all the 12 jobs compared to the baseline (no
cache) configuration. We show cluster throughput under dif-
ferent cache sizes: no caching, 100 GB cache, 200 GB cache,
and 700 GB cache. Note that the complete size of the three
datasets is about 780 GB. As the 700 GB configuration is
close to the complete dataset size, the performance of LRU
comes close to Quiver. However, thrashing on the remain-
ing 80 GB results in only a 2.2x higher throughput for LRU
compared to 2.32x for Quiver.

More interesting is the performance of Quiver under more
constrained caching scenarios, i.e., when the cache size is
much lower than the combined sizes of the datasets. In these
configs (100 GB and 200 GB), Quiver is able to intelligently
allocate cache space based on its dynamic mini-batch-aware
probing (§ 5.3), besides using co-operative miss handling and
substitutable hits to improve throughput. For 100G, it uses co-

USENIX Association 18th USENIX Conference on File and Storage Technologies 293

operative misses for all three datasets, using a fixed chunksize
of 15GB (a total of about 90GB for double buffering of three
datasets). At 200 GB cache, Quiver automatically chooses to
completely cache the ImageNet dataset (as ResNet50 bene-
fits the most from caching), while performing co-operative
misses on the other two. At 700G cache, it caches both the
ImageNet and OpenImages dataset. Quiver is able to preferen-
tially allocate cache space to the jobs benefiting the most, thus
maximizing cluster throughput. In both these configurations,
LRU performs quite poorly compared to Quiver, as it suffers
from thrashing because of the random access pattern of the
DLT jobs. Overall, even with a tiny cache (100G), Quiver
still yields sizeable benefits of around 1.6x; the improvement
in overall cluster throughput ranges between 1.6x to 2.3x
depending on cache size.

8 Related Work

Improving I/O performance for DLT jobs has received some
recent attention. DeepIO [39] explored pipelining of I/O
fetches with computation by using an in-memory cache, and
using an entropy-aware sampling technique. DeepIO looks at
an individual DLT job in isolation; the benefits from caching
for a single job are minimal unless the entire data fits in cache,
because workers of a single DLT job read each data item
exactly once per epoch. In contrast, Quiver achieves cache
reuse across multiple jobs securely. As a result, even when
only a small part of data fits in cache, it improves performance
by using substitutable hits and co-operative miss handling to
co-ordinate I/O access across multiple jobs. Quiver is also
benefit-aware in its placement and thus uses the cache fru-
gally, prioritizing jobs that benefit the most. As the authors
of DeepIO note, the (modest) benefits from DeepIO in the
partial caching scenario are a result of reduced copy over-
heads and thread scheduling cost by using RDMA shuffling;
in contrast, Quiver actually reduces the time spent waiting on
I/O by employing co-operative miss handling.

Distributed caching in the cluster context has been explored
more broadly in the analytics community. For instance, Pac-
Man [5] explored co-ordinated caching of data across differ-
ent workers of an analytics job to extract most benefit for
query performance. Similarly, intelligent scheduling of big
data jobs to maximize cross-job sharing of cached data was
explored in Quartet [8] The co-ordinated eviction policy in
Quiver has some parallels to these, but the ability to handle
partial data caching without thrashing is unique to Quiver,
as it’s possible only because of the substitutability property
of DLT jobs. EC-cache [27] is at a distributed cluster cache
that uses erasure coding for dynamic load balancing during
reads. Because of the regularity of the DLT workload, the
simple static partitioning in Quiver seems sufficient. There
has been other work on caching of various forms in the big
data world [15, 19, 38].

Quiver is also related to recent work on systems for deep

learning, that use predictability of DLT jobs to improve effi-
ciency. Gandiva [37] uses predictability across mini-batches
to introspect on job performance, and uses it to migrate jobs
across GPUs or to pack jobs tightly within the same GPU.
Astra [31] exploits mini-batch predictability to perform dy-
namic compilation and optimization of a DLT job by online
profiling of multiple choices of optimizations. Quiver draws
on a similar insight, but uses the predictability for intelligent
cache prioritization and prefetching.

Making caching and prefetching decisions informed by
application-provided hints has also been studied [26]. General-
purpose hints that are application-agnostic are both challeng-
ing and limiting; by building a vertically integrated, domain-
specific cache exclusively for DLT jobs, the interface in
Quiver is both simple and powerful. Co-operative caching
has also been studied [18, 30]; unlike past work, Quiver man-
ages a partial working set with substitutable caching and
co-ordinated evictions.

The content hash-based addressing in Quiver is based on
the notion of using a hash as a capability; a similar approach
has been explored in content-indexed file systems [9, 23].
Quiver applies this idea to the context of a shared cache that
simultaneously provides both data isolation and cache reuse.

9 Conclusion

Deep learning has become an important systems workload
over the last few years: the number of hardware startups on
accelerators for deep learning is testament to its popularity.
Systems for deep learning have mostly focused on improving
compute efficiency and network efficiency, and the storage
layer has been largely handled by ad hoc solutions such as
manual staging of data to local SSD, that have significant
limitations. With Quiver, we provide an automated caching
mechanism that helps bridge the storage performance gap in
the face of ever-increasing compute capacity for deep learn-
ing. Quiver achieves cache efficiency by tightly integrating
with the deep learning workflow and the framework, and ex-
ploits characteristics such as I/O substitutability to ensure
an efficient cache even when only a subset of data can fit in
cache.

Acknowledgments

We thank our shepherd Robert Ross and the anonymous re-
viewers for their valuable comments and suggestions. We
thank Ashish Raniwala, Subir Sidhu, Venky Veeraraghavan,
Tanton Gibbs, and Chandu Thekkath from Microsoft Azure
AI Platform team for their useful discussions, as well as pro-
viding access to GPU clusters.

294 18th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] AMAZON. Amazon ec2 spot instances. run
fault-tolerant workloads for up to 90% off. In
https://aws.amazon.com/ec2/spot/.

[2] AMAZON. Amazon s3: Object storage built to store
and retrieve any amount of data from anywhere. In
https://aws.amazon.com/s3/.

[3] AMAZON. Train deep learning models on
gpus using amazon ec2 spot instances. In
https://aws.amazon.com/blogs/machine-learning/train-
deep-learning-models-on-gpus-using-amazon-ec2-
spot-instances/.

[4] AMODEI, D., ANUBHAI, R., BATTENBERG, E.,
CASE, C., CASPER, J., CATANZARO, B., CHEN,
J., CHRZANOWSKI, M., COATES, A., DIAMOS, G.,
ELSEN, E., ENGEL, J. H., FAN, L., FOUGNER, C.,
HAN, T., HANNUN, A. Y., JUN, B., LEGRESLEY,
P., LIN, L., NARANG, S., NG, A. Y., OZAIR, S.,
PRENGER, R., RAIMAN, J., SATHEESH, S., SEE-
TAPUN, D., SENGUPTA, S., WANG, Y., WANG, Z.,
WANG, C., XIAO, B., YOGATAMA, D., ZHAN, J., AND
ZHU, Z. Deep speech 2: End-to-end speech recognition
in english and mandarin. CoRR abs/1512.02595 (2015).

[5] ANANTHANARAYANAN, G., GHODSI, A., WARFIELD,
A., BORTHAKUR, D., KANDULA, S., SHENKER, S.,
AND STOICA, I. Pacman: Coordinated memory caching
for parallel jobs. In Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12) (2012), pp. 267–280.

[6] BOYD, T., CAO, Y., DAS, S., JOERG, T., AND LEBAR,
J. Pushing the limits of gpu performance with
xla. https://medium.com/tensorflow/pushing-the-limits-
of-gpu-performance-with-xla-53559db8e473.

[7] BREWER, E. A. Kubernetes and the path to cloud native.
In Proceedings of the sixth ACM symposium on cloud
computing (2015), ACM, pp. 167–167.

[8] DESLAURIERS, F., MCCORMICK, P., AMVROSIADIS,
G., GOEL, A., AND BROWN, A. D. Quartet: Harmoniz-
ing task scheduling and caching for cluster computing.
In 8th {USENIX} Workshop on Hot Topics in Storage
and File Systems (HotStorage 16) (2016).

[9] FU, K., KAASHOEK, M. F., AND MAZIERES, D. Fast
and secure distributed read-only file system. In Proceed-
ings of the 4th conference on Symposium on Operat-
ing System Design & Implementation-Volume 4 (2000),
USENIX Association, p. 13.

[10] GOOGLE. Open images dataset. In
https://github.com/cvdfoundation/open-images-dataset
(2018).

[11] GOOGLE. Overview of the
open images challenge 2018. In

https://storage.googleapis.com/openimages/web/challenge.html
(2018).

[12] GOOGLE. Youtube-8m dataset. In
https://research.google.com/youtube8m/ (2018).

[13] GRAPHCORE, AND TØRUDBAKKEN, O. In-
troducing the graphcore rackscale ipu pod. In
https://www.graphcore.ai/posts/introducing-the-
graphcore-rackscale-ipu-pod (2018).

[14] GROUP, D. Dawnbench: Imagenet training on resnet50.
https://dawn.cs.stanford.edu/benchmark/ .

[15] GUNDA, P. K., RAVINDRANATH, L., THEKKATH,
C. A., YU, Y., AND ZHUANG, L. Nectar: Automatic
management of data and computation in datacenters. In
OSDI (2010), vol. 10, pp. 1–8.

[16] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition (2016), pp. 770–778.

[17] JOUPPI, N. P., YOUNG, C., PATIL, N., PATTERSON,
D., AGRAWAL, G., BAJWA, R., BATES, S., BHATIA,
S., BODEN, N., BORCHERS, A., ET AL. In-datacenter
performance analysis of a tensor processing unit. In
2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA) (2017), IEEE, pp. 1–
12.

[18] KIM, H., JO, H., AND LEE, J. Xhive: Efficient cooper-
ative caching for virtual machines. IEEE Transactions
on Computers 60, 1 (2010), 106–119.

[19] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S.,
AND STOICA, I. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing (2014),
ACM, pp. 1–15.

[20] LINLEY, M. Google announces a new gen-
eration for its tpu machine-learning hardware.
https://techcrunch.com/2018/05/08/google-announces-
a-new-generation-for-its-tpu-machine-learning-
hardware/ .

[21] MICROSOFT. Blob storage: Massively
scalable object storage for unstructured
data. In https://azure.microsoft.com/en-
in/services/storage/blobs/.

[22] MICROSOFT. Use low-priority azure vms with batch.
In https://docs.microsoft.com/en-us/azure/batch/batch-
low-pri-vms.

[23] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES,
D. A low-bandwidth network file system. In ACM
SIGOPS Operating Systems Review (2001), vol. 35,
ACM, pp. 174–187.

[24] OPENSLR. Librispeech asr corpus. In
http://www.openslr.org/12.

[25] PASZKE, A., GROSS, S., CHINTALA, S., AND
CHANAN, G. Pytorch. In https://pytorch.org (2017).

USENIX Association 18th USENIX Conference on File and Storage Technologies 295

[26] PATTERSON, R. H., GIBSON, G. A., GINTING, E.,
STODOLSKY, D., AND ZELENKA, J. Informed prefetch-
ing and caching. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (New York,
NY, USA, 1995), SOSP ’95, ACM, pp. 79–95.

[27] RASHMI, K., CHOWDHURY, M., KOSAIAN, J., STO-
ICA, I., AND RAMCHANDRAN, K. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In 12th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 16)
(2016), pp. 401–417.

[28] RASLEY, J., HE, Y., YAN, F., RUWASE, O., AND FON-
SECA, R. Hyperdrive: Exploring hyperparameters
with pop scheduling. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (2017),
ACM, pp. 1–13.

[29] ROBBINS, H., AND MONRO, S. aa stochastic approx-
imation method, o annals math. Statistics 22 (1951),
400–407.

[30] SARKAR, P., AND HARTMAN, J. Efficient cooperative
caching using hints. In OSDI (1996), pp. 35–46.

[31] SIVATHANU, M., CHUGH, T., SINGAPURAM, S. S.,
AND ZHOU, L. Astra: Exploiting predictability to opti-
mize deep learning. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems (New
York, NY, USA, 2019), ASPLOS ’19, ACM, pp. 909–
923.

[32] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS,
J., AND WOJNA, Z. Rethinking the inception architec-
ture for computer vision. CoRR abs/1512.00567 (2015).

[33] VOLTA, I. The worlds most advanced data center gpu.

URL https://devblogs. nvidia. com/parallelforall/inside-
volta.

[34] WIKIPEDIA. Gantt chart.
https://en.wikipedia.org/wiki/Gantt_chart.

[35] WIKIPEDIA. Wikipedia: Multiple buffering. In
https://en.wikipedia.org/wiki/Multiple_buffering.

[36] WU, Y., SCHUSTER, M., CHEN, Z., LE, Q. V.,
NOROUZI, M., MACHEREY, W., KRIKUN, M., CAO,
Y., GAO, Q., MACHEREY, K., ET AL. Google’s neu-
ral machine translation system: Bridging the gap be-
tween human and machine translation. arXiv preprint
arXiv:1609.08144 (2016).

[37] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU,
M., KWATRA, N., HAN, Z., PATEL, P., PENG, X.,
ZHAO, H., ZHANG, Q., ET AL. Gandiva: Introspective
cluster scheduling for deep learning. In 13th {USENIX}
Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18) (2018), pp. 595–610.

[38] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A.,
MA, J., MCCAULEY, M., FRANKLIN, M. J., SHENKER,
S., AND STOICA, I. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster comput-
ing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation (2012),
USENIX Association, pp. 2–2.

[39] ZHU, Y., CHOWDHURY, F., FU, H., MOODY, A.,
MOHROR, K., SATO, K., AND YU, W. Entropy-aware
i/o pipelining for large-scale deep learning on hpc sys-
tems. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS) (2018), IEEE,
pp. 145–156.

296 18th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	IO Characteristics of DLT
	Design of Quiver
	System Architecture
	Security model
	Content-addressed Cache
	Quiver Server
	Cache Manager
	Quiver Client
	Substitutable hits
	Failure recovery
	Locality of cache servers

	Cache Management
	Co-ordinated eviction
	Co-operative cache miss handling
	Benefit-aware Cache placement
	Cache sharing scenarios

	Implementation
	Evaluation
	Experimental setup
	Accuracy with substitutability
	Improvement in job throughput
	Interaction with I/O pipelining
	Cache-constrained scenario
	Benefit-aware caching

	Related Work
	Conclusion

