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Abstract
With modern high-performance SSDs that can handle par-

allel I/O requests from multiple tenants, fair sharing of block
I/O is an essential requirement for performance isolation. Typ-
ical block I/O schedulers take three steps (submit-arbitrate-
dispatch) to transfer an I/O request to a device, and the three
steps incur high overheads in terms of CPU utilization, scala-
bility and block I/O performance. This motivates us to offload
the I/O scheduling function to a device. If so, the three steps
can be reduced to one step (submit=dispatch), thereby saving
CPU cycles and improving the I/O performance.

To this end, we propose D2FQ, a fair-queueing I/O sched-
uler that exploits the NVMe weighted round-robin (WRR)
arbitration, a device-side I/O scheduling feature. D2FQ ab-
stracts the three classes of command queues in WRR as three
queues with different I/O processing speeds. Then, for ev-
ery I/O submission D2FQ selects and dispatches an I/O re-
quest to one of three queues immediately while satisfying
fairness. This avoids time-consuming I/O scheduling oper-
ations, thereby saving CPU cycles and improving the block
I/O performance. The prototype is implemented in the Linux
kernel and evaluated with various workloads. With synthetic
workloads, D2FQ provides fairness while saving CPU cycles
by up to 45% as compared to MQFQ, a state-of-the-art fair
queueing I/O scheduler.

1 Introduction

Modern high-performance solid-state drives (SSDs) can de-
liver one million I/O operations per second (e.g., Samsung 980
Pro [1]). Such SSDs are also equipped with multiple I/O com-
mand queues to enable parallel I/O processing on multi-core
processors. Thus, SSDs can accommodate multiple indepen-
dent I/O flows in multi-tenant computing environments such
as cloud data centers. In such an environment, fair sharing
of the SSD performance is important to provide performance
isolation between multiple applications or tenants.

A fair-share I/O scheduler [3, 8, 9, 29, 30, 34, 35] distributes
storage performance proportionally to the weight of the appli-

cations. And, it is usually implemented at the block layer of
the I/O stack. The typical block I/O scheduler takes three steps
(submit-arbitrate-dispatch) during I/O processing (Figure 1a).
When applications submit I/O requests, the I/O scheduling
layer arbitrates and stages the I/O requests in the layer. When-
ever an I/O scheduling condition is met (e.g., fairness), some
staged I/O requests are eventually dispatched to the storage de-
vice. A problem is that these three-stage operations incur high
CPU overhead, long I/O latency, and low I/O performance
on high-performance SSDs. Since modern high-performance
SSDs are shifting the bottleneck from I/O to CPU, many ap-
plications are changing their algorithms and/or data structures
to adapt to the bottleneck changes [10, 17, 21]. With consid-
ering these efforts in reducing CPU overheads, reducing the
CPU overheads associated with block I/O scheduling is also
an important issue.

Offloading the I/O scheduling function to a device is an
attractive approach to reducing the CPU overhead while pre-
serving fairness. This scheduling offloading is already widely
used in the domain of network packet scheduling [7,23,31,32]
since many network interface cards have device-side I/O
scheduling features, such as round-robin scheduling. Fortu-
nately, modern storage devices are now having a device-side
I/O scheduling feature called NVMe weighted round-robin
(WRR) queue arbitration. It provides three priority classes of
I/O command queues, each with a configurable weight, and
applies the weighted round-robin queue arbitration during I/O
processing by the SSD firmware. However, a challenge is that
the basic NVMe WRR is too simple to properly schedule I/O
requests from multiple tenants with various I/O characteris-
tics, such as a varied number of threads, different I/O request
rates, and various request sizes.

This paper proposes D2FQ, a device-direct fair queueing
scheme for NVMe SSDs. D2FQ leverages the NVMe WRR
feature but does not use it as it is. It abstracts the three queue
classes as three-class queues with different I/O processing
speeds. Then, for every I/O request submission, D2FQ selects
an I/O command queue and dispatches an I/O request to the
queue immediately (Figure 1b). The queue selection policy
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(a) Submit-arbitrate-dispatch (b) Submit=dispatch

Figure 1: Typical I/O scheduling in the block layer (a) and
the proposed I/O scheduling (b).

is carefully designed to provide fairness while reducing tail
latency as much as possible. Since the arbitration step is
removed and the submission and dispatch steps are unified
in the block layer, D2FQ can minimize the CPU overhead
during I/O scheduling and improve the I/O performance.

D2FQ also leverages a scalable yet sloppy minimum value
tracking method. Similar to other fair-share I/O schedulers,
D2FQ is virtual time-based. In these schedulers, it is impor-
tant to track the minimum virtual time in a scalable way [11].
The proposed minimum tracking method tracks the minimum
value almost always while having a small window of tracking
a non-minimum value. However, this little possibility of incor-
rect tracking allows us to achieve scalability a lot as compared
to a scalable minimum tracking object in the literature. [22]

D2FQ is implemented in the Linux kernel and evaluated
with various workloads. Using the FIO benchmark with var-
ious workload configurations, our scheme provides fairness
while reducing CPU utilization by up to 45% as compared to
MQFQ [11], the state-of-the-art fair queueing scheme. When
the storage device is not the bottleneck, D2FQ outperforms
other schedulers in terms of I/O latency, CPU utilization, and
reaches the maximum storage bandwidth faster than the other
I/O schedulers. Since D2FQ unifies the I/O submission and
dispatch steps into one, it can be integrated with the low-
latency I/O stack, which has no I/O scheduling capability [19].
After the integration with the low-latency I/O stack, it outper-
forms other schemes, reducing the I/O latency by up to 35%
and improving the I/O bandwidth by up to 54%.

This paper has the following contributions:
• We successfully demonstrate to build a fair-queueing I/O

scheduler (D2FQ) on top of a simple yet efficient device-
side scheduling feature (NVMe WRR). The only necessary
abstraction is the device-side I/O queues with different I/O
processing speeds.

• We propose a scalable yet sloppy minimum tracking method
suitable for the virtual time-based fairness of D2FQ.

• We provide a detailed evaluation of the proposed fair-
queuing I/O scheduler. The evaluation results demonstrate
that D2FQ provides fairness, low CPU utilization, and high
block I/O performance.

2 Background & Motivation

2.1 Fair Queueing for SSDs

Modern high-performance SSDs are capable of accommodat-
ing parallel I/O requests from multiple tenants. For example,
Samsung 980 Pro can perform at a million I/O operations
per second [1]. This huge increase in the bandwidth and ca-
pacity of SSDs enable to service I/O requests from multiple
independent workloads (or tenants) in a single storage device.
Naturally, fair sharing of the SSD bandwidth is important
to meet the service-level agreements of applications and to
provide performance isolation between tenants. Among many
proportional share I/O schedulers [3,8,9,29,30,34,35], virtual
time-based fair queueing is an attractive solution for SSDs
due to its work-conserving nature. They can maximize the
SSD throughput while the bandwidth achieved by each tenant
is proportional to the weight of the tenants.

An I/O flow is a stream of I/O requests issued by a resource
principal [11] (e.g., virtual machines, Linux cgroups, thread
groups), and the virtual time of a flow is the normalized ac-
cumulated I/O size serviced to the tenant. When a flow f is
serviced an I/O request of length l, the virtual time vt f of the
flow is advanced by l/w f where w f is the weight of the flow.

Virtual time-based fair queueing I/O schedulers [9, 29]
schedule I/O requests while minimizing the difference in
virtual time between any flows. If all flows have the same
virtual time, their I/O resource usages are proportional to their
weights, and hence the fairness is satisfied. Accordingly, the
goal of the schedulers is to minimize the virtual time gap
between any flows. Hence, a flow with the minimum virtual
time is only allowed to dispatch its I/O request since it is the
flow with the lowest amount of I/O serviced. I/O requests
from other flows are throttled by staging them in the I/O
scheduler. This arbitration of request dispatching is denoted
as I/O scheduling in the block layer, as shown in Figure 1a.

To maximize the performance of modern SSDs with inter-
nal parallelism, it is necessary to sustain a high number of in-
flight requests. Accordingly, modern fair queueing I/O sched-
ulers [11, 13] relax the strict fairness. Hence, flows whose
virtual time is nearby the minimum virtual time are allowed
to dispatch their I/O requests. This may allow a small amount
of short-term unfairness but improves the overall I/O through-
put by maximally utilizing the storage device.

Among fair queueing I/O schedulers, multi-queue fair
queueing (MQFQ) [11] is the state-of-the-art approach for
modern high-performance multi-queue SSDs. SSDs now have
multiple command queues to utilize the internal parallelism
of SSDs effectively. To scale with multiple command queues,
MQFQ has request queues for each core in the I/O scheduler
and employs scalable arbitration between the per-core I/O
request queues. It employs two scalable objects: Mindica-
tor [22] for scalable tracking of the minimum virtual time and
a token tree [11] for scalable communication across cores.
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(b) CPU (single core) utilization

Figure 2: (a) I/O latency and bandwidth and (b) CPU (sin-
gle core) utilization of a single-thread 4 KB random read
workload with varying I/O depth on Machine A in Table 1.

With these objects, MQFQ keeps the number of in-flight re-
quests high to maximize the performance of multi-queue
SSDs while not significantly violating the short-term fairness.
The MQFQ is prototyped in the block layer of the operating
system (OS) I/O stack.

2.2 I/O Scheduling Overheads in Software
The block layer in the OS I/O stack (e.g., blk-mq in Linux [5])
is the core of block I/O scheduling. The generic block layer
provides merging, reordering, staging, and accounting of I/O
requests. In addition, block I/O schedulers (e.g., BFQ [4],
mq-deadline [25], kyber [18]) are implemented as a module
of the block layer. The multi-queue block layer maintains
I/O request queues to stage I/O requests for I/O scheduling.
Without I/O scheduling, the submitted requests are immedi-
ately dispatched to I/O command queues of a storage device
(e.g., NVMe submission queues). With I/O scheduling, the
scheduler arbitrates dispatching of I/O requests by staging
them inside the scheduler. If the scheduling condition satisfies
after processing other requests, the staged I/O requests are
finally dispatched to the device.

With high-performance SSDs, however, the block layer
incurs overheads in terms of CPU cycles and I/O latency. Ac-
cordingly, many studies have proposed to bypass the block
I/O layer to achieve low I/O latency [19, 38]. Figure 2 shows
how the overhead of the block layer affects I/O latency, I/O
bandwidth, and CPU utilization. We compared the vanilla
Linux kernel without I/O scheduling (None), MQFQ, and the
light-weight block layer (Bypass) [19], which bypasses the
block layer and submits I/O requests directly to the device’s
command queues. MQFQ shows the highest I/O latency and
lowest I/O bandwidth in Figure 2a because the CPU is satu-
rated earlier than the other schemes. None shows moderate
performance, and Bypass shows the lowest I/O latency, high-
est I/O bandwidth, and lowest CPU utilization; it delays the
saturation point further than the other schemes because of its
lowest CPU overhead of block I/O service.

The high CPU cost of the block I/O scheduling can exacer-
bate the problem of CPU bottleneck in modern data-intensive

RR

ASQ

SQ

SQ

SQ

(a) Round robin

RR

RR

RR

WRR

High

Medium

Low

SQ

SQ

SQ

(b) Weighted round robin

Figure 3: Two NVMe queue arbitration policies: (a) round-
robin and (b) weighted round-robin.

applications with fast SSDs. With the introduction of low-
latency SSDs, the performance bottleneck is moving from
an I/O device to CPU [10, 17, 21]. This incurs the need for
lowering the CPU contention by changing data structures
and/or algorithms of applications. Hence, the CPU overheads
caused by block I/O scheduling can also be addressed to fully
harness the performance potential of high-performance SSDs
today.

The high overhead of I/O scheduling can be alleviated by
offloading I/O scheduling function to devices. Network inter-
face cards (NICs) have experienced the era of microsecond-
scale I/O latency earlier than SSDs. Many approaches have
proposed to offload packet scheduling to NIC and succeeded
in lowering the CPU utilization [7, 31, 32, 36]. Similarly, the
block I/O scheduling can be offloaded to SSDs having device-
side I/O scheduling features [14, 15, 26, 27, 33], and therefore
the cost of the block I/O scheduling can be reduced.

2.3 Weighted round-robin in NVMe Protocol

Non-volatile memory express (NVMe) [26] is the de-facto
standard interface bridging computer systems with storage de-
vices due to its simplicity, efficiency, and scalability. The pro-
tocol also has a block I/O scheduling feature called weighted
round-robin (WRR) queue arbitration [26]. The default I/O
command scheduling policy of the protocol is round-robin;
hence processing I/O commands one by one across command
queues as shown in Figure 3a. If the WRR feature is enabled,
the SSD firmware fetches I/O commands in a weighed round-
robin fashion as shown in Figure 3b. With WRR enabled,
command queues are classified into three priority classes
(low, medium, and high)1, and queues in each priority class
are assigned a queue weight (1 – 256); hence queues in the
same priority class share a queue weight. With WRR enabled,
if queue weights are 1, 2, and 3 for the low, medium, and
high queues, respectively, the SSD controller fetches three
I/O commands from the high queues, then fetches two com-
mands from the medium queues and then fetches one from the

1The NVMe WRR also supports another queue priority class called urgent
priority but our scheme does not consider the use of the class
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Figure 4: Overview of D2FQ.

low queues. Queues in the same priority class are accessed in
a round-robin fashion.

The NVMe WRR feature can be easily implemented in-
side the SSD because of its simplicity. However, applying
this to fair queueing has many challenges to be resolved.
First, NVMe WRR has only three priority classes (i.e., low,
medium and high), whereas the number of tenants can be
higher. Second, its queue arbitration does not consider I/O
sizes. Finally, the weight ratio between any two queues could
not directly match the ratio of I/O commands serviced from
the two queues. This is because the number of I/Os actually
processed can vary depending on the utilization of the com-
mand queues. Consequently, it is necessary to bridge the gap
between the requirement of fair queueing and the simple yet
uncertain performance characteristic of NVMe WRR.

3 Device-Direct Fair Queuing

3.1 Overview
This paper proposes a fair queueing scheme called device-
direct fair queueing (D2FQ) for NVMe SSDs. D2FQ offloads
the I/O scheduling functionality to an SSD by exploiting the
NVMe WRR feature. Accordingly, the CPU overheads and
I/O latency associated software I/O scheduling can be reduced.
Figure 4 shows the overview of D2FQ.

D2FQ is a virtual time-based fair queueing scheme. It man-
ages the virtual time of each flow and the global virtual time
(gvt), the minimum virtual time among active flows. An ac-
tive flow is a flow with any pending I/O requests to be served.
As other fair queueing schemes do, D2FQ provides fairness
between only active flows.

D2FQ throttles a flow if its virtual time is far ahead of gvt.
Throttling is done not by the block layer of the I/O stack but

by exploiting the NVMe WRR feature. In addition, D2FQ
does not establish any fixed mapping between flows and I/O
command queues. Instead, our scheme abstracts the three
classes of queues as three different queues with different I/O
processing speeds (fast, moderate and slow). Then, whenever
a flow submits an I/O request, our scheduling policy imme-
diately selects a queue of the desired speed and dispatch the
request to the queue (Figure 1b). As a result, slow flows in
the virtual time domain are enforced to use the fast queues
to catch up the virtual time of other flows, and fast flows are
throttled by using the slow or moderate queues.

D2FQ maintains three threshold values: τm, τl and τw; the
former two thresholds are used during the queue selection,
and the latter is used to detect unfairness which is explained
later in Section 3.2. When a flow f issues an I/O request,
the gap between its virtual time and gvt (i.e., vt f − gvt) is
compared with the two threshold values to select the class of
command queue (SQ) for I/O dispatching as follows:

SQ =


Qhigh if vt f −gvt < τm

Qmid else if vt f −gvt < τl

Qlow otherwise
(1)

Hence, if the virtual time of a flow is not far from gvt (vtB
in Figure 4), its I/O requests are queued to high queues; hence
the flow is not throttled. If a flow is far ahead of gvt (vtC in
the figure), its I/O requests are queued to low queues; hence
the flow is throttled. Please note that our scheme assumes all
cores are having their own queue set (three queues of each
priority class).
Example walkthrough. Let us assume two flows fa and fb
and their weights wa = 3 and wb = 1. Both flows issue 4 KB
I/O requests with high I/O depth. If the weight of high queues
is 3 and the weight of low queues is 1, both flows can fairly
share the bandwidth by making flow fa use the high queues
and flow fb use the low queues. However, our scheme does
not statically map any flow to any queue but establishes the
mapping dynamically. Indeed, at the beginning, both flows
use the high queues together because their virtual time gap
is zero. Then, vta advances by 4 KB/3 while vtb advances by
4 KB/1 on each I/O completion; consequently, vtb advances
3 times faster than vta. In the end, vtb− gvt(= vta) exceeds
τl , and flow fb begins to use the low queues. After that, both
flows have the same virtual time progress rate.

We define the term H/L ratio as the ratio of the weight of
high queues over the weight of low queues. The H/L ratio
is the most important factor in satisfying the I/O fairness. It
determines the maximum speed difference the high and low
queues can produce if I/O sizes are identical and the queues
are fully utilized. Hence, it determines the maximum weight
ratio our scheme can cover with fairness.

A small H/L ratio cannot meet the fairness requirement. In
the previous example, if the H/L ratio is 2, the two flows fa
and fb cannot fairly share the I/O bandwidth.

Meanwhile, a high H/L ratio has a wide coverage of weight
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(a) Tail latency

(b) Queue usage

Figure 5: Effect of the H/L ratio to tail latency and queue
usage.

ratios between any flows. In the above example, if the H/L
ratio is 6, three fifth of I/O requests from fb need to use
the high queues, and then the two flows can meet the fair
bandwidth distribution. Since the low queues are 1/6 times
slower than the high queues, which is more than necessary,
fb needs to use the high queues to compensate the penalty
caused by the use of the low queues.

The use of high H/L ratio seems appropriate. However, this
has a side-effect of increasing the tail of I/O latency. Figure 5
shows the tail latency and queue utilization of flow fa and fb
with varying the H/L ratio from 3 to 256. As shown in the
figure, the H/L ratio of 3 shows the lowest tail latency for fb.
In that configuration, fb uses the low queues only while the fa
uses high queues only. However, with high H/L ratios, flow fb
shows high tail latency while increasing its usage portion of
the high queues. The flow fb needs to be throttled but the use
of the low queues with high H/L ratio gives higher penalty
than necessary. This results in the increase of tail latency and
the increase of the high queue usage.

Although the above examples show a simple workload
having only two flows with a fixed I/O size and high I/O
submission rate. However, real-world workloads may have
a various number of flows with any number of threads, I/O
submission rates and I/O sizes. With these realistic and un-
known I/O characteristics, it is challenging to find the proper
H/L ratio to make queues with sufficient I/O processing speed
difference.

3.2 Dynamic H/L Ratio Adjustment

D2FQ finds proper weights of the three queue classes to
meet the two goals: providing fairness and taming tail la-
tency. As explained above, the H/L ratio is the most important
factor since D2FQ needs to satisfy fairness. In this regard, our
scheme finds a proper H/L ratio first and then sets the weight
of medium queue as the square root of the H/L ratio. Hence,
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Figure 6: Effect of the dynamic H/L ratio adjustment.

the speed ratio between high and medium queues is equal to
that between medium and low queues.

D2FQ collects information of the virtual time of all flows
and their I/O usage statistics, such as queues and I/O sizes.
It uses the collected information to find the appropriate H/L
ratio periodically as follows.

3.2.1 Increasing H/L Ratio

The H/L ratio needs to increase when fairness is not satisfied.
Recall that our scheme maintains three thresholds, and the
third one τw is the threshold to detect unfairness and trigger
the process of finding a proper H/L ratio. Hence, if a flow
with the largest virtual time is a far ahead of gvt by τw, D2FQ
finds a new H/L ratio that is suitable in providing fairness.

To this end, D2FQ keeps track of two flows, one with the
largest virtual time (denoted as fmax) and the other with the
smallest virtual time (denoted as fmin whose virtual time vt fmin

is equal to gvt). Then, it calculates the delta of virtual time in-
crease in the last information collection period. Hence, ∆vtmax
is the virtual time increase rate in the last period by fmax, and
∆vtmin is the virtual time increase rate last period by fmin.
Then, the next H/L ratio is calculated by using the following
formula:

H/L rationext = b
∆vtmax

∆vtmin
×H/L ratioprevc+1 (2)

The term ∆vtmax
∆vtmin

is the ratio of widening virtual time gap
between fmax and fmin, and this has happened under the previ-
ous H/L ratio. Accordingly, the next H/L ratio should be the
product of the widening ratio and the previous H/L ratio. The
next H/L ratio is ensured to have a higher value by one than
the proper H/L ratio to make the gap narrowed down next.

The use of high queues does not guarantee that I/O requests
in the high queues are processed faster than those in the low
queues. However, our dynamic weight adjustment finds out
a proper H/L ratio to meet the fairness. Figure 6 shows the
bandwidth distribution of eight flows, one with weight 1 ( f1)
the other seven flows with weight 3 ( f3). When the H/L ratio is
fixed to 4 (static-4), f1 uses the low queues and seven f3 flows
use the high queues. In this case, all the flows are not allocated
fair amount of I/O resource due to the contention in the high
queues. However, if our dynamic H/L ratio adjustment is
applied, the H/L ratio becomes 22 using Equation 2 and all
the flows meet the fair bandwidth distribution; the required
effective queue weight ratio is 1:21 (1:3 weight ratio with 1:7
ratio of the number of flows) and one is incremented using
the equation.
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Figure 7: Time-series bandwidth of three flows with different
I/O sizes (4 KB, 8 KB and 16 KB) with varying the threshold
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3.2.2 Decreasing H/L Ratio

As explained in Section 3.1, an unnecessarily high H/L ratio
may increase the tail latency of flows requiring throttling.
Hence, it is necessary to decrease the H/L ratio if the current
H/L ratio is too high. The condition to decrease the H/L
ratio is when the maximum virtual time gap is below τw. In
this case, D2FQ calculates the virtual slowdown of each flow
using the I/O statistics in the last statistics collection period.
The virtual slowdown is an estimated value of how the I/O
requests of this flow are slowed down by not using the high
queues. The virtual slowdown of flow f is calculated by using
the following formula where ∑ l f ,x is the total amount of I/O
submitted to the queue class x by flow f in the last period and
px
py

is the weight ratio of two queue classes x and y:

slowdown( f ) =
∑ l f ,h ∗

ph

ph
+∑ l f ,m ∗

ph

pm
+∑ l f ,l ∗

ph

pl

∑ l f ,h +∑ l f ,m +∑ l f ,l
(3)

Then, D2FQ chooses the maximum virtual slowdown
among all active flows in the system and sets the next H/L
ratio as the maximum value.

3.3 Determining Thresholds

D2FQ regulates the fairness by throttling fast flows in virtual
time (i.e., flows with low weight values). The two thresholds
(τm and τl) are the criteria of when to throttle such fast flows.

Large threshold values allow a huge virtual time interval
between any flows and gvt. Hence, it determines the allowed
unfairness in virtual time.

Figure 7 shows the time-series bandwidth of three flows
with three I/O sizes: 4 KB, 8 KB and 16 KB, respectively. The
vertical line in each figure indicates the point in time starting
fair bandwidth sharing. As shown in the figure, with a small
threshold (τl = 1 MB2), the three flows equally share the I/O
bandwidth from the beginning. That point is delayed to after
1 second with a large threshold value (1 GB). However, after
that point, the flows equally share the I/O bandwidth.

2τl = 1 MB indicates that a flow with weight 8 can cross the threshold
boundary after it is serviced 1 MB I/O size. If its weight is 1, the flow can
meet the threshold only after 128 KB I/O size serviced (one eighth of 1 MB).

Figure 8: Tail latency of the three flows with varying the
threshold τl : 1 MB, 10 MB and 100 MB.

In our scheme, the virtual time progression is controlled by
making the flow crossing the threshold boundary back and
forth. Thus, a flow could not get proper throttling until the
flow hits thresholds in the virtual time domain. Hence, the
threshold values only determine when this control begins.

On the other hand, small threshold values may unintention-
ally increase the tail latency of flows, especially those who
stay back in the virtual time domain. Such flows are intended
to use the high queues only. However, a small increase in vir-
tual time can make such flows use the medium or low queues
due to crossing the thresholds. This may exacerbate the tail
latency of all flows because other flows can unintentionally
use the high queues and be throttled to offset the benefits of
using the high queues.

Figure 8 compares the tail latency of the three flows with
varying threshold values: 1 MB, 10 MB, and 100 MB. As
shown in the figure, with the 10 or 100 MB threshold values,
the three flows show no significant increase in the tail latency.
However, with the 1 MB threshold value, the three flows show
up to 3.7 times long tail latency.

Consequently, there is a trade-off between short-term fair-
ness and tail latency in setting the threshold value. Depending
on whether a user focuses on tail latency or short-term fair-
ness, the user can adjust the appropriate threshold value.

The characteristics of workloads, especially I/O size and
weight of flows, impact on the selection of the threshold val-
ues because the I/O size and weight determine the stride of
virtual time increase. Our scheme uses a proper τl that is em-
pirically found to work with our tested workloads. We leave
the fine-tuning of the threshold values to the users or system
administrators.

τm also affects tail latency. However, its latency impact is
not significant as compared to that of τl since the medium
queues are faster than the low queues. We empirically found
that it is suitable to set τm = τl/2.

3.4 Global Virtual Time Tracking

The value gvt is frequently accessed during I/O submission
and completion. Accordingly, it is important to track gvt in a
scalable way.

Tracking gvt is equal to tracking the minimum among a
set of values where each value changes simultaneously. One
coarse-grained approach is to inspect all the values for every
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1 struct vt {
2 u64 id : 16 bits // id of a flow
3 u64 vt : 48 bits // virtual time of a flow
4 } gvt; // global virtual time
5
6 void update_gvt (vt my)
7 while (true) {
8 vt old = gvt
9 if ((old.id == NO_HOLDER)

10 || (old.id == my.id && old.vt < my.vt)
11 || (old.id != my.id && old.vt > my.vt)) {
12 if ( CAS(&gvt, old, my) == SUCCESS )
13 return
14 } else
15 return
16 }
17
18 void release_gvt (vt my)
19 while (true) {
20 vt new, old = gvt
21 if (old.id == my.id) {
22 new.id = NO_HOLDER; new.vt = old.vt
23 if ( CAS(&gvt, old, new) == SUCCESS )
24 return
25 } else
26 return
27 }

Figure 9: Pseudocode of tracking the global virtual time.

query of the minimum. An alternative is to use a scalable
minimum tracking object such as Mindicator [22].

In D2FQ, we take yet another approach of tracking gvt in
a sloppy way. We consider that it is not always necessary
to retrieve the true minimum value among the virtual time
of flows. The goal of tracking gvt is not to minimize the
virtual time gap between any flows. It is to make the pace of
virtual time progression of any flows at a similar rate. If the
value of gvt is not far from the true minimum value, the sloppy
management hardly affects the policy of low or medium queue
selection since the use of the thresholds gives tolerance to the
queue selection policy.

In this regard, our scheme maintains the gvt holder, the
flow owning gvt, and allows only the gvt holder to be able
to increase gvt (line 9–13 in Figure 9). Other flows can also
update gvt but only when their virtual time is smaller than gvt
(line 11). A little inaccuracy can happen when the gvt holder
increases gvt and it now overtakes the virtual time of other
flows, hence violating that gvt is not the minimum. However,
this little inaccuracy comes with the simplification of the gvt
update operation; otherwise, every gvt update needs to inspect
the virtual time of all the flows.

The function update_gvt() is called when I/O comple-
tion happens. When the gvt holder becomes inactive, it calls
release_gvt(), and any flow can become the gvt holder. We
use the atomic instruction compare_and_swap (CAS) and the
while loop to secure minimal serialization between concurrent
gvt updates.

3.5 Implementation
D2FQ is implemented in the multi-queue block layer [5] of
the Linux kernel. Figure 10 represents the high-level pseudo

1 per−CPU structures:
2 high/medium/low class SQ
3
4 per−flow structures:
5 vt // virtual time
6 nr_inflight // # of in−flight requests
7 weight // I/O weight of this flow
8
9 void dispatch_request (request R, flow F)

10 if (F−>active == false)
11 F−>active = true; F−>vt = gvt
12 F−>nr_inflight += 1
13 vt_gap = F−>vt − gvt
14 if (vt_gap > threshold_low)
15 R−>dispatch_Q = low class SQ
16 else if (vt_gap > threshold_medium)
17 R−>dispatch_Q = medium class SQ
18 else
19 R−>dispatch_Q = high class SQ
20
21 void complete_request (request R, flow F)
22 F−>vt += R−>length / F−>weight
23 F−>nr_inflight −= 1
24 if (F−>nr_inflight == 0)
25 enter_grace_period(F)
26 update_gvt()

Figure 10: Pseudocode for D2FQ working flow.

code of D2FQ. Each core has three submission queues (high,
medium and low) (line 2). Each flow has virtual time, the
number of in-flight requests and its weight value (line 4–7).

The function dispatch_request() (line 9) is the
core function that selects the queue to dispatch an
I/O request. It is invoked in the block layer function
blk_mq_start_request(). However, D2FQ is independent
to the block layer since it has no staging operation. Accord-
ingly, it can also be invoked elsewhere before request dis-
patching, such as nvme_queue_rq().

The number of in-flight requests is used to detect the ac-
tiveness of flows. If it becomes zero, a grace period is given,
and after that the flow becomes idle (line 24). The use of the
grace period is to avoid the deceptive idleness [12].

The function complete_request() is invoked whenever
a request is completed. In our implementation, it is called
from the block layer function blk_mq_finish_request().
It is also independent to the block layer so it can be invoked
elsewhere after request completion.

4 Evaluation

4.1 Methodology

Table 1 shows our experimental configuration. We used Sam-
sung Z-SSD as the main storage device because it supports
the NVMe WRR feature. The NVMf on ramdisk is used only
for the scalability test due to lack of WRR support.

We evaluated the following four schedulers:
• None performs no I/O scheduling in the block layer.
• D2FQ is the prototype of our scheme which is based on

None as explained in Section 3.5. The dynamic H/L ratio
adjustment is enabled. The H/L ratio is initially 256. The
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Figure 11: Fairness measurement with varying (a) I/O request size, (b) the number of threads and (c) the weight of each flow.
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Figure 12: CPU utilization and I/O processing cost of the workloads in Figure 11.
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Figure 13: Average I/O latency of the workloads in Figure 11.

Machine A
CPU Intel Xeon Gold 5112 3.60 GHz 8 cores

Memory DDR4 192 GB
Storage Samsung Z-SSD 800 GB

Hardware Machine B
configuration CPU Intel Xeon Gold 6226 2.70 GHz 24 cores

Memory DDR4 192 GB

Storage Samsung Z-SSD 800 GB
NVMf ramdisk 64 GB

Network Mellanox Connect X-4 56 Gbps
OS Ubuntu 18.04.4

Software Kernel Linux version 5.3.10
configuration FIO libaio, random read, direct I/O

YCSB Uniform request distribution

Table 1: Experimental configuration.

threshold τl is set to 8 MB for flows with weight 8 which is
1 MB for flows with weight 1; then the rest of the thresholds
are automatically set τm = τl/2, τw = 2× τl . The period of
the H/L ratio adjustment is set to one second.

• MQFQ is the state-of-the-art fair-queueing I/O scheduler.
Unfortunately the source code is unavailable. So we made
our own implementation of MQFQ, which faithfully follows
the design described in the MQFQ paper [11]. We ported
the Mindicator written in C++ [24] to C for the integration
with the Linux kernel. MQFQ has two parameters: D is 64
and T is 45 KB in our setting.

• BFQ is the time slice-based proportional share I/O sched-
uler in Linux [4]. We set max_budget to 256.

The four schedulers use ionice() to set the weight of each
flow. The weight values range from 1 to 8 in the experiment.
Unless specified, the default weight value is 8.

The evaluation is organized to answer the three questions:
(1) whether our scheme provides fairness when the storage
device is saturated, (2) how well our scheduler shows good I/O
performance when the storage device is unsaturated, and (3)
whether our scheme provides fairness with realistic workload.

4.2 Fairness

Providing fairness is the primary goal of fair queueing when
multiple flows contend on a storage device. We build three
workloads with varying the following factors: I/O request
size, the number of threads and the weight of flows. Then,
we measure the bandwidth of each flow in Figure 11. Unless
specified, the I/O depth is 128 by default in each thread.
I/O Request Size. Figure 11a shows the bandwidth distri-
bution of two I/O flows with different I/O request sizes: 4
KB vs 8 KB. Each flow has 4 threads. Since the two flows
have the same weight, the SSD bandwidth should be fairly
distributed to the two flows, and D2FQ, MQFQ and BFQ pro-
vide the fairness. The total bandwidth is identical across the
three schedulers: None, D2FQ and MQFQ.
Thread Count. Figure 11b shows the bandwidth distribution
of two I/O flows with different number of threads: 2 threads
vs 6 threads. The I/O request size is 8 KB in both flows. In
this experiment, both flows need to evenly share the SSD
bandwidth and D2FQ, MQFQ and BFQ achieve this while
None does not.
Weight. Figure 11c shows the bandwidth consumed by four
I/O flows with different weight values: 8, 6, 4 and 2; each
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Figure 14: Bandwidth fluctuation test between fair I/O sched-
ulers (same configuration as figure 11a).

flow has two threads, and the request size is 8 KB. Hence, the
bandwidth ratio of the four flows needs to be identical to the
ratio of weights. As shown in the figure, D2FQ and MQFQ
show correct bandwidth distribution ratio while BFQ shows a
slightly poor bandwidth distribution. In the three workloads,
the total bandwidth of BFQ is lower than the others. Please
note that, in the above three experiments with D2FQ, the H/L
ratio is 256 at the beginning and converges to 3, 3 and 6,
respectively, by our dynamic H/L ratio adjustment.
Cost of Fairness. The cost of I/O scheduling is CPU cycles
and D2FQ minimizes them by avoiding arbitration including
request staging in the block layer. This effect results in the
reduction in CPU cycles or CPU overhead for each I/O request
handling. Figure 12 shows the CPU utilization and system
jiffies per 1 KB I/O of the three workloads in Figure 11. As
shown in the figure, BFQ shows the highest CPU utilization
and also fails to fully utilize the SSD. MQFQ shows similar
CPU utilization to BFQ due to its computation for request
arbitration. D2FQ consume slightly more CPU cycles than
None since D2FQ needs a few CPU cycles to select queue
during dispatch and maintain scheduler statistics, such as
virtual time. D2FQ reduces the CPU utilization by up to
45% as compared to MQFQ in Figure 12a. If the metric
is CPU cycles per I/O (i.e., system-jiffies/KB), None and
D2FQ show lower per-request CPU cost than MQFQ and
BFQ. In summary, D2FQ provides fairness with minimal
CPU cycles and the saved CPU cycles may be able to be used
more usefully for applications.
Latency. Figure 13 shows the average I/O latency of the three
workloads in Figure 11. With the fair I/O schedulers, the I/O
latency is largely affected by I/O throttling; the throttled flows
show longer I/O latency than the others. D2FQ and MQFQ
show similar latency results. However, BFQ shows longer
latency than the two schedulers. None shows the shortest
latency in all the cases but fails to provide the fairness.
Short-term Fairness. While other fair queueing sched-
ulers [9, 11, 13] have theoretical upper-bound in unfairness,
D2FQ has none. This leads us to measure how much short-
term unfairness occurs at least empirically. To this end, we
measure the bandwidth of each flow of the request size ex-
periment (Figure 11a) every short time interval (10 ms) and
depicts the time-series bandwidth in Figure 14. Interestingly,

(a) Bandwidth of each flow for
the second 10 seconds
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10 seconds
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Figure 15: Effect of the dynamic H/L ratio adjustment.

our scheme shows very stable bandwidth distribution in both
flows. This indicates that both flows almost evenly share
the SSD bandwidth in every short time period. Meanwhile,
MQFQ shows fluctuation of bandwidth in both flows; this
phenomenon is due to frequent exchange of dispatch slots
across the cores/sockets.

Dynamic H/L Ratio Adjustment. To test the effect of our
dynamic H/L ratio adjustment, we build a synthetic workload
with three flow groups with different lifetimes: (1) base that
contains one weight-1 flow and runs from the beginning to
the end, (2) event1 that contains three weight-3 flows and runs
from the 10-second point in time to the end, and (3) event2
that contains four weight-3 flows and runs from the 20-second
point to the end. Each flow has 2 threads and issues 4 KB
I/O requests with 128 I/O queue depth. We run the workload
with the three H/L ratio configurations: static-3, static-128,
and dynamic, and depict the bandwidth, latency and H/L ratio
change (dynamic only) in Figure 15.

Static-3 fails to provide the bandwidth fairness in Fig-
ure 15a and 15b; the bandwidth ratio between base and the
rest should be 1:3. Static-128 and dynamic achieve the target
bandwidth ratio because their H/L ratios are high enough to
satisfy the fairness. However, as shown in Figure 15c and 15d,
static-128 shows long tail latency because the H/L ratio of 128
is too high and flows using the low queues experience long
I/O delays. Our dynamic H/L ratio adjustment adaptively sets
the H/L ratio properly based on the I/O patterns of the flows.
The H/L ratio changes over time as shown in Figure 15e; it is
set to 7 when event1 begins and to 17–18 when event2 begins.
Please note that the H/L ratio is not 22 as in Section 3.2.1 be-
cause the use of the medium queues gives additional fairness
control over the low queues.
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(a) Bandwidth and latency (b) Single-core utilization

Figure 16: Latency, bandwidth and CPU (single core) utiliza-
tion with a single-thread flow with varying I/O depths.

Figure 17: Scalability test of the global virtual time tracking
schemes.

4.3 I/O Performance

The I/O scheduler performs not only when the storage device
is saturated but also when the device is unsaturated. When
the device is unsaturated, the performance of I/O scheduler
is the major factor to the I/O performance. In this regard, we
measure the I/O performance under low I/O contention.

In this experiment, we add another scheme to demonstrate
that D2FQ is independent of the multi-queue block layer
in Linux. A low-latency I/O stack [19] achieves low I/O
latency by its submit=dispatch characteristic. Unfortunately,
it lacks I/O scheduling support, which can be complemented
by D2FQ; LL-D2FQ is the low-latency I/O stack with D2FQ,
thereby having the I/O scheduling capability.

Figure 16 shows the latency, bandwidth and CPU utilization
of each I/O scheduler. For the workload, we run a single-
thread FIO performing 8 KB random read with varying its
I/O depth from 1 to 16.

Basically, the increase in I/O depth results in the increase
of bandwidth as well as latency in all the schedulers as shown
in Figure 16a. Unless the CPU is saturated, increasing the I/O
depth increases the CPU utilization due to handling more I/O
requests as shown in Figure 16b.

More importantly, the overhead of I/O scheduler signifi-
cantly affects the I/O latency, I/O bandwidth and the CPU
utilization. As shown in the figure, MQFQ shows the low-
est performance in terms of the three metrics. D2FQ and
None show similar position in performance since they ex-
clude the I/O scheduler in the block layer. Finally, LL-D2FQ
outperforms the others by up to 35% in latency and 54% in
bandwidth due to its low overhead in I/O request handling. It
delays the CPU saturation point to the I/O depth of 14 whereas
the other schedulers saturate the CPU at the I/O depth of 9 in

Figure 16b.
Scalability. We test the scalability of D2FQ with varying the
gvt tracking methodology. None performs no gvt tracking.
D2FQ uses our gvt tracking method in Section 3.4. Mindi-
cator tracks gvt using Mindicator [22] as in MQFQ [11].
D2FQ-serial tracks gvt by inspecting all flows every time of
accessing gvt.

As shown in Figure 17, with increasing the number of cores
(i.e., flows), D2FQ-serial does not scale after 12 cores due to
cross-socket communication [6]. Mindicator scales well, but
its tree-based data management incurs overheads with high
core counts. D2FQ shows identical scaling to None.

4.4 Realistic workload
Finally, we measure the impact of D2FQ on realistic work-
loads. We run two flows: one flow of YCSB workloads [37]
on the RocksDB and the other contending flow of the FIO
benchmark. Since we run a realistic workload, YCSB sat-
urates CPU first in Machine A. So, we use Machine B in
this experiment. This machine has another difficulty in queue
assignment since 24 cores need 72 command queues (three
queues for each core), but Z-SSD provides only 32 command
queues. To resolve this issue, we group three queues of three
adjacent cores and make the three cores share the three queues
as the three-class queues in this experiment.

The FIO workload issues 4 KB random read using 4 threads
with 128 I/O depth. In the YCSB workload performs 64 mil-
lion operations on 64 GB key-value dataset with 1 KB value
size. The physical memory is reduced to 16 GB.

Figure 18 shows the bandwidth and CPU utilization of the
workload with the four schedulers. As shown in the figure,
None cannot fairly distribute the SSD bandwidth to the two
flows. YCSB consumes lower bandwidth than FIO since FIO
is more bandwidth hungry. With fair queueing schedulers, the
bandwidth is fairly distributed across the two flows; D2FQ
shows 1.00 – 1.05 bandwidth ratio (YCSB bandwidth over
FIO bandwidth) and MQFQ shows 1.00 – 1.08 bandwidth
ratio. None shows lower CPU utilization than D2FQ and
MQFQ because YCSB, which consumes more CPU cycles
per I/O than FIO, takes a smaller portion in total bandwidth
than D2FQ and MQFQ.

D2FQ shows a slightly higher total bandwidth than MQFQ
by up to 1.83% on average. This is due to the true work-
conserving characteristic of D2FQ; all submitted requests
are dispatched to the device queues. MQFQ rarely fails to
maximally utilize the device bandwidth due to the exchange
of request dispatch slots between cores and sockets.

Figure 19 shows the average I/O latency of each workload
normalized to the result of None. The YCSB workload re-
ports the latency and number of operations for each operation
type, so we calculate the weighted average latency in that
case. As shown in the figure, basically flows showing higher
I/O bandwidth achieve shorter I/O latency. With None, FIO
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Figure 18: I/O bandwidth and CPU utilization of the realistic workload (YCSB with FIO). The number above each histogram
shows the bandwidth ratio (the FIO bandwidth over the YCSB bandwidth).

Figure 19: Normalized latency of the realistic workload
(YCSB with FIO).

achieves high I/O bandwidth and low I/O latency whereas
YCSB shows low I/O bandwidth and high I/O latency. On the
contrary, D2FQ and MQFQ show smaller FIO bandwidths
and larger YCSB bandwidths than None. Accordingly, both
show longer I/O latency with FIO and shorter I/O latency
with YCSB. BFQ shows very long I/O latency due to its
inefficiency in I/O scheduling.

5 Related Work

Fair-share I/O Schedulers. Fair resource sharing is one of
important goals of I/O resource sharing. Linux employs time
slice-based fair schedulers, such as CFQ [3], BFQ [34], Ar-
gon [35] and FIOS [30]. Time slice-based schedulers are
non-work conserving: I/O resources can remain unused while
requests are available. Ahn et al. [2] proposed a budget-based
fair share I/O scheduler implemented in Linux cgroup layer;
it is also a non-work conserving scheduler. H-BFQ [28] has
expanded the original BFQ to hierarchical cgroup structure.
Fair queueing I/O schedulers [8, 9, 29] including D2FQ are
work-conserving so they always try to keep I/O resource busy
whenever requests exist. Fair queueing schedulers provide
fairness using virtual time [8, 9, 29], and they controls the or-
der of I/O requests to minimize the virtual time gap between
any flows. With the advance in storage performance, it is nec-
essary to dispatch multiple requests to a device to maximize
the I/O performance. This relaxes the requirement of mini-
mizing the virtual time gap between any flows. SFQ(D) [13]
allows at most D outstanding requests. MQFQ [11] relaxes
the requirement further to enable parallel dispatch with a little
communication across cores. D2FQ also relaxes the assump-
tion which is determined by the two thresholds (τm and τl)
for a different reason: too small thresholds increases the tail
latency by unnecessarily throttling requests.
Other I/O Schedulers. Lee et al. [20] isolate queues to pri-
oritize reads over writes. Kyber [18] prioritize synchronous

I/Os over asynchronous ones to foreground performance. Kim
et al. [16] prioritize requests from foreground context holisti-
cally throughout the I/O stack. These schedulers, however, do
not provide fair I/O resource management.
Scheduling Offloading to Device. FLIN [33] implements
fair-share scheduler in the SSD firmware and identifies and
considers the major sources of performance interference in a
flash-based SSD. Joshi et al. [14] enlightens the use of NVMe
WRR in Linux for SSD resource fairness. The use of NVMe
WRR to the block cgroup is later implemented in the mainline
Linux [27]. None of these work consider the sharing of queues
with multiple flows, which is necessary when the number of
flows exceeds the number of queues.

6 Conclusion

This paper proposes D2FQ, a low overhead high-performance
fair-queueing I/O scheduler. D2FQ is carefully designed to
implement the sophisticated fair-queueing I/O scheduler on
top of the simple device-side I/O scheduling feature (i.e.,
NVMe WRR). Therefore, the CPU overhead associated with
scheduling decision is minimized, thereby saving CPU cycles
and improving I/O performance. Modern high-performance
SSDs are changing the paradigm that the bottleneck is no
longer I/O but CPU. We expect our light-weight fair-queueing
scheme will help reduce the contention on the CPU and allow
applications to use more CPU cycles for a useful way. We
plan to extend our scheme to leverage the urgent priority class
of the NVMe WRR for better quality of service of block I/O
scheduling.
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Availability

The source code is available at https://github.com/
skkucsl/d2fq
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