
A Framework for Software Diversification with ISA Heterogeneity

Xiaoguang Wang
Virginia Tech

SengMing Yeoh
Virginia Tech

Robert Lyerly
Virginia Tech

Pierre Olivier
The University of Manchester

Sang-Hoon Kim
Ajou University

Binoy Ravindran
Virginia Tech

Abstract
Software diversification is one of the most effective ways

to defeat memory corruption based attacks. Traditional soft-
ware diversification such as code randomization techniques
diversifies program memory layout and makes it difficult for
attackers to pinpoint the precise location of a target vulnera-
bility. Some recent work in the architecture community use
diverse ISA configurations to defeat code injection or code
reuse attacks, showing that dynamically switching the ISA on
which a program executes is a promising direction for future
security systems. However, most of these work either remain
in a simulation stage or require extra efforts to write program.

In this paper, we propose HeterSec, a framework to secure
applications utilizing a heterogeneous ISA setup composed
of real world machines. HeterSec runs on top of commodity
x86_64 and ARM64 machines and gives the process the illu-
sion that it runs on a multi-ISA chip multiprocessor (CMP)
machine. With HeterSec, a process can dynamically select its
underlying ISA environment. Therefore, a protected process
would be capable of hiding the instruction set on which it exe-
cuted or detecting abnormal program behavior by comparing
execution results step-by-step from multiple ISA-diversified
instances. To demonstrate the effectiveness of such a soft-
ware framework, we implemented HeterSec on Linux and
showcased its deployability by running it on a pair of x86_64
and ARM64 servers, connected over InfiniBand. We then
conducted two case studies with HeterSec. In the first case,
we implemented a multi-ISA moving target defense (MTD)
system, which introduces uncertainty at the instruction set
level. In the second case, we implemented a multi-ISA-based
multi-version execution (MVX) system. The evaluation re-
sults show that HeterSec brings security benefits through ISA
diversification with a reasonable performance overhead.

1 Introduction

Software diversification has proven to be a very effective
way to defeat software memory corruption attacks [42]. By

diversifying the target application memory layout, these diver-
sification techniques are capable of randomizing vulnerable
code locations [3, 8, 35, 36, 40, 63, 78, 81], detecting abnormal
program behaviors (i.e. attacks) [15, 38, 51, 57, 58, 72, 73, 83],
or hiding the secret data [39, 41]. The uncertainty brought
about by a diversified program effectively raises the bar for
launching a successful attack.

The “end of Moore’s Law” [21, 25] has forced chip ven-
dors to advance performance and energy efficiency bound-
aries elsewhere, in particular by designing radically different
hardware: multicore and manycore chips [11, 56, 61]; CPUs
with heterogeneous micro-architectural properties [34, 53],
partially overlapping ISAs [32], and various forms of accel-
erators and programmable hardware [22] that exploit hetero-
geneity. CPUs with heterogeneous-ISA cores – studied by the
academic research community [4, 44, 52, 69, 71] – are another
point in the architectural design space that are now available
as commodity hardware – e.g., Intel Skylake processor with in-
package FPGA [28,29] enables synthesizing RISC-V and x86
soft cores; AMD’s new generation x86 processor integrates
ARM cores; commodity smart NICs integrate ARM [24, 49],
MIPS64 [64], or Tile cores [48].

Recently, some research efforts explored using multiple,
heterogeneous-ISA CPUs to secure the application execu-
tion. For example, architecture researchers have proposed
systems that implement heterogeneous ISAs over one sin-
gle chip to achieve inter-ISA program state randomization
with higher entropy [70, 71, 76]. Another recent work lever-
ages the distributed, heterogeneous-ISA machines to detect
program vulnerability exploits [73]. Specifically, it simulta-
neously runs multiple instances of the same application on
heterogeneous-ISA machines to detect execution divergence
caused by eventual security attacks (a.k.a., multi-variant ex-
ecution [15]). However, programming on such a distributed,
multi-ISA environment is not easy, as it requires tremendous
efforts to synchronize program states over differential OS
kernels and instruction sets.

In this paper, we make the first step towards applying
software-based diversification concepts to a real multi-ISA en-

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 427

vironment, aiming to secure software execution with ISA het-
erogeneity. An ISA-diversified program can have additional
randomness in its code and data memory layout, register us-
age, instruction orders, and micro-architecture behaviors. Fur-
thermore, the diversified program variants could potentially
leverage some architecture-dependent security extensions,
making it even harder for attackers to bypass a single layer
of protection. To achieve this goal, we propose HeterSec, a
software framework that facilitates securing applications with
multiple ISAs. Unlike existing simulation-based approaches,
HeterSec bridges real heterogeneous-ISA machines. Heter-
Sec works at the operating system and process runtime level,
giving processes an illusion of running on a CMP machine
while possessing the ability to dynamically select the underly-
ing instruction set or cross check program state between two
ISA-diversified program instances.

To demonstrate its effectiveness, we have built two security
applications on top of HeterSec. The first security applica-
tion enables the target program to randomly execute between
machines with different ISAs, implementing a moving target
defense (MTD) system [31]. The second security application
implements a multi-variant execution (MVX) system [15, 38].
A traditional MVX system runs multiple variants of an ap-
plication with non-overlapping address space [15, 83]. On
detecting abnormal runtime behaviors from the variants (e.g.,
unmatched system call return values, segfault), a MVX moni-
tor could deduce there is likely an ongoing exploit. Variants
generated from the ISA heterogeneity can automatically ob-
tain an additional level of diversity, making attackers even
harder to successfully launch an attack. Overall, we explored
the research space in securing software execution with diver-
sified instruction sets. To that aim, we made the following
contributions:

• We built a software framework that can manage the pro-
cess execution over coupled multi-ISA machine nodes
for security purposes.

• We implemented two security applications on top of
such a framework, namely multi-ISA based MTD and
multi-ISA based MVX. The multi-ISA MTD randomly
changes the execution ISA, hiding the precise target hard-
ware features from attackers. The multi-ISA MVX uses
ISA diversity as an additional dimension to differentiate
program instances so that it is even harder for attackers
to bypass the violation check.

• We demonstrated the potential of such multi-ISA based
security systems with real-world evaluation; the results
show that the additional layer of ISA diversity increases
the cost for attackers, adding about 15% overhead for
Nginx and Redis server applications in real-world sce-
narios.

The rest of this paper is organized as follows: Section 2
provides some background information of multi-ISA systems.

We then describe the design, implementation and case stud-
ies of HeterSec in Section 3. The evaluation is presented in
Section 4. Afterwards, we summarize the related works in
Section 5 and conclude the paper in Section 6.

2 Background and Threat Model

In this section, we briefly introduce the background on mov-
ing target defense and multi-variant execution; next we de-
scribe our motivation by summarizing recent multi-ISA sys-
tems and the security implications; we then proceed to define
the threat model at the end of this section.

2.1 MTD and MVX
Moving Target Defense (MTD) Most information systems
are built on relatively static platforms. Many defense tech-
niques also involve static integrity checks and introspection.
The static nature of such defense mechanisms gives attackers
the time to thoroughly study the target system and launch
the exploit [31]. The goal of MTD is to break the static na-
ture of the target systems, with deviation of existing defense
mechanisms and adaptations over time. MTD is an abstract
concept, leaving options open with regards to how it is im-
plemented. Thus realization of its design philosophy can be
demonstrated in many ways. For example, dynamic systems
or network configuration [30, 31], dynamic application code
and data [13, 81], etc. In this paper, we demonstrate the secu-
rity benefit and performance cost of running processes with
dynamic execution on multiple ISAs using HeterSec.

Multi-Variant eXecution (MVX) Another interesting way
to secure applications with multiple ISAs is through multi-
variant execution systems [15]. MVX is a software secu-
rity technique that runs multiple functionally equivalent pro-
grams (variants) with differing memory layouts. Some exam-
ples of such memory layout differences and deltas include
non-overlapping memory maps [38, 57, 83], reverse stack
growth [58], etc. By executing the diversified variants with
the same inputs, the MVX engine is capable of detecting
when an attack happens if one of the variants fails. That be-
ing said, existing MVX techniques might not be met with
as much success when attempting to detect attacks based on
relative addresses [23, 27, 73] or architecture level vulnerabil-
ities [37, 46, 82]. With HeterSec, we built a prototype to use
multiple ISAs as the source of variation between variants and
prove a multi-ISA MVX system is still capable of obtaining
reasonable performance despite the overheads involved.

2.2 Multi-ISA Systems and Security
Heterogeneous CPUs have been widely adopted in both
data centers and end devices. On mobile platforms, ARM
big.LITTLE technology uses two types of processor to

428 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

x86 ARM

Software distributed shared memory

Linux
(x86)

Linux
(arm)

x86 ARM

Linux
(x86)

Linux
(arm)

User space communication

x86
ARM

Host OS
(x86) QEMU

(arm)

simulator

(a) (b) (c)

gem5

Figure 1: Comparison of multi-ISA security systems: (a) HIP-
StR with simulated multi-ISA chip [70, 71]; (b) HeterSec; (c)
DMON on completely decoupled machines [73].

achieve a dynamic balance between maximum power effi-
ciency and maximum compute performance [1]. On data
center servers, heterogeneous ISA processors are being used
in different scenarios. For example, GPUs and TPUs are of-
ten equipped to accelerate machine learning workloads [33].
ARM based PCIe-pluggable SmartNIC cards are used to of-
fload network applications for improved throughput and secu-
rity [67, 68]. In academia, there have been several works ex-
ploring the benefit and cost of building single-chip multi-ISA
systems [20,70,71]. DeVuyst et al. [20] first demonstrated the
possibility of building a multi-ISA chip on a simulator, show-
ing the ability to migrate processes between different ISAs.
Venkat et al. [71] further expanded on the idea by proposing
that applications running on multiple ISA could have benefits
in reducing power consumption and accelerating computation
speed, which they called ISA affinity. Their findings proved
that an application can have lower power consumption (or
better performance) by being split into code phases. Based
on the ISA affinity of each code phase, the application code
can be selectively executed across a heterogeneous ISA chip.
In terms of security, HIPStR explores using multiple ISAs to
increase code entropy, which makes return oriented program-
ming (ROP) attacks difficult to launch [70]. The difference
between these works and our system is that they are all built
on top of CPU simulators (gem5 [9] and QEMU [55] as shown
in Figure 1 (a)). The simulation-based approach makes it hard
for security researchers to investigate the security benefits of
using a multi-ISA architecture.

A recent concurrent work, DMON [73], uses distributed
heterogeneous-ISA machines to generate and host program
variants (a distributed version of N-Variant Execution [15]).
The variants run on completely separate machine nodes
and each variant communicates with the counterpart variant
through a lightweight UDP-based network protocol (Figure
1 (c)). Although lightweight network protocols can provide
low latency communication cost to exchange data between
distributed nodes, the use of ptrace interface to intercept
system calls brings extra context switches. For example, run-
ning Lighttpd web server on DMON will have 5.43x perfor-
mance overhead [73]. Furthermore, DMON does not provide

generally sufficient abstraction to secure applications with
multi-ISA machines. Therefore, it may provide less extensi-
bility for developing multi-ISA based security applications
which require timely execution of ISA switches. HeterSec
instead focuses on building a generic framework to secure
applications with the multi-ISA architecture. To this end, Het-
erSec adopts a hybrid approach – it runs on top of the real
ISA-heterogeneous hardware; but the protected process has a
unified view of system resources as if it runs on a multi-ISA
CMP platform (Figure 1 (b)).

3 Design and Implementation

3.1 System overview
HeterSec aims to secure process execution by utilizing ISA
heterogeneity to, for example, randomize the process execu-
tion environment over heterogeneous machines. To achieve
this, HeterSec provides a per-process HeterSec execution en-
vironment. Specifically, it allows the protected process to be
executed on machines running with different ISAs as if it
were running on a single machine.

Figure 2 shows an overview of HeterSec with its new com-
ponents added to an existing computer system stack. The
components introduced by HeterSec include both the kernel
and the user-space runtime as shown in blue. Figure 2 also il-
lustrates two security application scenarios on top of HeterSec.
In the first scenario, HeterSec switches the underlying ISA out
from under the protected application, increasing the entropy
of possible program states by masking the ISA switch and pre-
venting attackers from divining underlying hardware details.
In the second scenario, HeterSec launches multiple variants
of the program, monitors the variants’ execution states (e.g.,
return values of system calls, or segfault), and raises an alert
on any execution divergence caused by a potential attack. The
HeterSec kernel provides additional functionality to control
the target process at runtime, such as the process interception,
per process shared memory and fast inter-kernel messaging.
For example, the HeterSec distributed operating system ker-
nel maintains a synchronized page table for each protected
process. The page tables are synchronized during each ISA
switch, giving the HeterSec process a unique view of the
memory. Secure application scenarios can be implemented
as loadable kernel modules that interact with the target pro-
cess execution. Since HeterSec only intercepts and interacts
with the target process, it introduces nearly zero performance
overhead to other processes running on HeterSec 1.

HeterSec has a concept of master OS. The master OS is the
OS where the HeterSec process is initialized and launched.
Correspondingly, the OS that works as the counterpart to the
master OS is called the follower OS. The master HeterSec OS
exports the view of system resources to the HeterSec process

1Except for a few in-kernel checks to verify the process status, HeterSec
kernel does not bring extra code paths for non-HeterSec processes.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 429

Linux (aarch64) Linux (x86_64)

Per Process Sync
Page Table

Process Interception and
Runtime

Process State and
Resource (descriptor) Sync

MVX Variant

U
se
r

K
e
rn
e
l Process Interception and

Runtime
Process State and

Resource (descriptor) Sync

MVX Variant

MTD Process

Sec App 1 Sec App 2 … Sec App 1 Sec App 2 …

ARM64 multi-core x86_64 multi-coreInfiniBand

Inter-kernel messaging Inter-kernel messaging

Figure 2: The architecture overview of HeterSec with two se-
curity application scenarios. The components in blue indicate
modifications over existing software stack.

running on follower OS. Such system resources are often
unique for each process, for example, open file descriptors,
sockets, or event poll descriptors. For consistency reasons,
HeterSec has to ensure that only one copy of such resources is
maintained across OSes, maintaining a single source of truth
for in-kernel state. When necessary, the master OS also helps
to initialize and build the virtual address space for the fol-
lower OS’ process. Virtual memory areas (VMAs) and pages
are synchronized between the two OSes. All the inter-OS
communication requests are registered with an inter-kernel
messaging API so that messages can be less expensive as they
avoid going through the complicated network stack. All the
software components mentioned above are running on multi-
ISA machines, connected over InfiniBand. In the following
section, we describe the details of each component.

3.2 HeterSec distributed kernel

The HeterSec distributed kernel can be considered as a special
implementation of multikernel systems [7]. Instead of running
on a multi-core NUMA machine, HeterSec runs on a hetero-
geneous ISA multi-domain “machine”, with each computing
domain connected with a high-speed network connection. By
using this approach we could avoid to use simulation or dy-
namic code translation, so that code can be executed at nearly
native speed. However, there are two problems with such a
heterogeneous ISA multi-domain “machine”: first, there is
no memory coherence guaranteed between multi-ISA nodes,
which raises programmability issues if we intend to leverage
the heterogeneous ISA, multi-domain capabilities to imple-
ment security applications. Second, it is hard to manage the
distributed resources (e.g., opened descriptors, network con-
nections) on top of the heterogeneous instruction sets.

To solve those issues, HeterSec does not maintain global
state for all OSes, but instead chooses only to maintain some
HeterSec process specific states, synchronizing them on de-

mand. To be compatible with existing software stacks, the
HeterSec distributed operating system is designed as sev-
eral kernel extensions and is built based on the Linux kernel.
There are three major components that facilitate HeterSec
processes running on heterogeneous ISA machines: the per-
process page table synchronization, secure applications, and
the system resource sharing service.

The first component is a per-process page table synchro-
nization handler. HeterSec provides a synchronized page ta-
ble for each HeterSec process. The state is then synchronized
across the x86_64 and ARM64 machines on demand. Be-
fore the process is started as a HeterSec protected process,
the secure application (a kernel module) has to be loaded
and subsequently pass the defined security policy to the pro-
cess runtime. Such security policies include how frequently
to switch the instruction sets, which system calls are used
to synchronize and check the program states in the multi-
variant execution. The runtime then executes the protected
process accordingly - for example, randomly running pro-
cesses across multi-ISA nodes or concurrently executing vari-
ants with cross-ISA lockstep state checking. In short, based
on the secure application scenario, the HeterSec kernels main-
tain the synchronized memory views across the multi-ISA
nodes. In the current design, HeterSec leverages a dedicated
kernel thread to synchronize the pages in the background. It
maintains a simple read-duplicate write-invalidate protocol
for the shared memory pages [80].

Another essential component for HeterSec is the system
resource sharing service. HeterSec maintains a single view of
the system resource from the HeterSec process perspective.
That means for each HeterSec process, there should be only
one set of the network sockets, opened file descriptors, etc. Un-
fortunately, system resources such as file descriptors, sockets
and event descriptors, are difficult to be shared across machine
boundaries due to the difficulty in splitting the in-kernel state.
One potential solution could be using a Network File System
(NFS) to share and synchronize the file systems across the
OSes. However, this will introduce potential issues for those
pseudo-files located in /dev/tty, or /proc. Architecture de-
pendent shared libraries also use different instruction formats
and EFL binary contents. Naively synchronizing those files
will cause runtime errors and crashes in these programs. To
address this problem, HeterSec combines an implementation
of system resource remote procedure call (RPC) and a virtual
descriptor table (VDT).

Before starting the process, the secure target application
can be specified with a white list of files that should be loaded
locally. By default, we put the standard output (i.e., stdout
and stderr), the shared libraries and configuration files in
the white list. During the protected process’s runtime, the
follower OS will build up a VDT. For each table entry, it
indicates whether a descriptor should be accessed locally or
remotely on the master node. For instance, we do not want to
create two sockets for a single connection request on HeterSec

430 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

MVX. Therefore, the HeterSec kernel running on follower OS
have to simulate the socket creation by placing a fake socket
descriptor in the virtual descriptor table and mark that entry
as virtual (V). On the contrary, descriptors of the opened
library files and a stdout are marked as real (R) as they
should be accessed locally. For system resource requests that
have to be handled on the master OS, a system call RPC
mechanism is provided. A system call server on the master
OS handles the remote system call request, sets up the buffer
value on the virtually shared pages, and returns the result to
the caller on the follower node. The virtually shared pages
are synchronized between nodes by the HeterSec kernel, as
mentioned above.

We also support some termination signals (e.g., SIGINT)
on the master node. On receiving a termination signal dur-
ing the remote system call context, the master side Heter-
Sec kernel replies a negative system call return value (i.e.,
-ERESTARTSYS) back to the follower kernel. The follower ker-
nel then stops the HeterSec processes on the follower node.
When the termination signal comes within the master kernel
context, the master forwards the signal to the follower. Corre-
spondingly, the follower terminates the execution loop. The
master then stops itself by calling do_exit().

3.3 Handling the cross-ISA code execution

Executing code on the multi-ISA “machine” as if on a single
machine is challenging, since it requires several architecture-
dependent code generation and state exchanges. HeterSec re-
quires the architecture-dependent binaries generated from the
same source code (e.g., same application source code and li-
brary code). This can unify most of the cross-ISA code execu-
tion behaviors, such as system call sequences. The generated
binaries contains all the necessary information to run a pro-
tected process across ISA-different nodes. This information
consists of instructions and data emitted by the compiler for
each ISA. It may also carry some additional information such
as the program state transformation routines. The types of
information are decided by each individual security scenario.
For example, cross-ISA randomized MTD execution would
require information to transform the execution state from one
architecture to another. This is because fine-grained program
state (e.g., the variables on stack) must be synchronized ac-
cordingly as each architecture has its own specification for
stack layout and register usage (Section 3.4.1). Security appli-
cations such as multi-ISA MVX require less information in
metadata as each program instance is mostly self-contained on
a single machine. The system call parameters (i.e., userspace
buffers) and the opened descriptors are synchronized by the
distributed operating system kernels mentioned above. It sim-
plifies the system call simulation which is commonly used in
existing MVX techniques (Section 3.4.2).

HeterSec introduces a new system call (i.e., sys_hscall)
to identify the protected process and enable it to run on multi-

ISA nodes. That system call sets up a bit in the process de-
scriptor (task_struct in Linux); after that, the HeterSec
code path in the distributed kernels will be triggered to support
cross node process execution. For example, when defending
the protected process in the MVX mode, we can initiate that
system call to launch two process variants on both nodes. The
in-kernel MVX engine checks the system call sequences and
return values and raises an alert on any execution divergence.
More details are discussed in Section 3.4.2.

3.4 Case Studies

We have built two security application scenarios on top of
HeterSec, which can fully utilize the instruction set diversity.

3.4.1 Multi-ISA MTD

The first security application is a heterogeneous-ISA based
MTD system. Unlike most existing MTD or code randomiza-
tion techniques [19,30,31], HeterSec randomizes the code ex-
ecution path by switching ISAs at runtime. From the protected
process’s perspective, it runs on top of a dynamic hardware
environment with ISA diversity. Therefore, it would be hard
for an attacker to prepare the exploit payload, for example,
finding the correct ROP gadget chain or accurately measuring
the hardware timing for side-channel attacks. When the pro-
cess execution encounters a potential ISA switching point, the
runtime will randomly decide which ISA the process will ex-
ecute on in next step. Those ISA switching points are similar
to the randomization points in existing code re-randomization
works [8, 81], except existing randomization techniques up-
date the code pointer references while HeterSec updates the
architecture related states (e.g., stack slots, register set). Al-
though the implementation sounds straightforward, there are
some subtle issues when implementing such a system on
multi-ISA architecture.

Pointer and architecture specific structure handling is one
such case. Some system calls return with data updated to
the userspace. Linux handles block data copying between
userspace and kernel with pointers and helper functions such
as copy_to_user(). When calling a system call across
nodes, the follower OS context has to make sure any userspace
memory updates are synchronized to the local node. In our im-
plementation, most of the userspace memory updates caused
by remote system calls will be synchronized correctly with
the help of on-demand page synchronization. However, we
noticed that Linux maintains slightly different format of some
data structures on ARM64 and x86_64. The struct stat
and struct epoll_event are two such cases. The struct
epoll_event on x86_64 Linux is enforced to have the same
alignment as that structure in 32-bit Linux (with packed at-
tribute) in order to make 32-bit simulation easier. On the other
hand, the ARM64 kernel does not enforce such alignment.

To solve this issue, we converted the structure formats in

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 431

U
se

rs
p
a
ce

K
e
rn

e
l

Cross-node boundary

Master Follower

Syscall
RPC Stub

Syscall
Server

master fstat

copy_to_user()

struct stat
{
 /* Master Node's
 Definition */
 ...

}

struct stat
{
 /* Master Node's
 Definition */
 ...

}

1

2

3

4

6

5

Page sync

Figure 3: Program flow for an example fstat system call
executed on the follower node.

musl-libc headers on the follower node to mimic the layout
of the master’s format. When the follower OS issues a system
call RPC, the master OS handles the request and updates the
memory references in its own address. The page synchroniza-
tion handler forwards the change to the follower OS. Figure 3
represents the different stages a system call like fstat goes
through when called on the follower node. First, the syscall
enters the kernel on the follower and calls the RPC stub in
Step 2. This RPC stub then communicates to the syscall server
on the master node over the messaging API in Step 3. Next,
in Step 4 the syscall server calls fstat on behalf of the fol-
lower, which subsequently completes and returns to the stub
as shown in Step 5. It also copies the data to the master’s
userspace memory. This userspace data is synchronized to
the userspace of the follower through page synchronization
shown in Step 6 to maintain the illusion to the user program
that its own kernel performed the syscall operation.

Randomization and transformation library: As a working
proof of concept for the Multi-ISA MTD idea, we imple-
mented an MTD randomization library. It makes decisions
on whether a process should execute on a particular node
based on random numbers generated from /dev/urandom.
The probability threshold is also read in from a configura-
tion file (in root mode) at runtime. This enables us to modify
MTD switch probability without needing to recompile the ap-
plication. We leverage the transformation library in Popcorn
compiler framework to transform the code execution states
between multi-ISA nodes [4].

ISA-switching point insertion, modular compilation, and
MTD region activation: When compiling these production
level applications the main goal was to make the process as
unobtrusive as possible, only generating required metadata
in relevant or vulnerable functions and files. The HeterSec
framework allows the user to compile specific source files and
generate stack transformation metadata for only those sources,

effectively enabling MTD functionality for certain parts of the
program. While this functionality only works on a file-based
granularity, one step of the compilation process includes an
LLVM pass to add in calls to the randomization library men-
tioned in the previous section. These calls are added to the in-
strumented function prologues and epilogues and can be indi-
vidually activated on each architecture through configuration
files specifying the individual call-sites to activate. Once acti-
vated, whenever the program enters or exits these functions it
checks with the MTD randomization library if it should switch
ISAs, giving us granularity at a function level. We select the
source code that contains the critical path for most of the work
(e.g., the event loops), and compile them with ISA-switching
points instrumented. For example, on Nginx we selected func-
tion call paths like ngx_process_events_and_timers() in
event/ngx_event.c. For Redis, we selected similar func-
tions in event loop path, for example processTimeEvents()
located in ae.c that calls the serverCron(). These func-
tions are called at a frequency of server.hz which defaults
to 10 hz. By targeting where we place these checks across the
program through this modular compilation, we avoid unnec-
essary calls to the MTD randomization library, reducing the
overhead of the HeterSec framework.

3.4.2 Multi-ISA MVX

The second security application is a heterogeneous-ISA based
multi-variant execution system. Similar to a traditional MVX
system, the HeterSec MVX also has one leader variant and
one follower variant. The leader runs on the master OS with
full access to system resources, while the follower is only
allowed to execute computational and memory-related code.
Since there is only one valid copy of system resources (i.e.,
opened file, socket and event descriptors), the MVX engine
should have the ability to guarantee two program variants
can execute simultaneously over a single set of system re-
sources. The HeterSec MVX engine uses system call simula-
tion to synchronize the state across the variants. Specifically,
an MVX monitor intercepts the selected system calls from
the leader variant’s execution and forwards the system effects
(e.g., memory update) to the follower. The MVX monitor veri-
fies the system call return values between the running variants
and also captures any memory fault to detect divergent (and
potentially malicious) behaviors.

In HeterSec, the MVX engines are located inside each dis-
tributed kernel as shown in Figure 2. At runtime, the MVX
engine on the follower OS verifies whether a system call
should be simulated or directly passed through to the local
kernel. For system calls tagged for pass-through, the follower
OS serves the HeterSec process as usual. For system calls
that access the per process descriptors, the HeterSec runtime
will verify the descriptor against the virtual descriptor table
(described in Section 3.2). Currently, sockets and event poll
descriptors are marked as virtual descriptors, meaning that

432 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

those descriptors accesses will be simulated on the follower
variant by replaying the system call effects from the master
OS. For example, the MVX engine will simulate the system
call sys_recvfrom(int sockfd, void *ubuf, ...) for
the follower variant by coping the ubuf data from the leader
variant to the ubuf address in the follower variant. Unless
specified, file descriptors by default are marked as real descrip-
tors and they are accessed locally. Similar to the files handled
in MTD scenario, variants executed on heterogeneous-ISA
nodes have to load shared libraries in different ELF formats.
We require the user to manually copy all the necessary files
before starting the application as a MVX process. This proce-
dure can also be made automatic by using a NFS to synchro-
nize these files across nodes.

There are other subtle issues when implementing MVX on
multi-ISA nodes. One issue is the default libc libraries on two
nodes could potentially cause differing system call sequences.
To prevent false positives, we compile the application source
code and link the object files with the musl libc library gen-
erated from the same source. As a result, the system call
sequences are almost the same across the binaries on different
architecture, with the exception of a few thread initialization
functions such as set_tid_address(int *tidptr). In this
case, we just ignore performing comparisons on such sys-
tem call executions. In addition, the system call numbers
(and some names) are different in ARM64 and x86_64 ar-
chitectures and therefore cannot be directly mapped across
multi-ISA nodes. For instance, the ARM64 Linux kernel has
replaced the open system calls with openat. This is also the
case for several other system calls with "at" suffix. Conse-
quently, we cannot forward a system call directly across ma-
chines using its number on any particular architecture. Instead,
we maintain a system call number translation table, so that
any system call (number) being sent to the counterpart node
for simulation will be translated to the corresponding system
call number first. In our current MVX engine implementation,
we do not handle multi-threaded applications. However, we
believe a deterministic multi-threading library [47] can be
used in HeterSec to solve that issue.

We implemented two types of multi-ISA MVX where the
monitor resides (1) in a separate process using ptrace to
check the application and (2) in the kernel as a Linux ker-
nel module. The ptrace-version MVX monitor is used as
the developing mode, as it is easier to debug the monitor
code without rebooting the operating systems. Similar to
some existing MVX works, the ptrace version MVX uses
the ptrace parent process as the MVX monitor, leveraging
ptrace primitives to intercept and simulate the system calls.
It implements a shared ring buffer to pass events (e.g., the
syscall return values, or the modifications of data structures)
between nodes using a FIFO queue policy in order to maintain
sequential consistency. The kernel module version of MVX
can be used for deployment because of the better performance.
The MVX engine in the kernel intercepts the system calls by

wrapping and instrumenting the system call handlers. It also
registers the MVX engine code with the HeterSec message
layer for fast cross-node messaging. As a result of moving
the implementation inside the kernel scope, the system call
interception cost and communication latency are both lower
than the ptrace-based prototype (in Section 4.2).

3.5 Implementation

We implemented a prototype of HeterSec on a x86_64 and
ARM64 machine pair, connected using a Mellanox ConnectX-
4 InfiniBand network. The synchronized address space was
implemented by placing hooks in the page table handler in the
kernel virtual memory subsystem (e.g., hooking the vma and
pte operations [17]). When the protected process is executed
on the follower OS, the follower OS kernel handles the page
fault by fetching pages from the master OS. The master OS
kernel maintains a vma server and page server which work
together to serve the missing pages for the follower OS and
invalidate dirty pages (those replicated pages being written).
Thus any updates on HeterSec protected process space are
synchronized across machine boundaries. HeterSec uses a
fast in-kernel message handling layer to send messages across
nodes. Since it directly involves the kernel network drivers
(e.g., RDMA over Gigabit Infiniband), the cost of switching
between user-space and kernel-space is eliminated. Sending
messages back and forth are relatively cheap between nodes.
For example, the round-trip latency averages 17µs on RDMA
in our micro-benchmark test, as described in Section 4.2.

We also implemented the system call RPC server to commu-
nicate over a fast message handling layer which similarly rides
on RDMA over Infiniband. Similar to cross-node page and
VMA handling, the master OS kernel registers a system call
server in the message handling layer. The first time a process
issues the sys_hscall system call (either an MTD or MVX),
both master and follower kernels will mark that process as
a HeterSec process (we introduce a flag in task_struct).
For system calls that manipulate cross-node state (e.g., file,
socket and event poll), the follower OS kernel verifies the file
descriptor against the VDT to decide whether to invoke the
remote system call handler in the master OS or execute them
locally. Note that the follower kernel will only check system
calls of HeterSec processes, any other processes will be free
from this inspection.

To enable cross-ISA program state transformation, we
leverage the open source Popcorn compiler [4–6] to embed all
the ISA related metadata into the executable. Such informa-
tion includes the ISA specific instructions, the state relocation
mapping, as well as the ISA-switching points. The state relo-
cation mapping is used at each ISA-switch point, with which
a translation library transfers the currently running process
state (e.g., register states, stack slots, etc.) from one ISA to
another. The compiler was built on LLVM, and all the ISA
specific code instrumentation was implemented as several

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 433

middle-end and backend passes. When compile applications
into ISA-specific binaries, we use the same LLVM IR to gen-
erate the assembly code for each architecture. Therefore, the
stack variables in different architecture can be mapped based
on the same origin in IR.

4 Evaluation

In this section, we evaluate the HeterSec prototype as well as
its two applications in terms of the security benefits and the
performance overhead. All the experiments were evaluated
on an x86_64 and ARM64 machine pair. The x86_64 server
contains an Intel Xeon E5-2620v4 CPU with the clock speed
of 2.1GHz. The ARM64 server contains a Cavium ThunderX
CPU (ARMv8.1) with clock speed of 2.0GHz. The two ma-
chines are equipped with 32GB and 128GB of DRAM respec-
tively, and they are connected using Mellanox ConnectX-4
InfiniBand with a bandwidth of up to 56 Gbps.

4.1 Security Analysis
Similar to existing diversification-based defense systems, Het-
erSec also leverages randomized and unknown target process
address information (a.k.a ASLR) for the baseline security.
However, heterogeneous-ISA based approaches could bring
an additional layer of ISA diversity for the process, making it
harder for attackers to generate payloads that fit both architec-
tures. Similar to most of the existing diversification systems,
we assume the attackers have remote access to the target
process with a known interface (e.g., connection sockets).
However, HeterSec provides a black box of ISA diversified in-
stances to attackers. With HeterSec, we can leverage the ISA
divergent hardware and compilation toolchain to generate pro-
gram instances with differing instruction sets. The generated
application instances also possess different calling conven-
tions, variable register usages, and differential stack layouts.
For example, ARM64 allows at most 8 general-purpose regis-
ters (x0 - x7) to be used for passing function call parameters;
while x86_64 only has at most 6 general-purpose registers
for passing parameters. In terms of the system call, ARM64
uses x8 register for system call number and x0 for system
call return value; while x86_64 uses rax for both system call
number and return value. Furthermore, most security essential
system calls have different system call numbers in the two
architectures (e.g., the system call number of execve is 59
on x86_64 and 221 on ARM64). This altogether brings extra
difficulties for attackers to launch an attack by, for example,
return oriented programming.

One observation is that stack operations behave differently
on ARMv8 and x86_64. ARMv8 stores the frame pointer
(FP) and the link register (LR) both on the lowest address
of the stack frame. Whereas x86_64 pushes the instruction
pointer (RIP) and the stack base pointer (RBP) into the high-
est address of the stack frame. The slight difference in control

pointer location will make it hard for most of the stack based
control flow hijacks to work on both instances. To further
prove that the ISA diversified instances will have differing
memory layouts, we wrote a tool utilizing ptrace and cap-
stone [65] to dump the code and data pointers of a running pro-
cess. We examined the potential pointers in .data, .stack,
and .heap, and found 7846 pointers in the x86_64 version
of lighttpd while there were 10385 pointers in a lighttpd web
server running on ARM64. Despite the large number of point-
ers found in each binary we only found 3 pointers which had
overlapping addresses between the two lighttpd processes
running on these different ISAs. In the above mentioned ex-
periment, we only examined the pointers with their relative ad-
dresses from the base of code segment. That means in reality,
there will be almost zero chance of overlapping pointers, since
ASLR disturbs the base code addresses of those program in-
stances [2]. In addition, we also examined some real-world ex-
ploits on HeterSec environment. One example is CVE-2013-
2028, in which an integer overflow and a buffer overflow in
the Nginx ngx_http_read_discarded_request_body()
function are used to gain control over the execution flow
and carry out ROP attacks [10]. To trigger the vulnerability
an attacker first sends a HTTP chunked request with a large
chunked length, resulting in a negative integer to be casted to
an unsigned size_t type. Subsequently this causes a recv
call to read in a value larger than the buffer size from the
client, leading to a buffer overflow. We ran a ROP attack
script leveraging the CVE-2013-2028 buffer overflow [74]
and while it was able to execute and trigger the vulnerabil-
ity on an x86_64 machine, the script failed on the ARM64
machine and caused the Nginx process to crash and restart.
The stack layouts between architectures differ therefore the
address at which the overflow gains control over the program
control flow are not the same.

Another interesting benefit of a multi-ISA security system
is that it could potentially raise the bar for micro-architecture
attacks [37, 46]. This is due to the fact multiple attack primi-
tives have to be implemented differently on different architec-
tures. For example, cache timing measurement and cache flush
have different implementation details. In terms of cache tim-
ing measurement, attackers could use an unprivileged rdtsc
instruction on x86_64 hardware. However, the similar perfor-
mance counter is only accessible in kernel space on both
ARMv7 and ARMv8 processors. Similarly, attackers can
directly flush the cache line with clflush on x86_64, but
have to carefully construct a memory access footprint that de-
feats the cache replacement policy in order to flush the cache
line on ARM processors [45]. The run-time cache layout
and timing diversities increases the cost to launch such at-
tacks. Besides the diversified instance memory layout and the
micro-architecture behaviors, multi-ISA software diversifica-
tion could also allows the protected process to hybridize the
architecture specific features for increased security. For exam-
ple, the protected process running on x86_64 can potentially

434 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

switch to ARMv8 and validate whether the pointers were
modified by attackers with ARMv8 pointer authentication,
while still making use of the Intel MPK or MPX hardware
features to secure memory page accesses and check bound-
aries [43, 50, 54, 77].

4.2 Performance Evaluation
To evaluate the performance impact on multi-ISA security
applications, we first report the costs involved in cross-node
operations such as remote system calls and ISA-switches.
Next, we evaluated HeterSec with real-world applications.

Micro-benchmark To get a breakdown of these costs, we
implemented a simple micro-benchmark to execute code re-
motely on the follower node, which triggers 100,000 ISA-
switches. We measured the network latency on an ARM64
machine node using a x86_64 node as the follower. As shown
in Table 1, a remote system call like getpid() imposes an
additional ∼17.6 µs overhead when being called compared
with the native execution of the getpid() system call. The
primary reason for this overhead is the unavoidable com-
munication cost brought by the dual-node architecture. The
result matches the raw network ping-pong micro-benchmark
(∼17.62 µs), in which we wrote a simple kernel module send-
ing 100,000 short messages back and forth between the two
machines. Interestingly, this cross-node network latency is
much smaller than the network latency observed using Linux
ping command (∼112 µs). This is because the HeterSec mes-
saging APIs are implemented in the kernel, thus it avoids the
complicated TCP/IP network stack and the user/kernel con-
text switch cost. We also observed the ISA switching cost (∼
504.85 µs) in our micro-benchmark is higher than a remote
system call, this is mainly caused by the cross-ISA program
state transformation and the page synchronization.

Table 1: The cost (in µs) of remote system call and ISA-switch
compared to local getpid() system call on x86_64.

Operations Latency (in µs)
getpid() 0.47±0.01
remote getpid() 18.09±0.36
raw network ping-pong 17.62±0.33
ping latency 112±15
ISA-switch 504.85±4.70

Application Benchmarks We selected the nbench bench-
mark suite [12], two web server applications – Nginx and
Lighttpd, an in-memory database Redis server and a file com-
pression utility GNU gzip. We used nbench to measure the
performance of HeterSec on CPU and memory intensive
workloads. Nbench is a compute, FPU and memory inten-
sive benchmark suite containing some common computation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

20% 40% 60% 80% 100%

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

Probability of ISA-switch

Numeric Sort
String Sort
Bitfield
FP Emulation
Fourier
Assignment
IDEA
Huffman
Neural Net
LU Decomposition

Figure 4: Performance of nbench with the probability of
20%, 40%, 60%, 80% and 100% to switch to the counterpart
ISA respectively. The numbers are normalized with zero ISA
switch, execution on the x86_64 node.

workloads, such as string sorting and neural network back
propagation. We measured the performance overhead of using
multi-ISA hardware under the security scenarios mentioned in
Section 3.4 and reported the performance overhead incurred.

We first measured the performance impact of running
nbench under variable probabilities to switch to the coun-
terpart node with different ISA (lthe MTD scenario). In the
experiment, we started the nbench program on the x86_64
node; the code will be executed randomly on each node af-
terwards. We measured the execution time of each test case
and normalized to zero probability of ISA-switch (all code
executed on x86_64 node). We show the normalized perfor-
mance overhead numbers in y-axis of Figure 4. As expected,
the performance decreases as the probability to perform an
ISA-switch increases. This is because the ISA-switch is a rela-
tively expensive operation; the higher chance of ISA-switches
during application execution, the more overall performance
overhead each application could have. When the first time pro-
gram execution switches to the counter part node, HeterSec
kernels have to load the code and setup the kernel data struc-
ture. This explains the reason that some benchmarks lose 50%
performance even under 20% chance of ISA-switch. Overall,
execution transfer across nodes contributes mainly for the per-
formance degradation. Since the nbench is CPU and memory
intensive, any latency incurred during the execution will have
significant impact on relative performance.

To prove the feasibility of HeterSec on real-world appli-
cations, we evaluated the performance impact of executing
Nginx and Redis in HeterSec MTD mode. Nginx and Redis
are applications which are used in various commodity systems
and best reflect the types of overheads which would be seen
when deploying HeterSec in the field. We used ApacheBench
to generate the HTTP requests to the web servers and queried
for a web page of 4 KB size for 1 million times. We first run
ApacheBench on a laptop located in the same LAN of the

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 435

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20 40 60 80 100

P
er

fo
rm

an
ce

(R
eq

u
es

ts
/s

)
N

o
rm

al
iz

ed

Probability of ISA−switch at each ISA−switching point

 Local Ethernet

 Edge Computing Scenario

 Cloud Computing Scenario

Figure 5: Performance of Nginx (requests/s) with variable
probabilities to switch ISAs at every ISA-switching point.

target HeterSec machine pair. The laptop and the target ma-
chine pair are connected using a 10Gbps Ethernet with about
0.4 ms latency. We also run our test with artificial network
latency of 10 ms and 40 ms respectively. The 10 ms latency
is to emulate the typical latency seen in Edge Computing
scenarios [14], while the 40 ms network latency could be seen
as the minimal network overhead between two availability
zones of the same region in the Amazon Web Services (AWS)
cloud [66]. We manually configured the randomization prob-
ability at each ISA-switching point, and ran each test case 5
times. The average value and the standard deviations are re-
ported in Figure 5. With a local network connection, Nginx on
HeterSec performs at only about 11% throughput compared to
the baseline. This is because internally an ISA-switch brings
some additional costs of cross machine communication. Al-
though the inter machine communication has been optimized
by using fast in-kernel message API, the time spent on inter
machine communication dominates the total request handing
time. However, if we consider a real network scenario such
as edge or cloud, HeterSec incurs a reasonable overhead. For
example, we only observe a 10%-20% performance overhead
depending on the frequency we trigger the migrations under
10 ms network latency (the edge computing scenario in Figure
5). At 100% ISA switch probability this equates to 5 switches
per request, or about 3800 ISA switches per second. When
testing on network designed to emulate the cloud (40 ms la-
tency), the throughput of Nginx shows a very small drop in
performance even with a 100% probability to switch ISAs (the
cloud scenario in Figure 5). Note that HeterSec kernel brings
minimal performance overhead to non-HeterSec processes.
For example, the vanilla Nginx performs 22357.5 req/s on
vanilla Linux kernel, whereas it performs 22273.8 req/s on
HeterSec kernel (∼0.37% overhead).

We observed similar results when running redis-benchmark
to measure the throughput of Redis SET instructions. As

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20 40 60 80 100

P
er

fo
rm

an
ce

(S
E

T
/s

)
N

o
rm

al
iz

ed

Probability of ISA−switch at each ISA−switching point

 Local Ethernet

 Edge Computing Scenario

 Cloud Computing Scenario

Figure 6: Performance of Redis (SET instructions/s) with
variable probabilities to switch ISAs at every ISA-switching
point.

shown in Figure 6, Redis performs about 30% throughput
when running on HeterSec compared with the native exe-
cution. However, the overhead drops to 15% and 2% when
running the benchmark over edge and cloud computing cases
respectively. We set the ISA switch points in a periodic job for
the Redis evaluation which resulted in about 20 ISA switches
per second, pegged to the server.hz value. Interestingly
enough, we saw a slight throughput improvement when we
increased the ISA-switching probability threshold from 80%
to 100%. This is likely due to the deterministic execution flow
transfer avoiding destroying the branch prediction. The results
show that although the frequent ISA-switch is expensive, it is
feasible to use for server applications in real-world scenarios.

Next, we report the performance of two heterogeneous ISA
multi-version execution prototypes. As mentioned in Sec-
tion 3.4.2, the ptrace version multi-ISA MVX prototype is
used to find out all the necessary system calls for simulation,
as it is easier to debug with an userspace MVX engine. The
MVX engine running in HeterSec kernels can achieve better
performance. In our experiment, both MVX prototypes use
the ARM64 node to launch the master variant, and offload the
follower variant to the x86_64 node. The cost of MVX are
mostly from the program state synchronization in between
the two variants. For example, the master variant has to wait
the system call simulation to be finished on the follower side
in order to continue the execution (a.k.a., lock-step check).

We evaluated the two MVX prototypes with nbench, gzip
and Lighttpd web server. Gzip and Lighttpd are two I/O in-
tensive applications. In gzip test case, we randomly gener-
ate files in different size from /dev/urandom. We also used
ApacheBench to generate workloads for Lighttpd web server.
We run all the benchmarks with both kernel-based MVX and
ptrace-based MVX prototypes. Figure 7 shows the normalized
performance evaluation results using the vanilla application

436 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

N
um

eric_sort

String_sort

B
itfield

FP_em
ulation

Fourier

A
ssignm

ent

ID
EA

H
uffm

an

N
eural_net

LU
_decom

position

gzip_5M
B

gzip_200M
B

Lighttpd

R
el

at
iv

e
P

er
fo

rm
an

ce

 Ptrace−based MVX

 HeterSec Kernal−based MVX

Figure 7: Relative performance of nbench, gzip, and Lighttpd
running on the HeterSec kernel-based MVX and the ptrace-
based MVX.

running on the ARM64 node as the baseline. For most of the
CPU and memory-intensive workloads, kernel-based MVX
and ptrace-based MVX have similar performance overheads.
This is because most of the system calls in computation-
intensive applications do not need to be simulated in the MVX
engine. For I/O-intensive applications, both MVX engines
process and check on descriptor related system calls such
as read/write(v). Overall, both multi-ISA MVX engines
introduce about 10% overhead for the gzip benchmark. Since
we duplicated the files on both nodes, there is no need to
transfer data between nodes. For the web server application,
the MVX engines have to simulate a number of network I/O
related system calls, including accept4, socket, sendfile
and recvfrom, etc. In general, the HeterSec kernel-based
MVX engine pulls down the Lighttpd throughput to about
50% of its native performance. However, that performance is
still better than the ptrace-based MVX engine (∼10x) and the
MVX engine in DMON (∼5.43x) [73].

5 Related Works

The first category of related work is the various techniques for
software diversity [42]. An important assumption for a soft-
ware attack is the attacker could have the information of the
target system [16, 59, 60], or at least by chance to obtain such
information by, for example, brute forcing [10,59]. It makes at-
tacks easier if the code itself and the defense mechanisms are
static. Software diversity provides uncertainty for the target
system, which breaks the static nature of the target and thus
increases the cost of an attack. For example, one of the notable
software diversification techniques is ASLR (for most cases,
in the form of code randomization) [3,8,13,26,36,63,78,81].
Previous research demonstrated the effectiveness of code ran-
domization at program module level [63], page level [3], func-

tion level [36], basic block level [13, 78], or even instruction
level [26]. Some latest research further show the feasibility
of ASLR at runtime, making the code layout re-randomized
for a given period of time [8,13,81]. HeterSec extends this re-
search line by exploring the feasibility of using heterogeneous
instruction set to diversify the program.

Multi-version execution is another concrete technique of
software diversity. Instead of randomizing a single code in-
stance, MVX engines run multiple variants of program in-
stances simultaneously [15, 38, 51, 57, 58, 72, 73, 83]. Those
variants are different in memory layout, so that a malicious in-
put might trigger the vulnerable code in one variant but likely
to fail on other variants. Such memory layout differences
could be non-overlapping memory map [38, 57, 83], reverse
stack growth [58], etc. Recently, researchers also proposed
to apply MVX inside Linux kernel, to detect kernel bug ex-
ploits [83]. DMON is a very recent and concurrent work using
distributed heterogeneous-ISA machines for multi-version ex-
ecution [73]. DMON shows that MVX with heterogeneous
ISA setting can achieve better effectiveness for advanced code
reuse attacks, such as the position-independent ROP [23, 73].
As we have compared in Section 2.2, DMON focuses on
a heterogeneous-ISA MVX engine only, whereas HeterSec
is proposed as a general framework. The multi-ISA MVX
engine is a showcase of the HeterSec application scenarios.

Another category of the related work includes the split-
interface systems [18, 19, 62, 75] and the multikernel OSes [4,
6, 7, 79]. The split-interface systems normally leverage two
compartments to separate and isolate program code execu-
tion or secret data access. For example, proxos [62] splits the
application execution into trusted and untrusted parts. The
trusted part of the execution is isolated in a separate private
VM, while the untrusted code can only communicate with
the trusted code through a proxy OS. Nested kernel [18] and
SecPod [75] split the OS kernels into isolated components for
enhanced kernel security. Isomeron [19] on the other hand
splits the code execution between two diversified variants. By
randomly “flip-coin” selecting the next function to be exe-
cuted, Isomeron randomizes the execution path to mitigate
conventional code reuse attacks [19]. HeterSec shares the
same idea of splitting interface to secure application execu-
tion, but HeterSec further enhances the execution security by
split-executing code on two ISA-diversified nodes.

The multikernel OS treats a multi-core machine as a dis-
tributed network of independent cores. A number of sys-
tems leverage multiple OS kernels to manage the hetero-
geneous and multi-core machines in a divide and conquer
way [4,6,7,79]. For example, Barrelfish [7] runs multiple OS
kernels on top of a multi-core machine in order to make multi-
thread application performance scalable. Similarly, fos tackles
the scalability issues by factoring the OS into micro-kernel
components [79]. Popcorn Linux is a most similar work that
runs multikernel on heterogeneous hardware [4, 6]. Popcorn
Linux focuses on single-threaded HPC applications migra-

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 437

tion; on the other hand, HeterSec targets a not well explored
research area – the feasibility of securing an application exe-
cution with ISA diversity. Furthermore, server applications
and multi-threaded applications are supported with HeterSec.

6 Conclusion

In this paper, we explored the missed research space of secur-
ing application execution with ISA diversity. We described
the design and implementation of HeterSec, a framework to
improve application security with ISA heterogeneity. Heter-
Sec enables HeterSec processes to leverage the diversified
ISAs as an additional layer of dynamic defense. HeterSec
was built with several compiler and kernel extensions to fa-
cilitate processes running on heterogeneous hardware in a
security enhanced manner. The two security applications built
on HeterSec show that it is feasible to leverage the existing
heterogeneous hardware to improve application security.

The source code of HeterSec is publicly available as part of
the Popcorn Linux project at http://popcornlinux.org.

Acknowledgments

We would like to thank the anonymous reviewers for their
insightful comments. This work is supported in part by
grants received by Virginia Tech including that from the
US Office of Naval Research (ONR) under grants N00014-
18-1-2022, N00014-16-1-2104, and N00014-16-1-2711, and
from NAVSEA/NEEC under grant N00174-16-C-0018. Kim’s
work at Virginia Tech (former affiliation) was supported by
ONR under grants N00014-16-1-2711 and N00014-18-1-
2022. Olivier’s work at Virginia Tech (former affiliation)
was supported by ONR under grants N00014-16-1-2104 and
N00014-18-1-2022. Lyerly’s work at Virginia Tech (former
affiliation) was supported in part by NAVSEA/NEEC under
grant N00174-16-C-0018.

This work is also supported by Electronics and Telecom-
munications Research Institute (ETRI) grant funded by the
Korean government (20ZS1310).

References

[1] ARM Limited (or its affiliates). ARM BIG.LITTLE.
https://www.arm.com/why-arm/technologies/
big-little, Accessed: 2020-07-08.

[2] Linux Kernel Address Space Layout Randomization.
http://lwn.net/Articles/569635/.

[3] Michael Backes and Stefan Nürnberger. Oxymoron:
Making Fine-grained Memory Randomization Practical
by Allowing Code Sharing. Proc. 23rd Usenix Security
Sym, pages 433–447, 2014.

[4] Antonio Barbalace, Robert Lyerly, Christopher Jelesni-
anski, Anthony Carno, Ho-Ren Chuang, Vincent Legout,
and Binoy Ravindran. Breaking the boundaries in
heterogeneous-ISA datacenters. In ACM SIGPLAN No-
tices, volume 52, pages 645–659. ACM, 2017.

[5] Antonio Barbalace, Binoy Ravindran, and David Katz.
Popcorn: a replicated-kernel os based on linux. In
Proceedings of the Linux Symposium, Ottawa, Canada,
2014.

[6] Antonio Barbalace, Marina Sadini, Saif Ansary, Christo-
pher Jelesnianski, Akshay Ravichandran, Cagil Kendir,
Alastair Murray, and Binoy Ravindran. Popcorn: Bridg-
ing the programmability gap in heterogeneous-isa plat-
forms. In Proceedings of the Tenth European Confer-
ence on Computer Systems, EuroSys ’15, New York, NY,
USA, 2015. Association for Computing Machinery.

[7] Baumann, Andrew and Barham, Paul and Dagand,
Pierre-Evariste and Harris, Tim and Isaacs, Rebecca
and Peter, Simon and Roscoe, Timothy and Schüpbach,
Adrian and Singhania, Akhilesh. The multikernel: a
new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 29–44. ACM, 2009.

[8] David Bigelow, Thomas Hobson, Robert Rudd, William
Streilein, and Hamed Okhravi. Timely rerandomization
for mitigating memory disclosures. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 268–279. ACM, 2015.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1–7, 2011.

[10] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David
Mazieres, and Dan Boneh. Hacking Blind. In Security
and Privacy (SP), 2014 IEEE Symposium on, pages 227–
242. IEEE, 2014.

[11] Shekhar Borkar. Thousand core chips: a technology
perspective. In Proceedings of the 44th annual Design
Automation Conference, pages 746–749. ACM, 2007.

[12] BYTEmark benchmark. Linux/Unix nbench. http://
www.math.utah.edu/~mayer/linux/bmark.html,
Accessed: 2020-07-08.

[13] Yue Chen, Zhi Wang, David Whalley, and Long Lu.
Remix: On-demand live randomization. In Proceedings
of the Sixth ACM Conference on Data and Application
Security and Privacy, pages 50–61. ACM, 2016.

438 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

http://popcornlinux.org
https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/big-little
http://lwn.net/Articles/569635/
http://www.math.utah.edu/~mayer/linux/bmark.html
http://www.math.utah.edu/~mayer/linux/bmark.html

[14] Sharon Choy, Bernard Wong, Gwendal Simon, and
Catherine Rosenberg. The brewing storm in cloud gam-
ing: A measurement study on cloud to end-user latency.
In Proceedings of the 11th annual workshop on network
and systems support for games, page 2. IEEE Press,
2012.

[15] Benjamin Cox, David Evans, Adrian Filipi, Jonathan
Rowanhill, Wei Hu, Jack Davidson, John Knight, Anh
Nguyen-Tuong, and Jason Hiser. N-variant systems: A
secretless framework for security through diversity. In
USENIX Security Symposium, pages 105–120, 2006.

[16] Stephen Crane, Christopher Liebchen, Andrei Homescu,
Lucas Davi, Per Larsen, Ahmad-Reza Sadeghi, Stefan
Brunthaler, and Michael Franz. Readactor: Practical
Code Randomization Resilient to Memory Disclosure.
In 36th IEEE Symposium on Security and Privacy (Oak-
land), May 2015.

[17] Daniel, P and Marco, Cesati and others. Understanding
the Linux kernel, 2007.

[18] Nathan Dautenhahn, Theodoros Kasampalis, Will Di-
etz, John Criswell, and Vikram Adve. Nested kernel:
An operating system architecture for intra-kernel privi-
lege separation. In Proceedings of the Twentieth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
191–206. ACM, 2015.

[19] Lucas Davi, Christopher Liebchen, Ahmad-Reza
Sadeghi, Kevin Z Snow, and Fabian Monrose. Iso-
meron: Code Randomization Resilient to (just-in-time)
Return-oriented Programming. Proc. 22nd Network
and Distributed Systems Security Sym.(NDSS), 2015.

[20] Matthew DeVuyst, Ashish Venkat, and Dean M Tullsen.
Execution migration in a heterogeneous-isa chip multi-
processor. In ACM SIGARCH Computer Architecture
News, volume 40, pages 261–272. ACM, 2012.

[21] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In Computer
Architecture (ISCA), 2011 38th Annual International
Symposium on, pages 365–376. IEEE, 2011.

[22] Peter N Glaskowsky. NVIDIA’s Fermi: the first com-
plete GPU computing architecture. White paper, 18,
2009.

[23] Enes Göktas, Benjamin Kollenda, Philipp Koppe, Erik
Bosman, Georgios Portokalidis, Thorsten Holz, Herbert
Bos, and Cristiano Giuffrida. Position-independent code
reuse: On the effectiveness of aslr in the absence of infor-
mation disclosure. In 2018 IEEE European Symposium

on Security and Privacy (EuroS&P), pages 227–242.
IEEE, 2018.

[24] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo,
Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moon-
sang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. Biscuit: A framework for
near-data processing of big data workloads. In Proceed-
ings of the 43rd International Symposium on Computer
Architecture, ISCA ’16, pages 153–165, Piscataway, NJ,
USA, 2016. IEEE Press.

[25] Nikos Hardavellas, Michael Ferdman, Babak Falsafi,
and Anastasia Ailamaki. Toward dark silicon in servers.
IEEE Micro, 31(4):6–15, 2011.

[26] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew
Hall, and Jack W Davidson. ILR: Where’d My Gadgets
Go? In Security and Privacy (SP), 2012 IEEE Sympo-
sium on, pages 571–585. IEEE, 2012.

[27] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-oriented programming: On the expressiveness of
non-control data attacks. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 969–986. IEEE, 2016.

[28] Intel. Intel Acceleration Stack for Intel Xeon CPU
with FPGAs Core Cache Interface (CCI-P) Reference
Manual, Nov 2019. https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/
literature/manual/mnl-ias-ccip.pdf.

[29] Intel. Intel Xeon processor scalable family.
https://www.intel.com/content/www/us/en/
products/processors/xeon/scalable.html,
Accessed: 2020-07-08.

[30] Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan. Open-
flow random host mutation: transparent moving target
defense using software defined networking. In Pro-
ceedings of the first workshop on Hot topics in software
defined networks, pages 127–132. ACM, 2012.

[31] Jajodia, Sushil and Ghosh, Anup K and Swarup, Vipin
and Wang, Cliff and Wang, X Sean. Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber
Threats, volume 54. Springer Science & Business Media,
2011.

[32] James Jeffers and James Reinders. Intel Xeon Phi Co-
processor High Performance Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2013.

[33] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 439

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable.html

Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pages
1–12. IEEE, 2017.

[34] Shubham Kamdar and Neha Kamdar. big.LITTLE ar-
chitecture: Heterogeneous multicore processing. In-
ternational Journal of Computer Applications, 119(1),
2015.

[35] Gaurav S Kc, Angelos D Keromytis, and Vassilis Preve-
lakis. Countering code-injection attacks with instruction-
set randomization. In Proceedings of the 10th ACM
conference on Computer and communications security,
pages 272–280. ACM, 2003.

[36] Chongkyung Kil, Jinsuk Jim, Christopher Bookholt, Jun
Xu, and Peng Ning. Address Space Layout Permuta-
tion (ASLP): Towards Fine-grained Randomization of
Commodity Software. In Computer Security Applica-
tions Conference, 2006. ACSAC’06. 22nd Annual, pages
339–348. IEEE, 2006.

[37] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploiting
Speculative Execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[38] Koen Koning, Herbert Bos, and Cristiano Giuffrida.
Secure and Efficient Multi-Variant Execution using
Hardware-Assisted Process Virtualization. In 2016
46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 431–
442. IEEE, 2016.

[39] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No need to hide: Protecting
safe regions on commodity hardware. In Proceedings of
the Twelfth European Conference on Computer Systems,
pages 437–452. ACM, 2017.

[40] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Poly-
chronakis. Compiler-assisted code randomization. In
2018 IEEE Symposium on Security and Privacy (SP),
pages 461–477, 2018.

[41] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R Sekar, and Dawn Song. Code Pointer
Integrity. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[42] Per Larsen, Andrei Homescu, Stefan Brunthaler, and
Michael Franz. SoK: Automated Software Diversity. In
Proceedings of the 2014 IEEE Symposium on Security
and Privacy, SP ’14, 2014.

[43] Hans Liljestrand, Thomas Nyman, Kui Wang, Car-
los Chinea Perez, J Ekberg, and N Asokan. Pac it up:
Towards pointer integrity using arm pointer authentica-
tion. arXiv preprint arXiv:1811.09189, 2018.

[44] Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2:
A mobile operating system for heterogeneous coher-
ence domains. In Proceedings of the 19th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages
285–300, New York, NY, USA, 2014. ACM.

[45] Moritz Lipp. Cache attacks on arm. PhD thesis.

[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 973–990, 2018.

[47] Tongping Liu, Charlie Curtsinger, and Emery D. Berger.
Dthreads: Efficient deterministic multithreading. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, page 327–336,
New York, NY, USA, 2011. Association for Computing
Machinery.

[48] Timothy P. Morgan. Tilera rescues CPU cycles with net-
work coprocessors, 2013. https://bit.ly/2DfM53R.

[49] Netronome. Agilio SmartNICs, 2019. https://www.
netronome.com/products/smartnic/overview/.

[50] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia,
Pascal Felber, and Christof Fetzer. Intel mpx explained:
A cross-layer analysis of the intel mpx system stack.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 2(2):28, 2018.

[51] Pierre Olivier, Antonio Barbalace, and Binoy Ravindran.
Multi-variant execution atop a decomposed hypervisor
on emerging heterogeneous-isa multicore. 2016. Eu-
roSys’16 (Poster).

[52] Pierre Olivier, Sang-Hoon Kim, and Binoy Ravindran.
OS Support for Thread Migration and Distribution in
the Fully Heterogeneous Datacenter. In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems,
pages 174–179. ACM, 2017.

[53] Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das,
and Scott Mahlke. Dynamos: dynamic schedule migra-
tion for heterogeneous cores. In Proceedings of the 48th
International Symposium on Microarchitecture, pages
322–333. ACM, 2015.

440 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

https://bit.ly/2DfM53R
https://www.netronome.com/ products/smartnic/overview/
https://www.netronome.com/ products/smartnic/overview/

[54] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software Abstraction for Intel
Memory Protection Keys (Intel MPK). In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
241–254, 2019.

[55] QEMU. http://www.qemu.org.

[56] Stefan Rusu, Simon Tam, Harry Muljono, Jason Stinson,
David Ayers, Jonathan Chang, Raj Varada, Matt Ratta,
Sailesh Kottapalli, and Sujal Vora. A 45 nm 8-core
enterprise Xeon processor. IEEE Journal of Solid-State
Circuits, 45(1):7–14, 2010.

[57] Babak Salamat, Todd Jackson, Andreas Gal, and
Michael Franz. Orchestra: intrusion detection using
parallel execution and monitoring of program variants
in user-space. In Proceedings of the 4th ACM European
conference on Computer systems, pages 33–46. ACM,
2009.

[58] Salamat, Babak and Gal, Andreas and Franz, Michael.
Reverse stack execution in a multi-variant execution
environment. In Workshop on Compiler and Architec-
tural Techniques for Application Reliability and Secu-
rity, pages 1–7, 2008.

[59] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the Effective-
ness of Address-space Randomization. In Proceedings
of the 11th ACM Conference on Computer and Commu-
nications Security, CCS ’04, pages 298–307, 2004.

[60] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra
Dmitrienko, Christopher Liebchen, and Ahmad-Reza
Sadeghi. Just-in-time Code Reuse: On the Effectiveness
of Fine-grained Address Space Layout Randomization.
In Security and Privacy (SP), 2013 IEEE Symposium
on, pages 574–588. IEEE, 2013.

[61] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop
Kim, Krishna Vinod, Sundaram Chinthamani, Steven
Hutsell, Rajat Agarwal, and Yen-Chen Liu. Knights
landing: Second-generation Intel Xeon Phi. IEEE micro,
36(2):34–46, 2016.

[62] Richard Ta-Min, Lionel Litty, and David Lie. Splitting
interfaces: Making trust between applications and op-
erating systems configurable. In Proceedings of the
7th Symposium on Operating Systems Design and Im-
plementation, OSDI ’06, pages 279–292, Berkeley, CA,
USA, 2006. USENIX Association.

[63] PaX Team. PaX Address Space Layout Randomization
(ASLR), 2003.

[64] Marvell Technology. Liquidio ii 10/25gbe Adapter fam-
ily, 2019. https://bit.ly/2H7NWLk.

[65] The Ultimate Dissassembly Framework – Capstone.
http://www.capstone-engine.org/.

[66] AWS Inter-Region Latency. https://www.cloudping.
co/.

[67] Reduce TCO with Arm Based SmartNICs. https:
//community.arm.com/developer/ip-products/
processors/b/processors-ip-blog/posts/
reduce-tco-with-arm-based-smartnics.

[68] High-Performance Programmable SmartNICs. https:
//www.mellanox.com/products/smartnic/.

[69] Ashish Venkat, Harsha Basavaraj, and Dean Tullsen.
Composite-isa cores: Enabling multi-isa heterogeneity
using a single isa. In 25th IEEE International Sym-
posium on High Performance Computer Architecture.
IEEE, February 2019.

[70] Ashish Venkat, Sriskanda Shamasunder, Hovav
Shacham, and Dean M Tullsen. Hipstr: Heterogeneous-
isa program state relocation. In ACM SIGARCH
Computer Architecture News, volume 44, pages
727–741. ACM, 2016.

[71] Ashish Venkat and Dean M Tullsen. Harnessing isa
diversity: Design of a heterogeneous-isa chip multipro-
cessor. ACM SIGARCH Computer Architecture News,
42(3):121–132, 2014.

[72] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter.
Cloning your gadgets: Complete rop attack immunity
with multi-variant execution. IEEE Transactions on De-
pendable and Secure Computing, 13(4):437–450, 2016.

[73] Alexios Voulimeneas, Dokyung Song, Fabian Parzefall,
Yeoul Na, Per Larsen, Michael Franz, and Stijn Volck-
aert. Dmon: A distributed heterogeneous n-variant sys-
tem. arXiv preprint arXiv:1903.03643, 2019.

[74] w00d. Analysis of nginx 1.3.9/1.4.0 stack buffer
overflow and x64 exploitation (CVE-2013-2028)).
https://www.vnsecurity.net/research/2013/
05/21/analysis-of-nginx-cve-2013-2028.html.

[75] Xiaoguang Wang, Yong Qi, Zhi Wang, Yue Chen, and
Yajin Zhou. Design and Implementation of SecPod, A
Framework for Virtualization-Based Security Systems.
IEEE Transactions on Dependable and Secure Comput-
ing, 16(1):44–57, 2019.

[76] Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Sang-
Hoon Kim, and Binoy Ravindran. A Framework to
Secure Applications with ISA Heterogeneity. In The 9th
Workshop on Systems for Multi-core and Heterogeneous
Architectures (SFMA), 2019.

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses 441

https://bit.ly/2H7NWLk
http://www.capstone-engine.org/
https://www.cloudping.co/
https://www.cloudping.co/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/reduce-tco-with-arm-based-smartnics
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/reduce-tco-with-arm-based-smartnics
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/reduce-tco-with-arm-based-smartnics
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/reduce-tco-with-arm-based-smartnics
https://www.mellanox.com/products/smartnic/
https://www.mellanox.com/products/smartnic/
https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html
https://www.vnsecurity.net/research/2013/05/21/analysis-of-nginx-cve-2013-2028.html

[77] Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and
Binoy Ravindran. Secure and efficient in-process mon-
itor (and library) protection with intel mpk. In Pro-
ceedings of the 13th European Workshop on Systems
Security, EuroSec ’20, page 7–12, New York, NY, USA,
2020. Association for Computing Machinery.

[78] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen,
and Zhiqiang Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, 2012.

[79] David Wentzlaff and Anant Agarwal. Factored operating
systems (fos): The case for a scalable operating system
for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,
April 2009.

[80] Wikipedia. MSI Protocol. https://en.wikipedia.
org/wiki/MSI_protocol, Accessed: 2020-07-08.

[81] David Williams-King, Graham Gobieski, Kent Williams-
King, James P Blake, Xinhao Yuan, Patrick Colp,
Michelle Zheng, Vasileios P Kemerlis, Junfeng Yang,
and William Aiello. Shuffler: Fast and Deployable Con-
tinuous Code Re-Randomization. In OSDI, pages 367–
382, 2016.

[82] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security Symposium, volume 1,
pages 22–25, 2014.

[83] Sebastian Österlund, Koen Koning, Pierre Olivier, An-
tonio Barbalace, Herbert Bos, and Cristiano Giuffrida.
kMVX: Detecting Kernel Information Leaks with Multi-

variant Execution. In ASPLOS, April 2019.

442 23rd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

https://en.wikipedia.org/wiki/MSI_protocol
https://en.wikipedia.org/wiki/MSI_protocol

	Introduction
	Background and Threat Model
	MTD and MVX
	Multi-ISA Systems and Security

	Design and Implementation
	System overview
	HeterSec distributed kernel
	Handling the cross-ISA code execution
	Case Studies
	Multi-ISA MTD
	Multi-ISA MVX

	Implementation

	Evaluation
	Security Analysis
	Performance Evaluation

	Related Works
	Conclusion

