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ABSTRACT
Document insertion into a native XML Data Store (XDS) requires
to partition the document tree into a number of storage units with
limited capacity, such as records on disk pages. As intra partition
navigation is much faster than navigation between partitions, min-
imizing the number of partitions has a beneficial effect on query
performance.

We present a linear time algorithm to optimally partition an or-
dered, labeled, weighted tree such that each partition does not ex-
ceed a fixed weight limit. Whereas traditionally tree partitioning
algorithms only allow child nodes to share a partition with their
parent node (i.e. a partition corresponds to a subtree), our algorithm
also considers partitions containing several subtrees as long as their
roots are adjacent siblings. We call this sibling partitioning.

Based on our study of the optimal algorithm, we further intro-
duce two novel, near-optimal heuristics. They are easier to imple-
ment, do not need to hold the whole document instance in memory,
and require much less runtime than the optimal algorithm.

Finally, we provide an experimental study comparing our novel
and existing algorithms. One important finding is that compared to
partitioning that exclusively considers parent-child partitions, in-
cluding sibling partitioning as well can decrease the total number
of partitions by more than 90%, and improve query performance
by more than a factor of two.

1. INTRODUCTION
We consider the problem of tree partitioning from the perspective

of native XML data stores (XDSs). In particular, we are concerned
with the quality of the storage representation of XML documents in
systems that natively store the ordered, labeled tree representation
of the XML documents, and use navigational primitives to access
this representation during query processing. Any storage engine
designed to store trees that require more space than a single unit
of secondary storage must have a tree partitioning algorithm. Tree
partitioning decomposes the logical document tree into partitions
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Figure 1: Partitioning with parent-child edges only

smaller than a weight limit, which corresponds to the storage unit’s
capacity, e.g. the disk page size. The tree partitioning algorithms
may be ad-hoc in some systems which arbitrarily place nodes wher-
ever there is sufficient space. In general, however, it is a good idea
to carefully design partitioning algorithms for XDSs because (1)
the number and structure of partitions is an important determinant
of query performance, since crossing storage units during query
processing is expensive, and (2) performance of the partitioning
algorithm itself affects overall system performance because docu-
ment insertion is a frequent operation.

An important feature of the XML data model is order, and this
must be taken into account when designing partitioning algorithms.
The storage engine of an XDS not only has to store parent-child
edges of a tree, but must also capture the sibling order. Storage
engines for native XDSs such as IBM’s System RX/DB2 Viper [2]
and the Natix system [6] provide such ordered tree storage. They
go even further and provide optimized storage for consecutive sib-
lings that share a storage unit, even if their parent is located on
a separate storage unit. Without such an optimization, access to
nodes with a large number of children would suffer from bad per-
formance. Consider the tree shown in Fig. 1. Assume that the
root node p that does not fit on a storage unit together with any
of its children’s subtrees. If the storage format does not allow to
put consecutive siblings into a storage unit that does not contain
their parent, the resulting partitioning looks as indicated by the
dashed lines in Fig. 1. In this case, each child is stored seper-
ately, and every partition corresponds to a single subtree. Query
evaluation with an XML query language such as XPath [1] and
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Figure 2: Partitioning with parent-child and sibling edges

XQuery [3] is expensive here. In case of an in-order traversal of all
children or descendants of p, such as the evaluation of the child
or descendant axis starting for context node p would access a
different storage unit for every child of p, i.e. 5 storage units in
total. If siblings can share a storage unit even if their parent is in a
different storage unit, then we have a situation as shown in Fig. 2.
Here, several subtrees may share a partition, as long as their roots
are siblings. We call this partitioning style sibling partitioning. It
results in fewer expensive crossings of storage unit borders (in our
example, there are three), which in turn improves the query perfor-
mance. To keep the number of such crossings as low as possible, a
tree partitioning algorithm for XDS should create sibling partition-
ings and minimize the total number of partitions.

Our primary motivation for studying the tree sibling partition-
ing problem is our experience with the storage engine of our native
XML data store Natix [6]. Natix uses a storage format where the
storage units are physical records, each of which contains a frag-
ment of the document tree whose nodes are connected by parent-
child or sibling edges. Natix has two algorithms to determine which
nodes share a physical record [9, 10]. The node-at-a-time algorithm
[9] maintains the clustered XML storage format on incremental up-
dates. Insertions of whole documents are handled by the bulkload
component, whose design and implementation is described in [10].
Its standard partitioning algorithm for document import is a simple
heuristics.

In practice, for several cases we observed peculiar partitioning
decisions by this simple algorithm that lead to inacceptable query
performance. Ad-hoc attempts to refine the heuristics were not very
robust, i.e. always vulnerable to new pathological cases (some of
them are presented throughout this paper). To be able to judge
the quality of the various algorithms and to get an insight how to
construct a more robust one, we wanted to know the theoretical
optimum, i.e. a partitioning with a minimal number of partitions.
However, determining the minimal number of partitions for a typ-
ical document is not an easy task: The number of potential sibling
partitionings is exponential with respect to the number of nodes, so
a brute force algorithm for determining the optimum is not feasible.

Over the last decades, a number of algorithms for tree partition-
ing has been developed, including [4, 5, 12, 13, 15, 17]. Several
of them were specifically designed for the then-current storage en-
gines. Tree partitioning algorithms have been studied in the context
of hierarchical DBMS [13, 15], object-oriented DBMSs [17] and,
recently, XDSs [4, 5]. Unfortunately, none of the algorithms con-
siders sibling order or allows sibling subtrees to share a partition if
their parent is in a different partition.

The three main contributions of this paper are:

1. We present a linear time algorithm for optimal tree sibling
partitioning.

2. We present two novel, near-optimal heuristics that have much
better runtime than the optimal algorithm.

3. We provide experimental results, comparing our algorithms
and several existing heuristics with respect to the number of
generated partitions and the query performance on the pro-
duced partitioning.

The paper is structured as follows. Sec. 2 formalizes the prob-
lem. Sec. 3 develops a sequence of algorithms for tree partitioning
problems which culminate in a complete optimal algorithm for tree
sibling partitioning. We discuss the problem substructure in detail,
supported by formal proofs where necessary. The first of these al-
gorithms is limited to flat trees and uses dynamic programming to
partition the sequence of children. We proceed with an algorithm
that applies the flat tree algorithm in a bottom-up manner to deep
trees, using optimal solutions for subtrees to obtain a global solu-
tion. Unfortunately, this does not always yield an optimal solution.
In some situations, a locally suboptimal tree partitioning is required
for the global optimum. We present a method to generate the re-
quired local solutions. In a final step, we show how the proper local
solutions can be chosen to achieve the global optimum. Although
the algorithms get progressively more complex, all of them have a
runtime proportional to the number of document nodes in the worst
case. Sec. 4 explains why the optimal algorithm is not always a
wise choice for document import into real XDSs, and presents a
number of both existing and novel heuristics that are better suited
for real systems. Sec. 5 assesses other existing algorithms for tree
partitioning and XML document clustering. Sec. 6 evaluates our
three novel and four existing sibling partitioning algorithms. Sec. 7
concludes the paper.

2. PROBLEM STATEMENT

2.1 Terms and Definitions
Let T = (V, t, p, �, w) be a rooted, ordered, and weighted tree

with nodes V , a root t, a parent function p, a transitive sibling
ordering �, and a weight function w. p maps each nonroot node to
its parent and the root to NIL, and w maps each node to a positive
integer weight. In the following, the term tree always denotes a
rooted, ordered and weighted tree.

Fig. 3 shows an example tree T = ({a,b,c,d,e,f,g,h},a, p, �, w),
which we will use to illustrate our definitions below. In the figure,
the nodes are represented as ovals with identifiers, the parent func-
tion p is represented using solid child-parent arrows, the sibling
ordering is represented by the � symbols (with the transitive rela-
tionships such as b�g omitted), and the node weights w are the
numbers in the ovals.

Given a tree T = (V, t, p, �, w), we denote the subtree induced
by a node v ∈ V with Tv . The subtree weight WT (v) is the sum of
the weights of all nodes in Tv . In our example, the tree Tc consists
of the nodes c, d, and e. c’s subtree weight WT (c) is 5.

A sibling interval (l, r)T of T is a set of consecutive siblings
determined by a first sibling l and a last sibling r with l�r, such that
(l, r)T := {x|x = r∨x = l∨ l �x�r}. A tree sibling partitioning
P of T is a set of disjoint sibling intervals. The subtree weight of
a sibling interval is WT (l, r) := Σx∈(l,r)T

WT (x). The weight of
a set S of sibling intervals WT (S) is the sum of the weights of the
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Figure 3: Example tree

contained intervals. In our example, the interval (b,f)T consists of
the nodes b, c, and f, and has a subtree weight of 8.

Given a tree T and a tree sibling partitioning P as above, the par-
tition forest F P

T of T with respect to P is the set of trees that results
from T when cutting the parent edges from those nodes that belong
to a sibling interval in P . This is equivalent to having a parent
function pP such that for all (l, r)T ∈ P , ∀v∈(l,r)T

pP (v) := NIL.
Hence, in F P

T , each node that is contained in an interval in P be-
comes the root of a tree. The partition defined by an interval (l, r)T

is the set of all trees from F P
T whose root is in (l, r)T . In our ex-

ample, the partition defined by (b,f)T is {Tb, Tc, Tf}.
The partition weight W P

T (v) of a node v is its subtree weight in
F P

T . Analogously, the partition weight of a sibling interval W P
T (l, r)

is the sum of all the partition weights of its nodes, and the parti-
tion weight of a set of sibling intervals is the sum of the partition
weights of its intervals. The root weight of a partitioning is the
partition weight of the root node, W P

T (t). In our example tree,
consider the partitioning P := {(b,f)T }. The root weight of P is
6, because only the nodes a, g, and h remain in the tree of the root
a after the parent edges of b, c, and f have been removed.

Given T and a positive integer K, a tree sibling partitioning P of
T is called feasible iff (t, t)T ∈ P and ∀(l,r)T ∈P W P

T (l, r) ≤ K.
A feasible partitioning of our example tree and K = 5 is P :=
{(a,a)T , (b,b)T , (c,c)T , (f,g)T }. Here, h is in the same partition
as the root, and the root weight is 5.

A tree sibling partitioning is called minimal iff it is feasible and
has the smallest possible cardinality of all feasible partitionings.
A tree sibling partitioning P is called lean iff its root weight is
minimal among all partitionings with the same cardinality. A tree
sibling partitioning is called optimal iff it is both minimal and lean.
In our example, R := {(a,a)T , (c,c)T , (f,h)T } is a minimal par-
titioning (K = 5) with cardinality of 3. b is in the same partition
as the root, so R has a root weight of 5. However, R is not lean.
There is a partitioning with the same cardinality and a smaller root
weight: In P := {(a,a)T , (c,h)T , (d,e)T }, the root weight is 3. P
is optimal. We will often denote optimal tree sibling partitionings
with calligraphic letters such as P or D.

2.2 The Tree Sibling Partitioning Problem
Given these terms, the problem we want to solve is formally

stated as follows:

Tree Sibling Partitioning: Given a tree T and a weight
limit K, determine a minimal tree sibling partitioning.

To solve this problem, we develop algorithms that find partition-
ings with a stronger property, namely optimality. According to our
definition, this means that the partitionings must have minimal root
weight among all minimal partitionings. We will see below that
the reason for this lies in our recursive, bottom-up approach: While
minimality is all we need for the overall solution, the subproblems

we solve must also be lean to guarantee minimality on higher lev-
els.

3. OPTIMAL TREE SIBLING
PARTITIONING

The number of feasible tree sibling partitionings for a given tree
with n nodes is very large, even if a fixed weight limit K is pro-
vided. For every parent node, we have to decide which subset of
children to place in the same partition as the parent. For the re-
maining children, we must decide how to combine the siblings into
partitions. It is not at all obvious how to find a minimal partitioning
in time proportional to n, given a fixed partition weight limit K. In
fact, we shall see that even simplified versions of the problem are
not obviously solvable in linear time.

We pursue an incremental strategy. We approach tree sibling
partitioning formally, proving a sequence of properties that enable
us to develop progressively more advanced algorithms.

We start out by showing that a bottom-up approach is viable be-
cause we can combine partitionings for subtrees to obtain a global
solution. As a second step, we present a dynamic programming al-
gorithm that can partition flat trees (i.e. trees where all nodes but
the root node are leaves) in O(nK2) time.

Unfortunately, we will see that the bottom-up application of this
algorithm to a deep tree does not necessarily yield an optimal so-
lution: Sometimes we have to choose a suboptimal solution in the
lower levels of the tree to avoid extra partitions on the next higher
level. However, we can show that at each step, we only need to
choose between an optimal and a nearly optimal solution, for a
rather simple definition of ”nearly optimal”. We also show how to
incorporate this choice into our dynamic programming algorithm,
finally arriving at an O(nK3) algorithm for optimal tree sibling
partitioning.

3.1 Bottom-Up Tree Partitioning
Our algorithms are based on the assumption that in order to de-

termine a globally optimal partitioning, we can select a node v from
the tree and determine a partitioning for the subtree induced by that
node. Then we can recursively determine a global partitioning for
the remainder of the tree and combine the two solutions to obtain
the global solution. We will now formalize this basic assumption.

Recall that we consider a solution optimal if it is not only mini-
mal, but also lean. The reason for this is explained below.

In the following lemma, we do not assume that the local subtree
partitioning for a subtree Tv , called S, is locally optimal. We just
assume that we know for some reason that S is part of some global
solution, and show how to get a global solution based on S. We
do this by collapsing Tv from the original tree into a single node
v with a weight that represents the whole collapsed subtree. We
recursively determe an optimal solution eP for this new tree eT , and
merge this result with S to obtain an optimal solution P ′.

LEMMA 1. Let T = (V, t, p, �, w) be a tree. Let v ∈ V be
a node from T . Let Vv be the nodes of Tv . Let S be a feasible
tree sibling partitioning of Tv such that there exists some optimal
tree sibling partitioning P of T that contains S and has no other
intervals among the descendants of v, i.e. with S − {(v, v)T } =
{(l, r)T ∈ P|(l, r)T ⊆ Tv}.

Further, let eT = (V −Vv∪{v}, t, ep,e�, ew) be the tree T with the
descendants of v removed, such that ep, e� and ew are the functions
from T restricted to eT , with the exception of a new weight for v:ew(v) := W S

T (v). Let eP be an optimal tree sibling partitioning ofeT .
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Then P ′ := eP ∪ (S − {(v, v)T }) is an optimal tree sibling
partitioning of T .

We omit the proofs of our lemmas due to space constraints.
They are contained in the extended version of this paper [11].

Lemma 1 suggests an algorithm that traverses the tree in a bottom-
up manner. For each non-leaf node v, determine a partitioning S

for Tv that is part of a global solution (we will explain how to do
this in the remaining section). We then remove the sibling intervals
in S (except (v, v)T ), and replace the whole subtree Tv by a single
node whose weight is equal to the total weight of all the nodes in
Tv that are not part of an interval in S. Then we proceed with the
next node.

This approach reduces our original problem of finding partition-
ings for arbitrary trees to the simpler problem of finding partition-
ings only for flat trees. Flat trees are trees in which all nodes but
the root node are leaves. Our bottom-up approach guarantees that,
once we reach an inner node, all deeply nested subtrees below that
node have been pruned and only a flat tree remains.

The bottom-up traversal is also the reason why we require the
local solutions to be lean in addition to be minimal: By cutting
away as much of the tree weight as possible, we generate a simpler
subproblem in the next higher level of the tree. Of course, we only
do so if it does not introduce additional sibling intervals, because
the ultimate goal is to find a minimal partitioning.

However, we have not yet specified the subroutine to compute a
suitable partitioning for flat trees. We turn to this problem in the
next section.

3.2 Flat Tree Partitioning
Before looking at an optimized way to determine an optimal tree

sibling partitioning for flat trees, we want to verify that a simple
brute-force algorithm is not a viable solution. Let us look at the
number of feasible tree sibling partitionings in a flat tree. Assume
a flat tree with n leaf nodes in which all the nodes have weight 1. In
this case, we can put up to K −1 leaves of the n leaves in the same
partition as the root. There are

`
n

K−1

´
possible ways to do this.

Hence, a lower bound for the number of feasible root partitions is
Ω(nK−1). This estimate does not yet include the different possibil-
ities to group the remaining sibling nodes into intervals. Hence, it
is reasonable to conclude that a brute force algorithm is impractical
for typical values1 of K.

We approach the problem by showing that an optimal solution
for a tree with n leaf nodes contains an optimal solution for a tree
with less than n leaves. Then, we use this knowledge to develop a
dynamic programming algorithm that finds the optimal solution in
O(nK2) time. Finally, we discuss the optimization potential of the
algorithm.

3.2.1 Optimal Substructure for Flat Trees
Consider the options we have for a leaf in the solution: either the

child is put into the same partition with the root, or it belongs to an
interval of the result partitioning. Together with the fact that there
is only a limited number of feasible intervals to which the child
can belong, this forms a useful problem substructure for dynamic
programming.

The following lemma states that we can find an optimal tree sib-
ling partitioning for a flat tree with n leaf nodes by choosing the
best candidate solution from one of the following two subproblems:
Either (1) the solution is the same as an optimal tree sibling parti-
tioning for a similar tree with n − 1 nodes, which represents the

1Keep in mind that K is the size limit for a storage unit, and typical
disk page sizes are thousands of bytes.

original tree with the last child put into the root partition, or (2)
the solution can be constructed by adding a single interval to an
optimal partitioning for a smaller tree.

LEMMA 2. Let T = ({t, c1, . . . , cn}, t, p, �, w) be a tree in
which all nodes but the root node are leaves, i.e. p(ci) = t.
� orders the ci according to their index value i. The tree T s

j =
({t, c1, . . . , cj}, t, p, �, ws

j ) is the tree T with all children {ci|i >

j} removed and a different weight s for the root node t, with p and
� regarded as restricted to {c1, . . . , cj}, and ws

j (t) := s, and for
v ∈ {c1, . . . , cj}, ws

j (ci) := w(ci). Let Ds
j be the set of optimal

tree sibling partitionings for T s
j .

Then, for j = 0 and any s ≤ K holds Ds
0 = {{(t, t)T }} .

For each j with 1 ≤ j ≤ n, at least one of the following state-
ments holds:

1. Ds′

j−1 ⊆ Ds
j with s′ := s + w(cj).

2. For some m with 0 ≤ m < j ∧ m < K :
∀M∈Ds

j−m−1
(M ∪ {(cj−m, cj)T }) ∈ Ds

j .

Given the notation used above, the problem that has to be solved
by our algorithm can be stated like this: Find an arbitrary element
of D

w(t)
n .

Since such an arbitrary element of D
w(t)
n can be computed from

optimal sibling partitionings Ds
j for smaller trees (j < n), the prob-

lem is susceptible to a dynamic programming approach, as we show
below.

3.2.2 Algorithm FDW for Flat Trees
Our algorithm FDW (Flat trees, Dynamic programming for tree

Width) employs dynamic programming by starting out with a tree
that only contains the root node. We then successively add all leaf
nodes in left-to-right order and iterate over all potential weights
of the root node. For each such intermediate tree, we compute an
optimal partitioning. For each node, we have to decide whether it
is going to be part of a sibling interval in the solution, or whether it
will be part of the root partition. This decision is based on optimal
solutions for already processed intermediate trees.

More formally, for each j < n and each s ∈ {w(t), . . . , K}, we
determine a single element P ∈ Ds

j , and store it in a table indexed
by j and s.

For j = 0, we have Ds
0 = {{(t, t)T }} for all s, hence P =

{(t, t)T }. For j > 0, Lemma 2 states that we only have to consider
a limited number of candidates: Either our desired partitioning P

is an arbitrary element of Ds′

j−1, or, for some m with 0 ≤ m < K,
an arbitrary element of Ds

j−m−1 together with (cj−m, cj)T .
Hence, we have at most K + 1 candidates in each step. We pro-

cess the steps in increasing order of j. This makes sure we already
know a partitioning from every Ds

i with i < j. To determine P
in each step, we just check all candidates for feasibility and store
a candidate with minimum cardinality that also has minimum root
weight.

The algorithm in Fig. 4 implements this strategy. It uses a table
D(s, j) to store a partitioning from Ds

j . It is assumed that out-of-
bounds accesses to D (i.e. where s > K) always return a dummy
interval with card = ∞. This makes exposition of our algorithm
simpler (we do not need to check for out-of-bounds conditions in
the pseudocode).

Lemma 2 tells us that each partitioning D(s, j) is either the same
as an existing partitioning, or it extends an existing partitioning by
at most one interval. Hence, it is sufficient to store as entries in D

either a copy of another partitioning, or only the added interval and
a pointer to the remaining chain of intervals. This next pointer
is implemented as a pair of indices of another partitioning in the
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input T = ({t, c1, . . . , cn}, t, p, �, w) flat tree
output D dynamic programming table with final result in D(w(t), n)

for s := w(t) to k
D(s, 0).begin:=t
D(s, 0).end:=t
D(s, 0).card:=1
D(s, 0).rootweight:=w(t)
D(s, 0).next:=(0,0)

for j := 1 to n
for s := w(t) to K

s′ := s + w(cj)
P := D(s′, j − 1)
w := 0
m := 0
while m < j ∧ m < K ∧ w < K

w := w + w(cj−m)
if w ≤ K

crd:= D(s, j − m − 1).card+1
rw:= D(s, j − m − 1).rootweight
if crd< P .card∨(crd= P .card∧rw< P .rootweight)

P .begin:=cj−m

P .end:=cj

P .card:=crd
P .rootweight:=rw
P .next:=(s, j − m − 1)

m := m + 1
D(s, j) := P

Entries in the dynamic programming table D(i, j)
begin first node of interval
end last node of interval
card cardinality of best parititioning so far

(length of next chain)
rootweight rootweight of best parititioning so far
next index of next interval

Figure 4: Algorithm FDW for flat tree partitioning

table. The new or copied interval is represented by the two bound-
ing nodes (begin and end). In addition, each entry in D (Fig. 4)
has two fields that contain the cardinality and the weight of the root
partition to avoid recomputing them during comparisons.

Having run the algorithm, an optimal tree sibling partitioning can
be obtained by starting at the interval in D(w(t), n) and traversing
the list of next pointers until we reach a next pointer with value
(0, 0).

It is easy to specify the runtime of this algorithm: There are three
nested loops, the outermost loop is processed at most n times, and
the two inner loops are processed at most K times. Hence, the
algorithm has a worst-case runtime of O(nK2).

3.2.3 Optimizations
We do not need to determine D(s, j) for every value of s. For

each j, we only need to consider those values of s that are needed
by higher values. These are always the sum of node weights. Hence,
we only need s values that are sums of the weight of the root node
and the weights of nodes to the right of cj .

A simple way to achieve this is to use the memoization tech-
nique: We do not precompute all entries in the D table as shown
in our pseudocode. Instead, we only compute the entries on de-
mand and remember them in D. Subsequent requests for the same
entry can then be satisfied in O(1) time. This does not affect the
asymptotical complexity, but significantly reduces real-world run-
time: Only a fraction of the whole D table is really needed for real
trees (for an example, see Sec. 3.3.6).

input T tree
output D dynamic programming table

for all nodes v of T in postorder
for s := wT (v) to K

D(v, s, 0).begin:=NIL
D(v, s, 0).end:=NIL
D(v, s, 0).card:=0
D(v, s, 0).rootweight:=s
D(v, s, 0).next:=(0,0)

for j := 1 to childcount(v)
for s := wT (v) to K

s′ := s + D(v).rootweight
P := D(v, s′, j − 1)
w := 0
m := 0
while m < j ∧ m < K ∧ w < K

w := w + D(cj−m(v)).rootweight
if w ≤ K

crd:= D(v, s, j − m − 1).card+1
rw:= D(v, s, j − m − 1).rootweight
if crd< P .card

∨(crd= P .card∧rw< P .rootweight)
P .begin:=cj−m(v)
P .end:=cj(v)
P .card:=crd
P .rootweight:=rw
P .next:=(s, j − m − 1)

m := m + 1
D(v, s, j) := P

Figure 5: Algorithm GHDW for deep tree partitioning

3.3 Optimal Deep Tree Partitioning
In this section, we extend the FDW algorithm for optimal flat tree

partitioning to deep trees. We first propose a straightforward exten-
sion of FDW to deep trees, called GHDW (for Greedy–Height/Dynamic–
Width). GHDW uses locally optimal partitionings to construct a
global partitioning. However, there are cases in which GHDW
yields suboptimal results, and we show that a globally optimal so-
lution for our partitioning problem sometimes requires locally sub-
optimal solutions. We then characterize the kind of locally subop-
timal partitionings that are needed and show how to generate them.
We incorporate this into our dynamic programming algorithm. Fi-
nally, we arrive at a linear time algorithm for optimal tree sibling
partitioning.

3.3.1 The GHDW Algorithm
It is tempting to use the result of the FDW algorithm as S in

Lemma 1. In a bottom-up manner, we can collapse flat subtrees into
single nodes, producing a flat tree at the next higher level. When
reaching the root, we have a feasible tree sibling partitioning that is
constructed from locally optimal partitionings. This approach uses
our dynamic programming algorithm for each inner node, but with
respect to the ”height” of the tree, it procedes in a greedy manner,
always choosing an optimal partitioning for each subtree. We call
this approach GHDW (employing a Greedy strategy for the Height
of the tree, and Dynamic programming for the Width).

The pseudo-code is shown in Fig. 5. The code looks like FDW
with an additional outer loop over all nodes. However, we now
deal with deep trees and use appropriate primitives to access the
tree structure: We use cj(v) to specify the jth child of v, and
childcount(v) to denote the number of children of v.

For each node, flat tree partitioning is performed once and the
results are stored in the dynamic programming table D. In GHDW,
D has an extra dimension compared to FDW because we have one
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GHDW Result: 4 Partitions

a:5

b:1 c:1

d:2 e:2

f:1

Optimal Result: 3 Partitions

a:5

b:1 c:1

d:2 e:2

f:1

Figure 6: Failure of the greedy strategy (K = 5)

”flat” result for each node v. We abbreviate with D(v) the result
of D(v, w(cj(v)), childcount(v)), which is the best partitioning
for Tv that GHDW can find. Note that the card field in the D

entries counts only the extra partitions that result from partitioning
the children of v, not the partitions on the lower levels. We do not
need the actual partition count, but only need to choose the locally
minimal one here. Collapsing the optimally partitioned subtree into
a single node at the next higher level is realized in a simple way: in
those places where FDW uses the weight of a node, GHDW uses
the rootweight field of the optimal subtree partitioning for the nodes
on the lower level.

Note that the initial s loop for j = 0 is different from FDW;
instead of an interval (v, v)T for the subtree’s root v, we store an
empty ”dummy” interval, because the actual interval to which v be-
longs is determined in a higher level. The global result is extracted
from the D table by returning for each node the next-chain of parti-
tions (without the empty interval), and finally adding an extra root
interval (t, t)T .

The complexity of GHDW is the same as FDW: O(nK2). At
first glance, there is an extra outer loop with n steps. However, the
inner loop on j does not range over all nodes any more, but only
over the children of the current outer node v. Hence, the total num-
ber of iterations of the j loop over all v is n, and the asymptotical
complexity remains the same as for FDW.

We will see in the evaluation (Sec. 6) that the GHDW algorithm
yields good results. However, the results obtained by this algorithm
are not always optimal.

As an example for a suboptimal result of GHDW, consider Fig. 6.
Here, the weight limit is K = 5. The numbers represent the node
weights.

The left part of the figure shows the result of the GHDW al-
gorithm, which consists of the four intervals {(a,a), (b,b), (c,c),
(f,f)}. When processing bottom-up, GHDW decides that the opti-
mal solution for the flat subtree induced by node c is to make d and
e share a partition with c. This optimal subtree partitioning yields
a tree Tc with a total weight of 5. Hence, on the next level c is
treated as a single node of weight 5. But this means that both b
and f get a partition of their own: They can neither be put into the
same partition as the root a nor with the c subtree, because both
alternatives would exceed the weight limit.

The right part of the figure shows a feasible partitioning {(a,a),
(b,f), (d,e)} with just three partitions. By introducing an extra par-
tition at the lowest level of the tree (d and e), it becomes possible
to merge all of the siblings on the middle level into a single parti-
tion. This is an optimal sibling partitioning for this tree. Here, the
subtree of c is distributed over two partitions instead of the locally
optimal solution, which requires only one partition for that subtree.

Before we investigate what kind of locally suboptimal partition-
ings we have to take into account, we first provide some additional
definitions needed in the remaining sections.

3.3.2 Definitions
Let T = (V, t, p, �, w) be a tree and Q be a tree sibling par-

titioning for T . Q is called nearly minimal iff it contains exactly
one more interval than a minimal partitioning. Q is called nearly
optimal iff it is both nearly minimal and lean.

ΔW (v) describes for any node v ∈ V the difference in root
weight of the optimal and nearly optimal partitioning of the subtree
Tv induced by v. Let P be an optimal and Q a nearly optimal tree
sibling partitioning for Tv , respectively. Then we define

ΔW (v) :=

j
0 if Q does not exist
WP

Tv
(v) − W

Q

Tv
(v) otherwise

3.3.3 Optimal Substructure for Deep Trees
We now show which partitionings of subtrees are suitable can-

didates to construct an optimal tree sibling partitioning at the next
higher level. It turns out that there are only two candidates. In fact,
the following lemma shows that if an optimal subtree partitioning
for a subtree is not part of a globally optimal solution, then a nearly
optimal one must be.

LEMMA 3. Let T = (V, t, p, �, w) be a tree, and let v ∈ V be
a node in T . Then, there exists an optimal tree sibling partitioning
P of T , and a tree sibling partitioning S of Tv, such that S is
either optimal or nearly optimal, and S − {(v, v)T } = {(l, r)T ∈
P|(l, r)T ⊆ Tv} − {(v, v)T }, i.e. the set of intervals in P that lie
in the subtree below v is exactly S.

Further, if S is nearly optimal, then ΔW (v) > 0.

So, the good news is that we only need to consider at most two
candidate subtree partitionings for each node. The bad news is that
we do not know which of the two is part of a global solution until
we are processing the next higher level.

Before we can tackle this problem, we need an algorithm that
computes a nearly optimal tree partitioning. Fortunately, we can
use any algorithm for optimal tree sibling partitioning to also obtain
nearly optimal partitionings, as we show in the next subsection.

3.3.4 Nearly Optimal Partitioning
Once we have an optimal tree sibling partitioning for a tree T ,

obtaining a nearly optimal partitioning is just a matter of rerunning
the algorithm with a slightly modified tree, as the following lemma
shows.

LEMMA 4. Let T = (V, t, p, �, w) be a tree and P an optimal
tree sibling partitioning for T . Let T ′ = (V, t, p, �, w′) be the tree
T with a modified weight for the root node w′(t) := w(t) + K −
WP

T (t) + 1, and for v ∈ V − {t}, w′(v) := w(v).
Then, any optimal tree sibling partitioning for T ′ is a nearly

optimal tree sibling partitioning for T .
Further, if there is no optimal tree sibling partitioning for T ′,

then ΔW (t) = 0.

Lemma 4 states that we can find the nearly optimal partitions
in the D table of the GHDW algorithm by looking at entries with
modified s values. The nearly optimal partition Q(v) for the sub-
tree Tv can be determined using the D table as follows (remember
that D(v) stands for the optimal partitioning of the subtree Tv):

Q(v) := D(v, w(v)+K−D(v).rootweight+1, childcount(v))

.
While Lemma 4 provides us with a simple way to obtain a nearly

optimal partitioning, we still have to address the issue that we do
not know whether to choose an optimal or nearly optimal partition-
ing until we have reached the next higher level in the tree. How to
efficiently solve this problem is explained in the next subsection.
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3.3.5 Algorithm DHW for Deep Trees
A brute-force approach for deep trees is easy to specify: Travers-

ing the tree bottom-up, we determine both an optimal and a nearly
optimal sibling partitioning for each non-leaf node. This leads to
two potential weights for this node in the next higher level. When
determining the optimal sibling partitioning in the next higher level,
we run the flat-tree algorithm once for each of the two potential
weights of each node, trying to determine which one yields a lower
total interval count.

However, with two choices for the weight of each node, in the
worst case the brute-force algorithm has to compute an optimal
tree sibling partitioning for 2n weight combinations, each requir-
ing O(nK2) time to check. This exponential time usage prohibits
its usage on real-world document sizes.

Instead of such a brute-force approach, we again use dynamic
programming for the decision whether to use an optimal or nearly
optimal tree sibling partitioning for each child node’s subtree, and
incorporate this choice into the GHDW algorithm from Sec. 3.3.1.
We call the resulting algorithm DHW (Dynamic programming for
Height and Width).

The following lemma shows that the use of nearly optimal par-
titionings is an exception rather than the rule. In a lot of cases,
only an optimal tree sibling partitioning for a node v needs to be
considered as part of an optimal solution. In particular, according
to the statements of the lemma below, (1) an optimal partitioning
is sufficient if v shares a partition with its parent, and (2) we only
need to consider a nearly optimal partitioning for the subtree of a
node v if all the other nodes u in the same interval with a greater
ΔW already use a nearly optimal partitioning for their subtrees.

Given a tree T = (V, t, p, �, w), for any node x ∈ V , let Px

be an optimal tree sibling partitioning for Tx, and Qx be a nearly
optimal tree sibling partitioning of Tx such that ΔW (x) > 0. Note
that Qx may not exist.

LEMMA 5. For each tree T = (V, t, p, �, w) there exists an
optimal tree sibling partitioning P of T such that for each v ∈ V ,
Pv − {(v, v)T } ⊆ P if any of the following statements are true:

1. There is no interval (l, r)T ∈ P such that v ∈ (l, r)T .

2. There is an interval (l, r)T ∈ P such that v ∈ (l, r)T ,
and there is a u ∈ (l, r)T for which Qu exists and Qu −
{(u, u)T } 
⊆ P ∧ ΔW (u) < ΔW (v).

This result helps us to extend the GHDW algorithm (see Fig. 5).
GHDW decides for each node, based on partitionings of smaller
trees, whether to put the new node into a partition with the parent,
or whether to create a new sibling interval containing the new node.
From statement 1 in Lemma 5 it follows that the only point in the
algorithm where we need to consider nearly optimal tree partition-
ings is when adding new intervals, i.e. in the loop on m.

Further, statement 2 tells us that we only need to consider nearly
optimal partitionings for the subtree of a node if a nearly optimal
partitioning has already been used for all nodes v of the same in-
terval which have a greater ΔW (v). Hence, given an interval with
a weight larger than K, we can order the contained nodes by de-
scending ΔW value and store them in a list. Then, we select a node
from the beginning of the list and use a nearly optimal partitioning
for that node. This will decrease the weight of the interval by the
node’s ΔW . We continue to do so while the weight of the interval
is larger than K and there are still nodes in the list. We remember
each node for which we use a nearly optimal partitioning. When
considering the resulting interval as part of a global solution and
comparing the overall cardinalities, we must take into account that

input T tree
output D dynamic programming table

for all nodes v of T in postorder
for s := wT (v) to K

D(v, s, 0).begin:=t
D(v, s, 0).end:=t
D(v, s, 0).nearlyopt:=∅
D(v, s, 0).card:=1
D(v, s, 0).rootweight:=s
D(v, s, 0).next:=(0,0)

for j := 1 to childcount(v)
for s := wT (v) to K

s′ := s + D(cj(v), wT (cj(v)), childcount(cj(v))).rootweight
P := D(v, s′, j − 1)
w := 0
dw := 0
m := 0
while m < j ∧ m < K ∧ w − dw < K

w := w + D(cj−m).rootweight
dw = dw + ΔW (cj−m(v))
if w − dw ≤ K

crd:= D(v, s, j − m − 1).card+1
rw:= D(v, s, j − m − 1).rootweight
C :=nodes (cj−m(v), cj(v))T

ordered by descending ΔW (ci(v))
w′ := w
N := ∅
while w′ > K

u := head(C)
w′ := w′ − ΔW (u)
N := N ∪ {u}
C := C − {u}
crd:=crd+1

if crd< P .card∨(crd= P .card∧rw< P .rootweight)
P .begin:=cj−m(v)
P .end:=cj(v)
P .nearlyopt:=N
P .card:=crd
P .rootweight:=rw
P .next:=(s, j − m − 1)

m := m + 1
D(v, s, j) := P

Figure 7: Algorithm DHW for deep tree partitioning

we have not only added the interval itself, but also use one extra
interval for each node that uses a nearly optimal partitioning.

The resulting algorithm DHW is shown in Fig. 7. As explained,
it is an extension of the GHDW algorithm. The dynamic program-
ming table D has a new field nearlyopt which contains the sub-
set of nodes in the interval that use a nearly optimal partitioning.

The algorithm uses the function ΔW (v), which is computed as
ΔW (v) := D(v).rootweight−Q(v).rootweight. For the nodes
required in each step, these results are already available in the table.
As explained in Sec. 3.3.4, the entries for Q can be found in the
table for D using modified s values.

New intervals are added by ranging over all possible m values as
before. However, to determine the maximal size of the interval, we
do not use the sum of root weights of optimally partitioned subtrees
w, but the sum of root weights of nearly optimal partitionings w −
dw. The loop terminates if the interval becomes heavier than K

even if only nearly optimal partitionings are used.
For each m value, a list C of the interval’s nodes is built as ex-

plained above. The algorithm consecutively removes the node from
the beginning of this list and uses a nearly optimal partitioning for
the corresponding subtree. This list determines for which subtrees a
nearly optimal partitioning has to be used. Those nodes (N ) whose
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subtrees use a nearly optimal partitioning are stored in the dynamic
programming table as field nearlyopt.

We now turn to the runtime complexity of the algorithm. The
computation of the nearly optimal partitionings does not change the
asymptotical complexity because the required entries are present in
the D table anyway (refer to Sec. 3.3.4 for an explanation). In
addition to the loops present in the GHDW algorithm, DHW has
an additional loop with O(K) steps to determine the subset Q for
each interval candidate. DHW also needs to create the ordered C

list, which requires O(K log K) time in the worst case. Hence, the
added complexity for each inner step is O(K log K). In GHDW,
there were O(nK2) steps, so the overall time complexity of DHW
is O(nK3 log K).

This means DHW is a linear time algorithm for optimal tree sib-
ling partitioning.

3.3.6 Optimizations
The DHW algorithm provides several opportunities for optimiza-

tion. The memoization approach already discussed in Sec. 3.2.3 is
still applicable, of course. For example, measurements for a 20 MB
sample document and K = 256 show that on average, less than 4
of the potential 256 values for s actually occur for inner nodes.

Further, it can be shown that for the subtree induced by the first
and last nodes of an interval, an optimal partitioning is always suf-
ficient to generate a globally optimal solution. Hence, we need to
add to C all nodes but the first and last node of an interval. We omit
the proof here for brevity reasons, as it does not impact asymptoti-
cal complexity.

It is also possible to avoid the construction of C from scratch
during each iteration of the loop on m. Instead, C could be stored
as a priority queue and incrementally maintained by adding new
nodes in every step. This lowers the overall complexity to O(nK3)
(the inner loop with K steps remains).

4. IMPLEMENTATION ASPECTS AND
APPROXIMATION ALGORITHMS

Our optimal algorithm DHW runs in linear time with respect to
the number of nodes, and enables us to determine optimal sibling
partitionings for real documents in a reasonable amount of time.
Unfortunately, the DHW algorithm has a number of disadvantages
that make its application as an algorithm for document insertion a
suboptimal choice, as we will see below.

In this section, we discuss practical issues that influence the choice
of a partitioning algorithm for native XML Data Stores. We further
present several tree partitioning algorithms that do not achieve op-
timal results, but are better suited for inclusion in real XDSs. Some
of these algorithms are existing algorithms in their original form,
some of them are minor modifications of existing algorithms, and
one is a novel variation of an existing algorithm that we propose
based on our study of the optimal algorithm.

4.1 Implementation Aspects
A partitioning algorithm for document import in a native XDS

must meet a number of requirements in addition to a small num-
ber of generated partitions. While implementation details are out
of the scope of this paper (details about Natix’ document importer
can be found in [10]), there are some properties that a good candi-
date algorithm for a real XDS must have: (1) It must be as fast as
possible, (2) it must scale to very large documents, and (3) it must
be robust, i.e. the quality of its result should not vary greatly for
typical documents.

Unfortunately, our DHW algorithm has resource requirements
that can be a problem in practice:

1. The dynamic programming table requires a large amount of
memory.

2. While the algorithm is linear with respect to the number of
nodes, the factor of K3 is significant, as we will see in the
evaluation section.

3. The final partitioning is only determined after the whole tree
has been processed, because the decision on whether to use
an optimal or nearly optimal partitioning for each subtree de-
pends on the decision at the next higher level of the tree. Ul-
timately, these decisions depend on the partitioning of the
children of the root node. This means that, when used as an
algorithm for document insertion, the whole document to be
inserted must be kept in main memory until the partitioning
is completed. This does not scale to very large documents.

These issues prompt us to investigate approximation algorithms
that are better suited for implementation and still deliver good (small)
partitionings.

To avoid issue (3) above, algorithms must be able to decide about
the definitive assignment of a node to a partition before it has seen
all the document nodes. If this is the case, a node may be stored on
secondary storage as soon as it is assigned to a partition. Further, if
the associated information for such a node is not required for pro-
cessing of the remaining nodes, the whole node can be removed
from main memory. We call algorithm that exhibit this property
main-memory friendly. We have already seen that DHW is not
main-memory friendly.

In the following, we will present several approximation algo-
rithms with respect to their applicability as XDS partitioning algo-
rithms.

4.2 Top-Down Approximation Algorithms
Tsangaris et al. [17] study several partitioning algorithms in the

context of object-oriented DBMS. We consider two of their top-
down algorithms. For both algorithms, the resulting clustering is
not optimal and does not produce storage units that only contain
connected nodes. However, we can easily adapt two of their al-
gorithms to produce approximate tree sibling partitionings, as ex-
plained below.

4.2.1 DFS
The DFS algorithm processes a graph using depth-first search,

assigning nodes greedily to the current cluster. New clusters are
created whenever the current cluster cannot hold the current node.

The original algorithm does not care for the connectedness of
the partitions, as required by tree sibling partitioning. However, we
can modify the algorithm such that it starts a new partition not only
when the current one is full, but also when a node to be processed
is not connected with any of the nodes in the current partition by
sibling or parent-child edges.

This variant of DFS is main-memory friendly because we decide
immediately for each node to which partition it belongs. The al-
gorithm is particularly suited to XML processing because typical
XML parsers deliver the input documents as a stream of parsing
events in depth-first preorder of the document tree.

4.2.2 BFS
The same strategy explained above can also be applied to breadth-

first search, where for each visited node, we try to add it to the par-
tition of its parent, and if that is full, to the partition of its previous
sibling. BFS is not main-memory friendly, as we need to see all of
the nodes in the document to perform proper breadth-first search.
We include it for reasons of completeness.
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4.3 Bottom-Up Approximation Algorithms
We now discuss algorithms that operate in depth-first postorder,

i.e. bottom-up. While the typical result delivery of XML parsers
is depth-first preorder, all of the algorithms below can be imple-
mented in a main-memory friendly way because they can start as-
signing nodes to partitions before the whole document has been
parsed: Whenever the algorithms leave a subtree that is larger than
K, they process its nodes, creating partitions until the subtree falls
below K.

In the worst case, i.e. when the document consists of a root node
with a very large fan-out, these algorithms still need to keep the
whole document tree in memory. However, it is possible to miti-
gate this problem, as proposed in [10]. Instead of waiting until all
of the children of the currently processed nodes have been delivered
by the parser, we can already run the algorithm if the main memory
consumption for the representation of the current node’s subtree
exceeds a certain threshold. We partition the subtree seen so far,
moving some partitions from main memory to secondary memory,
and then continue accepting further nodes from the parser. While
this technique deteriorates the quality of the result, it achieves an
upper bound for the memory usage that is proportional to the doc-
ument height, and not to the number of document nodes.

4.3.1 GHDW
We have already presented a bottom-up approximation algorithm

in detail: The GHDW algorithm that we developed as a precursor
to the optimal algorithm in Sec. 3.3.1. It achieves very good results
in practice (see Sec. 6), and is also memory-friendly, because it
determines a definitive subtree partitioning for every encountered
subtree that is heavier than K.

4.3.2 Rightmost Siblings (RS)
The existing Natix document insertion algorithm [10] applies a

very simple heuristic. When processing a node whose subtree is
larger than K, it iterates over the node’s children from right to
left and adds siblings to a new partition until the partition weight
reaches K. The algorithm continues to create partitions until the
current node’s subtree weight falls below K.

This approach is main-memory friendly and very simple to im-
plement.

4.3.3 Kundu and Misra (KM)
The algorithm of Kundu and Misra [12] minimizes the total num-

ber of partitions for a given tree, and enforces connectedness of
partitions, albeit only based on parent-child edges.

The algorithm KM operates by processing the nodes in bottom-
up fashion. Whenever the subtree induced by the current node p is
heavier than K, the algorithm selects the heaviest child v of p and
creates a partition for its subtree. This is repeated until the subtree
weight of p falls below K. The result is a tree partitioning with
minimal cardinality.

In our terminology, the produced partitionings only contain in-
tervals with a single node, i.e. of the form (v, v)T . Neighboring
intervals are not merged even if their respective subtrees have a
combined weight equal to or smaller thank K. This introduces
costly and unnecessary extra storage units. However, the algorithm
is very fast. It has linear runtime and processes each node exactly
once. Its complexity does not depend on the weight limit K, and it
is memory-friendly.

4.3.4 Enhanced Kundu and Misra (EKM)
One way of extending the Kundu and Misra algorithm to sib-

ling partitioning can be derived from a problematic case of the

a:5

b:1 c:1

d:2 e:2

f:1

Figure 8: Binary tree for Enhanced KM (K = 5)

EKM Result: 3 Clusters

a:2

b:4

c:1

d:1 e:1

Optimal Result: 2 Clusters

a:2

b:4

c:1

d:1 e:1

Figure 9: Failure of Enhanced KM (K = 5)

GHDW algorithm. Recall Fig. 6, where the optimal result was ob-
tained by a ”layered” partitioning that created one partition for ev-
ery level of the tree. Further, recall that the reason for the failure
of GHDW’s greedy strategy is that an optimal partitioning some-
times requires additional partitions at one level below the currently
processed level.

This knowledge about tree sibling partitioning can be leveraged
to create a variant of the Kundu and Misra algorithm: Instead of
running the algorithm on the n-ary tree representation as in the orig-
inal, we convert the tree into a binary tree representation, where
every node has only two children: the left child is its first child
in n-ary representation (if there is one), and the right child is the
right sibling in n-ary representation (if there is one). The binary
representation of the tree from Fig. 6 is shown in Fig. 8.

We propose the ”enhanced Kundu and Misra algorithm” EKM,
which is simply KM applied to the binary representation. For the
tree from Fig. 8, the algorithm proceeds as follows: When process-
ing node c, the algorithm finds that the subtree of c (comprising
nodes c,d,e,f) is heavier than K = 5. It decides to create a parti-
tion for the heaviest child of c, which is d, because its subtree has a
weight of 4, while the subtree of f only has a weight of 1. The final
result is the optimal partitioning as produced by DHW on the same
tree.

This is plausible: The algorithm has, for each node, the choice to
create a partition either for the right siblings of the node, or for its
children one level below the current node. Hence, it sometimes can
make exactly those choices that make the DHW algorithm superior
to GHDW. The EKM algorithm is also memory-friendly, and very
easy to implement, even easier than the original KM algorithm. The
KM algorithm must consider a large number of children for each
node, and sort them according to weight, whereas EKM only needs
to select the heavier out of at most two children.

However, the algorithm is still a heuristic, and has its own prob-
lematic cases. A simple example can be seen in Fig. 9. For the tree
shown on the right in n-ary representation, the optimal partitioning
has two partitions and d,e are in the same partition as the root. On
the left side we see the same tree in binary representation, and the
partitioning created by EKM. EKM decides to create a partition for
the subtree of the right child d of b, because the subtree with d and
e is heavier than c. The result, with three partitions, is suboptimal.

99



5. OTHER ALGORITHMS AND
RELATED WORK

Looking at an extreme end of the spectrum of available algo-
rithms, BIN PACKING can be used to minimize the number of
partitionings while completely ignoring the tree structure. How-
ever, BIN PACKING is NP-hard. Further, disregarding the tree
structure may have severe negative consequences on performance,
as closely related nodes be placed in different storage units.

Schkolnick [15] partitions hierarchical structures based on ac-
cess patterns. However, the algorithm does not enforce a size limit
for clusters, and does not consider nodes of varying weight. The al-
gorithm clusters objects into base collections, which can be joined
to efficiently answer queries. While this may be applied to join-
based XML query processing, it does not solve our problem of
finding weight-limited partitions.

Lukes [13] presents a linear time algorithm for tree partitioning
that incorporates edge weights. It finds a partitioning of optimal
value, e.g. one where the total weight of all edges that do not go
across partitions are maximized. For unit edge weights, the algo-
rithm solves the same problem as the Kundu and Misra algorithm:
It finds a partition with minimal cardinality. The algorithm does
not consider sibling partitioning.

Bordawekar and Shmueli [4] investigate Lukes’ algorithm in the
context of XML, and report runtimes of several hours on modern
PCs for very small documents (∼100K). They extend Lukes’ algo-
rithm by introducing several techniques to limit memory usage and
improve runtime. This breaks the optimality, but achieves approx-
imate partitionings whose value is quite close to the optimum for
single-node intervals. They also do not consider sibling partition-
ing.

The strength of Lukes’ algorithm and its extensions lies in their
ability to optimize the partitioning for anticipated query workloads.
However, in many environments it is unclear how to anticipate
query workloads. In such cases, the default is to assume unit edge
weights, in which case the algorithm will produce a partitioning
of minimum cardinality, albeit without allowing siblings to share a
partition.

6. EVALUATION
We have presented seven algorithms for tree sibling partitioning.

We now evaluate them as partitioning algorithms for document in-
sertion into an XDS. Only DHW generates an optimal result in the
sense of our problem statement.

Our initial experiments are based on a simple main-memory im-
plementation of the algorithms, to compare their ”pure” perfor-
mance without the overhead of integration into a real XDS. We
compare the runtime of the algorithms, and the cardinalities of the
produced partitionings. As it turns out, the EKM heuristic is sur-
prisingly good, both in terms of result quality and runtime.

In a final experiment, we show the impact of sibling partitioning
on query performance. To this end, we integrate the EKM and KM
algorithms into Natix and evaluate the runtime of various queries.

6.1 Environment
The documents to partition were chosen from the University of

Washington’s XML data repository [14] and the XMark bench-
mark [16], the latter with a scaling factor of 0.1. Some of the doc-
uments, such as the XML representation of the partsupp and
orders relations, have a very simple structure, while others, such
as the Mondial data, represent nested structures with larger sub-
trees.

The documents are mapped into instances of our problem as fol-

lows. An ordered tree is constructed by parsing the documents
and converting the parser’s DOM [8] representation into a simple
main-memory representation. This simple representation does not
retain tag names of elements or node contents for text nodes and
attribute nodes, but has a weight value for each node instead. Real-
world storage engines typically align objects on secondary storage
to some ”slot” size for efficiency reasons. This is reflected in our
weight value, which does not represent the node’s size in number
of bytes, but in number of ”slots” it requires on disk. Each node is
considered to use one slot for its metadata, such as tag name and
node type. In addition, text and attributes nodes take up a number
of slots proportional to the length of the node’s content string. We
use a slot size of 8 bytes.

We have implemented the algorithms in C++. The executables
were compiled using g++ 3.3.5 with O3 optimization. Experimen-
tal results were obtained on a machine with 1 GB memory and an
Intel Pentium IV CPU at 2.4GHz.

6.2 Number of Partitions
In our first experiment, we compare the number of partitions gen-

erated by the algorithms for the various documents, using a weight
limit of K = 256 slots of 8 bytes, corresponing to a storage unit
capacity of 2KB. The results are presented in Tab. 1. We also list,
for each document, its size in the file system, number of nodes, and
the total weight of the document tree (including alignment effects
as explained in Sec. 6.1) divided by K = 256. The latter is a lower
bound for the number of partitions if connectedness of the parti-
tions is not enforced and every partition reaches maximum size.

It becomes obvious what can be gained by a tree sibling parti-
tioning: For all documents, the sibling partitioning algorithms that
were specifically designed for XML storage (DHW, GHDW, EKM,
RS) produce a much smaller number of partitions than the KM al-
gorithm, which only considers single node intervals. For the XML
documents that represent relational data (partsupp, orders),
the number of partitions is less than 10% of the KM result.

The DFS and BFS algorithms, although allowing siblings to share
a partition, perform sometimes even worse than KM. Their top-
down approach results in premature decisions about which nodes
to put into a partition. Overall, these two algorithms are not very
robust, as the quality of their result relative to the other algorithms
varies greatly for the various documents.

Another observation is that the GHDW algorithm comes very
close to the optimal result. For the data with relational structure
(partsupp.xml, orders.xml), optimality is achieved. The
difference between GHDW and the optimal result for the other doc-
uments is always below 4%.

The biggest surprise is the EKM algorithm, whose quality is also
very close to the optimal result, although the algorithm is quite sim-
ple to implement. It even beats GHDW for the uwm.xml document
by a margin of a few partitions. For the others, EKM is always the
third-best algorithm.

6.3 Partitioning Time
The higher result quality of GHDW and DHW comes at a price,

as shown in Tab. 2, which lists the algorithm runtime. In all cases,
the time needed to partition a tree is much larger for DHW and
GHDW than for the other algorithms. The document structure
has a significant impact on the runtime of GHDW and DHW. For
uwm.xml they both are much faster than for the equally large
partsupp.xml document.

The simple structure of the EKM algorithm is reflected in the re-
sults: For all documents but the XMark document, EKMs runtime
is below the precision of measurement.
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Algorithm
DHW GHDW EKM RS DFS KM BFS

Document Size Nodes Weight/K (Optimal)
SigmodRecord.xml 477KB 42054 352 382 384 402 405 1153 1294 2987
mondial-3.0.xml 1785KB 152218 1236 1358 1376 1407 1433 3268 11625 17312
partsupp.xml 2242KB 96005 1026 1083 1083 1091 1091 2282 15876 8192
uwm.xml 2338KB 189542 1446 1727 1790 1746 1817 4345 5449 11039
orders.xml 5379KB 300005 2247 2476 2476 2482 2482 5832 29876 15474
xmark0p1.xml 11670KB 549213 7532 8603 8838 8975 9631 25046 20519 42155

Table 1: Number of generated partitions

Algorithm
Document DHW GHDW EKM RS DFS KM BFS
SigmodRecord.xml 24.83 0.28 <0.01 <0.01 <0.01 0.05 <0.01
mondial-3.0.xml 184.17 6.02 <0.01 <0.01 <0.01 0.11 0.02
partsupp.xml 474.13 5.55 <0.01 <0.01 <0.01 0.16 0.02
uwm.xml 401.38 1.18 <0.01 <0.01 <0.01 0.21 0.04
orders.xml 565.01 9.73 <0.01 <0.01 <0.01 0.35 0.07
xmark0p1.xml 2041.18 6.24 0.02 0.03 <0.01 0.63 0.11

Table 2: CPU time (in seconds)

DHWs performance makes it an unlikely candidate for use as an
”online” document insertion algorithm. However, there might be
applications where the optimal partitioning is important and par-
titioning can be done ”offline” as part of physical reorganization.
GHDW is faster (around 500KB/sec), and may be useful in an XDS
if document insertion is rare, and a large number of queries can
benefit from the smaller number of partitions, compensating for
the partitioning effort.

In terms of quality and speed, EKM is the much better choice. It
is faster by five orders of magnitude than DHW, with a very good
quality of the result.

6.4 Query Performance
Based on the results for the pure main-memory implementa-

tion above, we have chosen to incorporate implementations of both
EKM and KM into Natix [6].

Our claim is that on average, fewer storage units result in more
navigation between nodes of the same storage unit, leading to a bet-
ter query performance. The goal of this experiment is to verify this
claim by comparing query evaluation times on storage layouts pro-
duced by the different algorithms. We want to focus on the perfor-
mance of pure navigation operations when accessing the data. For
this reason we have chosen a set of simple queries from the XPath-
Mark benchmark (Q1–Q7 from [7]), which are evaluated against
an XMark document of scaling factor 0.1.

We loaded the document into the XDS with both EKM and KM,
using a size limit K = 256 that corresponds to storage units of
2KB. We executed the queries several times to increase precision,
but do not include the time for the very first execution of each query
to preload the buffer. We also use a buffer pool that is larger than
the document, so that there is no page fault during query evaluation.
We also measured the total amount of disk space used in Natix for
the document for the two algorithms. This deviates somewhat from
the theoretical results, as additional metadata is needed to maintain
the on-disk structures, and fragmentation effects occur.

The results are shown in Tab. 3.
Remarkably, KM uses slightly less total space, because the smaller

partitions (records in the Natix storage format) can be better placed

by the record manager, which stores several records on a single disk
page. For the larger partitions of the EKM algorithms, the record
manager chooses to allocate a new page slightly more often, due to
page fragmentation.

Query evaluation on the sibling partitioning produced by EKM
outperforms evaluation on the KM partitioning for all queries. In
some cases, the performance is improved by more than a factor
of 2. This confirms our claim that sibling partitioning signifiantly
improves the query performance of an XDS.

7. CONCLUSION
We investigated algorithms to efficiently solve tree partitioning

problems for document insertion in XML Data Stores, where variable-
size document nodes have to be assigned to storage units of lim-
ited capacity, such as records on disk pages. Motivated by cur-
rent tree storage engine designs [2, 6], and previous work [10], we
have based our work on the assumption that an important aspect
of such tree partitioning is whether it allows siblings to be placed
in the same partition even if their parent node belongs to a differ-
ent partition. Further, navigation between nodes of the same par-
tition is much cheaper than navigation between nodes of different
partitions. Hence, our goal was to minimize the total number of
partitions to optimize query performance.

We formalized this tree sibling partitioning problem, and stud-
ied its structure. We presented a dynamic programming algorithm
called DHW that is capable of finding a minimal tree sibling parti-
tioning in O(nK3) time in the worst case, where n is the number
of nodes.

While this is an interesting result in its own right, and may be
of use in other areas than XDSs, we also discussed concrete im-
plementation issues for XDSs. The large resource requirements of
DHW prompted us to investigate approximation algorithms that are
better suited for integration in an XDS. In addition to adapting sev-
eral existing algorithms to tree sibling partitioning, we introduced
two novel heuristics, GHDW and EKM, based on our study of the
optimal algorithm.

We implemented the algorithms and performed some experiments.
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Query KM EKM
Total Occupied Disk Space ca. 8192KB ca. 8232KB
/site/regions/*/item 0.065 0.036
/site/closed auctions/closed auction/annotation/
description/parlist/listitem/text/keyword 0.033 0.023

//keyword 0.770 0.595
/descendant-or-self::listitem/descendant-or-self::keyword 0.344 0.262
/site/regions/*/item[parent::namerica or parent::samerica] 0.150 0.074
//keyword/ancestor::listitem 0.870 0.650
//keyword/ancestor-or-self::mail 0.854 0.607

Table 3: Query processing time (in seconds)

We demonstrated that sibling partitioning can reduce the total num-
ber of partitions by more than 90% compared to the optimal solu-
tion for partitions that are connected by parent-child edges only.
Further, simple heuristics such as DFS or BFS provide inaccept-
able result quality. However, the algorithm for the optimal solution,
DHW, is quite slow, and may only be applicable if document inser-
tion is rare or the optimal partitioning is of critical importance. To
a lesser extent, this is also true of the faster GHDW approximation
algorithm. The EKM algorithm, a novel approximation algorithm
based on the Kundu and Misra algorithm for tree partitioning, pro-
vides by far the best trade-off between result quality and runtime.
EKM is now the default partitioning algorithm for the Natix sys-
tem.

To validate our claim of better query performance of sibling par-
titioning, we ran some experiments using the Natix query proces-
sor. In some cases, queries can be executed twice as fast when
EKM is used for partitioning compared to simple partitioning that
does not consider sibling edges.

Acknowledgements We thank the anonymous referees for their
suggestions, Simone Seeger for her help with preparing the manuscript,
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