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ABSTRACT
As data volumes continue to grow, modern database systems in-
creasingly rely on data skipping mechanisms to improve perfor-
mance by avoiding access to irrelevant data. Recent work [39]
proposed a fine-grained partitioning scheme that was shown to im-
prove the opportunities for data skipping in row-oriented systems.
Modern analytics and big data systems increasingly adopt colum-
nar storage schemes, and in such systems, a row-based approach
misses important opportunities for further improving data skipping.
The flexibility of column-oriented organizations, however, comes
with the additional cost of tuple reconstruction. In this paper, we
develop Generalized Skipping-Oriented Partitioning (GSOP), a novel
hybrid data skipping framework that takes into account these row-
based and column-based tradeoffs. In contrast to previous column-
oriented physical design work, GSOP considers the tradeoffs be-
tween horizontal data skipping and vertical partitioning jointly. Our
experiments using two public benchmarks and a real-world work-
load show that GSOP can significantly reduce the amount of data
scanned and improve end-to-end query response times over the
state-of-the- art techniques.

1. INTRODUCTION
Data skipping has become an essential mechanism for improv-

ing query performance in modern analytics databases (e.g., [1,8,16,
26,40]) and the Hadoop ecosystem (e.g., [2,43]). In these systems,
data are organized into blocks, each of which typically contains
tens of thousands of tuples. At data loading time, these systems
compute statistics for each block (e.g., such as min and max val-
ues of each column) and store the statistics as metadata. Incoming
queries can evaluate their filter predicates against such metadata
and decide which blocks can be safely skipped (i.e., do not need
to be read or accessed). For example, suppose a query contains a
predicate age=20; if the metadata of a block says its min value on
column age is 25, then this block can be skipped by this query.
Reading less data not only saves I/O, but also reduces CPU work,
such as decompression and deserialization. Therefore, data skip-
ping improves query performance even when data are memory- or
SSD-resident.
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Figure 1: Example of partitioning schemes.
The opportunity for data skipping highly depends on how the

tuples are organized into blocks. While traditional horizontal par-
titioning techniques, such as range partitioning, can be used for
this purpose, in recent work [39], we proposed a skipping-oriented
partitioning (SOP) framework, which can significantly improve the
effectiveness of data skipping over traditional techniques. The SOP
framework first analyzes the workload and extracts representative
filter predicates as features. Based on these features, SOP charac-
terizes each tuple by a feature vector and partitions the data tuples
by clustering the feature vectors.

While SOP has been shown to outperform previous techniques,
its effectiveness depends on workload and data characteristics. Mod-
ern analytics applications can involve wide tables and complex work-
loads with diverse filter predicates and column-access patterns. For
this kind of workloads, SOP suffers from a high degree of fea-
ture conflict. Consider the table in Figure 1(a). Suppose SOP
extracts two features from the workload: F1:grade=‘A’ and
F2:year>2011∧course=‘DB’. In this case, the best partition-
ing scheme for feature F1 is t1t2|t3t4, since t1 and t2 satisfy F1

while t3 and t4 do not. For the same reason, the best partitioning
scheme for feature F2 is t1t4|t2t3. Therefore, the conflict between
F1 and F2 lies in that their best partitioning schemes are different.
Since SOP generates a single horizontal partitioning scheme that
incorporates all features (e.g., Figure 1(b)), when there are many
highly conflicting features, it may be rendered ineffective.

The key reason why SOP is sensitive to feature conflict is that it
produces only monolithic horizontal partitioning schemes. That is,
SOP views every tuple as an atomic unit. While this perspective is
natural for row-major data layouts, it becomes an unnecessary con-
straint for columnar layouts. Analytics systems increasingly adopt
columnar layouts [20] where each column can be stored separately.
Inspired by recent work in column-oriented physical design, such
as database cracking [23,38], we propose to remove the “atomic-
tuple” constraint and allow different columns to have different hor-
izontal partitioning schemes. By doing so, we can mitigate feature
conflict and boost the performance of data skipping. Consider the
example in Figure 1(c), where we partition column grade based
on F1 and independently partition the columns year and course
based on F2. This hybrid partitioning scheme successfully resolves
the conflict between F1 and F2, as the relevant columns for each
can be partitioned differently. Unfortunately, this columnar ap-
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proach incurs overhead for tuple-reconstruction [24], i.e., the pro-
cess of assembling column values into tuples during query process-
ing. Since column values are no longer aligned, to query such data,
we may need to maintain tuple ids and join the column values using
these tuple ids. Thus, although combining horizontal and vertical
partitioning has large potential benefits, it is unclear how to bal-
ance the benefits that a particular vertical partitioning scheme has
on skipping against its tuple-reconstruction overheads.

To this end, we propose a generalized SOP (GSOP) framework,
with a goal of optimizing the overall query performance by auto-
matically balancing skipping effectiveness and tuple-reconstruction
overhead. GSOP generalizes SOP by removing the atomic-tuple
constraint and allowing both horizontal and vertical partitionings.
For a given data and workload setting, GSOP aims to pick a hybrid
partitioning scheme that maximizes the overall query performance.

Given the goal of GSOP, we can think of several naı̈ve approaches.
The first approach is to apply a state-of-the-art vertical partitioning
technique (e.g., [10,14,27,46]) to divide the columns into groups
and to then use SOP to horizontally partition each column group.
Such an approach, however, is oblivious to the potential impact of
vertical partitioning on skipping horizontal blocks. Another naı̈ve
approach is to first horizontally partition the data into blocks using
SOP and then vertically partition each block using existing tech-
niques. In this approach, although the columns are divided into
groups, they still have the same horizontal partitioning scheme,
since this approach runs SOP (using all features) before applying
the vertical partitioning. Thus, this apporach does not really help
mitigate feature conflict. Both naive approaches fail to incorporate
the interrelation between horizontal and vertical partitionings and
how they jointly affect data skipping.

In the design of GSOP, we propose a skipping-aware column
grouping technique. We develop an objective function to quan-
tify the trade-off of skipping effectiveness vs. tuple-reconstruction
overhead. One major technical challenge involved in using such an
objective function is to estimate the effectiveness of data skipping,
i.e., how much data can be skipped by queries. As described in Sec-
tion 4.3, directly assessing skipping effectiveness is prohibitively
expensive, so we propose an efficient yet accurate estimation ap-
proach. Finally, we devise an algorithm to search for the column
grouping scheme that optimizes the objective function.

To mitigate feature conflict, GSOP separates the set of global
features extracted in SOP into sets of local features, one set for each
column group. We refer to this problem as local feature selection.
To solve this problem, we develop principled ways of: (1) identi-
fying which features should be assigned to each column group, (2)
weighting features w.r.t. a column group, as a feature may have
different weights for different column groups, and (3) determining
the appropriate number of features to use for each column group, as
the number of features needed for different groups can vary greatly.

We prototyped GSOP using Apache Spark [29]. Note that GSOP
is an offline process that is executed once at data loading time. In a
data warehouse environment, for example, when a new date parti-
tion arrives, GSOP reorganizes this raw partition into an optimized
layout and appends it to the table. This process does not affect
previously existing data. In the prototype, we store the GSOP-
partitioned data using Apache Parquet [2], a columnar storage for-
mat for the Hadoop ecosystem. We then queried the data with
Spark SQL and measured the performance. Experiments on two
public benchmarks and a real-world workload show that GSOP
can significantly improve the end-to-end query response times over
SOP. Specifically, in TPC-H, GSOP reduces the data read by 6.5×
and improve the query response time by 3.3× over SOP.

To summarize, we make the following contributions:

• We propose a GSOP framework for columnar layouts, which
generalizes SOP by removing the atomic-tuple constraint.

• We develop an objective function to quantify the skipping vs.
reconstruction trade-off of GSOP.

• We devise a skipping-aware column grouping algorithm and
propose techniques to select local features.

• We prototype GSOP using Parquet and Spark and perform an
experimental evaluation using two public benchmarks and a
real-world workload. Our results show that GSOP can signifi-
cantly outperform SOP in the presence of feature conflict.

2. BACKGROUND

2.1 SOP vs. Range Partitioning
How data is partitioned into blocks can significantly affect the

chances of data skipping. A common approach is to perform a
range partitioning on the frequently filtered columns. As pointed
out in [39], however, range partitioning is not an ideal solution for
generating blocks at a fine-granularity. To use range partitioning
for data skipping, we need a principled way of selecting partition-
ing columns and capturing inter-column data correlation and filter
correlation. SOP extracts features (i.e., representative filters which
may span multiple columns) from a query log and constructs a fine-
grained partitioning map by solving a clustering problem.

SOP techniques can co-exist with traditional partitioning tech-
niques such as range partitioning, as they operate at different gran-
ularities. In a data warehouse environment, for example, data are
often horizontally partitioned by date ranges. Traditional horizontal
partitioning facilitates common operations such as batch insertion
and deletion and enables partition pruning, but is relatively coarse-
grained. While partition pruning helps queries skip some partitions
based on their date predicates, SOP further segments each horizon-
tal partition (say, of 10 million tuples) into fine-grained blocks (say,
of 10 thousand tuples) and helps queries skip blocks inside each un-
pruned partition. Note that SOP only works within each horizontal
partition and does not move data across partition boundaries. Thus,
adding a new date partition or changing an existing partition of the
table does not affect the SOP schemes of other partitions.

2.2 The SOP Framework
The SOP framework is based on two interesting properties ob-

served from real-world analytical workloads [39]:
(1) Filter commonality, which says that a small set of filters are

commonly used by many queries. In other words, the filter usage
is highly skewed. In a real-world workload analyzed in [39], 10%
of the filters are used by 90% of the queries. This implies that if
we design a layout based on this small number of filters, we can
benefit most of the queries in the workload.

(2) Filter stability, which says that only a tiny fraction of query
filters are newly introduced over time, i.e., most of the filters have
occurred in the past. This property implies that designing a data
layout based on past query filters can also benefit future queries.

Given these two workload observations, we next go through the
steps of SOP using Figure 2 as an example.
1). Workload Analysis. This step extracts as features a set of rep-
resentative filter predicates in the workload by using frequent item-
set mining [13]. A feature can be a single filter predicate or multi-
ple conjunctive predicates, which possibly span multiple columns.
A predicate can be an equality or range condition, a string match-
ing operation or a general boolean user-defined function (UDF).
Note that we do not consider as features the filters on date and time
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Figure 2: Using SOP to partition data into 2 blocks.

columns, as their filter values tend to change over time. In Figure 2,
we extract three features, each of which is associated with a weight
indicating the importance of the feature. Note that SOP takes into
account subsumption relations when extracting features. For ex-
ample, whether a filter B<0 is chosen as a feature does not depend
only on how many times B<0 itself occurs in the workload but also
depends on how many queries it subsumes. A feature subsumes a
query when the feature is a more relaxed condition than the query
predicates. Thus, the presence of a filter like B<-1 in the workload
can increase the chance of B<0 being selected, as B<0 subsumes
B<-1. As explained later in this section, we consider subsumption
relations for skipping data during query processing.
2). Augmentation. Given the features, at load time, SOP then
scans the data. For each tuple, it batch-evaluates these features and
stores the evaluation results as an augmented feature vector. Given
m features, a feature vector is a m-dimensional bit vector, the i-th
bit of which indicates whether this tuple satisfies the i-th feature or
not. For example, in Figure 2, t4 is augmented with a feature vector
(010), which indicates that t4 satisfies the second feature B<0 but
does not satisfy the other two.
3). Partitioning. In this step, SOP first groups the (vector, tuple)-
pairs into (vector, count)-pairs. This is an important optimization
for accelerating the partitioning algorithm. Then, a clustering al-
gorithm is performed on the (vector, count)-pairs, which generates
a partition map. This map guides individual tuples to their des-
tination blocks. After the tuples are organized into blocks, SOP
annotates each block with a union vector, which is a bitwise OR of
all the feature vectors in the block. In Figure 2, the feature vectors
of t1 and t3 are 111 and 101, respectively, so the union vector for
their block is 111 = 111 OR 101. As discussed below, union vec-
tors carry important information for skipping. Once we obtain the
union vectors, the individual feature vectors can be discarded.

Given the data partitioned by SOP, when a query arrives, we first
check which features subsume this query. We then decide which
blocks can be skipped based on their union vectors. Recall that a
union vector is a bitwise OR of all the feature vectors of this block.
Thus, when the i-th bit of the union vector is 0, we can know that no
tuple in this block satisfies the i-th feature. For example, consider
the following query:
SELECT A, D FROM T WHERE A=’m’ and D= 2

In Figure 2, only feature A=’m’ subsumes this query, as A=’m’
is a more relaxed condition than the query predicate A=’m’ and
D=2. Since A=’m’ is the first feature, we look at the first bit of
these two union vectors. As the union vector of block 2 (i.e., 010)
has a 0 on the first bit, we can skip the block 2.

Note that SOP is typically executed once at data loading time.
For example, when a new date partition arrives, SOP reorganizes
its layout before it is appended to the table.

3. GENERALIZING SOP
In this section, we discuss how to generalize SOP by exploiting

the properties of columnar data layouts.
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Figure 3: The spectrum of partitioning layouts.

3.1 A Simple Extension for Columnar Layouts
Modern analytics databases [8,9,40] and the Hadoop ecosystem [2,

43] adopt columnar layouts. In a columnar layout, each column can
be stored separately. To process a query, these systems read all the
requested columns and assemble them back into tuples through a
process commonly called tuple reconstruction.

A simple extension to SOP for columnar layouts is to partition
each column individually. By allowing each column to have its own
partitioning scheme, we can mitigate feature conflict and thus en-
joy better skipping. While this simple extension reduces the read-
ing cost through better data skipping, it introduces overhead for
tuple reconstruction. Since the columns are in different orders now,
each column value has to be associated with an original tuple-id.
A query then needs to read the tuple ids in addition to the actual
data, and join the columns back using these tuple ids, as opposed to
simply stitching them together when they are aligned. For example,
one way to join these columns is to first sort them by their tuple ids
and then stitch them together. Therefore, for this extension, it is
unclear whether the benefit of skipping can outweigh the overhead
introduced for tuple reconstruction.

3.2 Spectrum of Partitioning Layouts
The existing SOP framework in [39] and the simple extension

in Section 3.1 represent two extremes of partitioning layouts in a
column-oriented storage. Let us now consider the entire spectrum
as depicted in Figure 3. The left end of the spectrum represents the
data partitioned by the existing SOP framework. When all columns
follow the same partitioning scheme, the skipping effectiveness is
limited by feature conflict, but there is no overhead for tuple recon-
struction. The other end of the spectrum is the data partitioned by
the extension discussed in Section 3.1. When each column can have
its own partitioning scheme, the skipping effectiveness is the best
due to the least feature conflict, but the overhead for tuple recon-
struction is the greatest. Clearly, which one of these two layouts is
better depends on the workload and data characteristics. However,
what is interesting is the middle ground of the spectrum, where
columns can form groups. Each column group can have its own
partitioning scheme, which all of its column members must follow.
The potential of such a middle ground is to provide a good balance
between skipping effectiveness and tuple reconstruction overhead
such that the overall query performance can be optimized. We il-
lustrate this point using an example.

EXAMPLE 1. Figure 3 shows three different layouts of the table
in Figure 2. These three layouts are all columnar but represent
different points on the partitioning layout spectrum. Suppose we
run the following SQL query on this table:

SELECT B, D FROM T WHERE B<0 and D=2

Let us do a back-of-the-envelope calculation of the cost of query
processing for each of these three layouts. To simplify Figure 3, we
omit showing the block metadata, such as union vectors.

Left end. The table is partitioned into two blocks, each of which
has all four columns. For this query we cannot skip any block be-
cause both blocks have some tuple that satisfies the query predi-
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Figure 4: The GSOP framework.

cates (i.e., t1 in block 1 and t4 in block 2). Thus, we have to read
column B and D in their entirety, which are 8 data cells in total.

Right end. Each column is partitioned into two blocks. The query
only looks at column B and D. We can skip block 2 of column B,
because no value in it satisfies B < 0. Similarly, for column D, we
can skip its block 1, as none of its values satisfies D = 2. Thus, we
need to read 4 data cells in total. For tuple reconstruction, however,
we have to additionally load 1 tuple id for each data value read. In
total, the cost of this query includes reading 4 data values, reading
4 tuple ids, and joining column B and D.

Middle ground. The columns are first divided into two groups:
(A,C) and (B,D). Each column group is then partitioned into
two blocks. The query only needs to look at group (B,D), in which
we can skip block 2 as it has no value that satisfies the query pred-
icates. Thus we only have to read block 1 of column group (B,D),
which has 4 data cells. Since columns B and D are in the same
group and are thus aligned, there is no overhead for tuple recon-
struction. Hence, the total cost is to read only 4 data cells.

The above example shows that, for this particular query, the mid-
dle ground is a clear winner, as it enjoys both the skipping effec-
tiveness of the right end and the zero assembly overhead of the left
end. Obviously, for a given workload and data, the optimal layout
could be any point on this spectrum. The SOP framework is lim-
ited to the left end. We next present a generalized SOP (GSOP)
framework that incorporates the full spectrum.

3.3 The GSOP Framework
GSOP takes a workload and a set of input data and outputs data

in an optimized layout. In practice, when a new date partition is be-
ing inserted into the table, we apply GSOP to reorganize its layout
in order to benefit future queries. Like SOP, GSOP works within
each horizontal partition, so loading a new partition does not af-
fect the existing partitions of the table. Thus, GSOP is an offline
process at load time and usually does not to be re-run unless the
workload patterns change dramatically. As illustrated in Figure 4,
GSOP consists of the following steps:
1). Workload Analysis. This is the same as Step 1 in Section 2.2.
We analyze a given workload (e.g., a query log) and extract rep-
resentative filters as features. Here we call these features global
features. In addition, for each global feature, we maintain a list of
queries from the workload that this feature can subsume.
2). Augmentation. This is the same as Step 2 in Section 2.2. We
scan the input data once and batch evaluate the global features on
each tuple. Each tuple is augmented with a global feature vector.
3). Column Grouping. Before horizontally partitioning the data,
we first divide the columns into column groups based on an objec-
tive function that incorporates the trade-off between skipping effec-
tiveness and tuple-reconstruction overhead (we discuss the details

of defining such an objective function, developing an efficient way
to evaluate it, and devising algorithms to search for column group-
ing schemes in Section 4). This step outputs a column grouping
scheme.
4). Local Feature Selection. For each column group, we select
a subset of global features as local features. These local features
will be used to guide the partitioning of each column group. This
is a crucial step for enhancing skipping effectiveness. The local
features are more specific to each column group and hence may
involve much less conflict than the global features. Note that the
column grouping process (Step 3) needs to call this step as a sub-
routine repeatedly. Thus, we need to select local features very effi-
ciently. We will cover the details of this step in Section 5.
5). Partitioning. We next partition each column group individu-
ally. To partition each column group, we need local feature vectors
that correspond to the local features. Since a set of local features is
a subset of global features (computed in Step 2), for each column
group, we can project the global feature vectors to keep only the
bits that correspond to the local features. For each column group,
we then invoke Step 3 in Section 2.2 to partition the data based on
their local feature vectors.

Comparing with the SOP framework, we can see that GSOP adds
little complexity. The main technical challenges are in the two new
steps: column grouping and local feature selection. We explain
how column grouping (Section 4) and local feature selection (Sec-
tion 5) work in detail.

Handling Normalized Schemas. The GSOP framework is mo-
tivated by modern analytics scenarios, where data is often stored
as single denormalized tables [36,44]. Some traditional relational
applications, however, manage data in normalized schemas, where
queries involve joining normalized tables. In practice, we can ap-
ply GSOP on normalized schemas through a simple partitial de-
normalization step. First, through workload analysis, we identify
the columns that have occurred in a join query in the workload. At
data loading time, we pre-join these columns as a partial denor-
malization of the tables and leave in the original normalized tables
the columns that never appeared in a join query in the workload.
We then apply GSOP on this partially denormalized table. Most of
the incoming queries can then be redirected, through proper query
rewriting, to this partially denormalized table and enjoy the skip-
ping benefits provided by GSOP. Compared to a full denormaliza-
tion, this paritial denormalization based on workload information
incurs less joining cost and leads to smaller resulting data sizes.
In Section 7, we show that applying GSOP on normalized TPC-
H tables via partitial denormalization can significantly reduce the
amount of data scanned and improve the query response time.

4. COLUMN GROUPING

4.1 Motivation
Column grouping is an important database technique and has

been extensively studied (e.g., [14,25,30,35,37,46]). While many
column grouping approaches exist, the general principle is to put
into the same group the columns that are frequently queried to-
gether in the workload [25] and adopt a row-major layout within
each column group. In contrast, GSOP still uses columnar layout
inside column groups, and more importantly, the grouping deci-
sion in GSOP needs to incorporate the opportunities of skipping
horizontal blocks within each column group. We illustrate these
considerations using Example 2.

EXAMPLE 2. Consider the following workload for the table in
Figure 2:

Q1: SELECT A, C FROM T WHERE A = ’m’
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Q2: SELECT B, D FROM T WHERE B < 0
Q3: SELECT B, C FROM T WHERE C like ’y%’

By considering only the column co-access patterns, the column
pairs AC, BD and BC would have equal weights of being grouped
together, as each of them occurs once in the workload. In GSOP,
however, we should consider how these groups may potentially af-
fect data skipping. After evaluating these filters on the data, we
can see that filters A=’m’ and C like ’y%’ are perfectly cor-
related, as t1 and t3 satisfy both A=’m’ and C like ’y%’while
t2 and t4 do not satisfy either. Thus, GSOP may prefer the column
group AC, as this type of filter correlation plays an important role
in skipping horizontal blocks. Existing column grouping techniques
do not take into account such information.

4.2 Objective Function
Let C be the set of columns in the table. We denote by G =
{G1, G2, . . . , Gm} a column grouping scheme of the table. Thus,
G is a partitioning over the column set C, i.e.,

⋃
Gi∈G Gi = C

and Gi ∩ Gj = ∅ for any i 6= j. Given a query q, let Cq ⊆ C
be the set of columns that query q needs to access. We denote
by Gq ⊆ G the column groups that query q needs to access, i.e.,
Gq = {Gi ∈ G | Gi ∩ Cq 6= ∅}.
Skipping Effectiveness. We call each column value of a tuple
a data cell. We quantify the skipping effectiveness of a column
grouping scheme as the number of data cells we have to scan, i.e.,
cannot be skipped. For ease of presentation, we assume scanning
a data cell incurs a uniform cost 1, but our model can be easily ex-
tended to a more general case. For every column group Gi ∈ Gq ,
query q needs to scan |Gi∩Cq| columns. Let rqi denote the number
of rows that query q needs to scan in group Gi. Thus, the scanning
cost that query q spends on Gi is |Gi ∩Cq| · rqi . The overall scan-
ning cost for query q is:∑

Gi∈Gq

|Gi ∩ Cq| · rqi . (1)

Equation 1 computes the skipping effectiveness of the column
grouping scheme G w.r.t. query q. Clearly, the value rqi plays an
essential role in Equation 1. We will discuss how to obtain the
value of rqi in Section 4.3.
Tuple Reconstruction Overhead. Since different column groups
can be partitioned in different ways, we need a way to reconstruct
the values from multiple column groups back into tuples. In every
column group, we store a tuple-id for each row to indicate which
tuple that row originally belongs to. When a query reads data from
multiple column groups, i.e., |Gq| > 1, it also has to read the tuple-
ids from each column group. The query does not have to read the
tuple-ids when it only uses data from a single column group. After
reading all the data columns, we need to join these column values
back together as tuples. While there are many ways of implement-
ing the join, we simply assume a sort-merge join in our cost estima-
tion. The model can be easily modified for other join implementa-
tions. In a sort-merge join, we have to sort each column group
by their tuple ids and then stitch all column groups back together.
As we can see, compared with the case where all columns have a
monolithic partitioning scheme, the tuple-reconstruction overhead
here mainly comes from two sources: 1) reading tuple-ids and 2)
sorting column values by tuple-ids. When a query only reads data
from a single column group, this overhead is zero. Let us now
consider the case where a query needs to access multiple column
groups. Since we do not need to read the tuple ids for the values that
can be skipped, the cost for query q to read tuple ids in Gi is simply
rqi , no matter how many columns q reads in Gi. Let sort(x) denote

the cost of sorting a list of x values. For column group Gi, we need
to sort rqi values. Therefore, the overhead to tuple-reconstruction
for query q on column grouping scheme G is:

overhead(q,G) =

{∑
Gi∈Gq (r

q
i + sort(rqi )) if |Gq| > 1

0 otherwise
(2)

Objective Function. Based on Equations 1 and Equation 2, the
cost of processing query q w.r.t a column grouping scheme G is:

COST(q,G) =
∑

Gi∈Gq

|Gi ∩ Cq | · rqi + overhead(q,G) (3)

The cost of processing the entire workload W is the sum of all
the queries in the workload. Thus, we have:

COST(W,G) =
∑
q∈W

COST(q,G) (4)

We are aware that modern column-store systems employ ad-
vanced compression techniques and compression-aware execution
strategies [19]. For simplicity and generality, however, our cost
model does not factor in these advanced techniques. As shown in
Section 7, our simple cost model works well when the data is stored
in Parquet, which adopts standard compression techniques such
as RLE encoding and Snappy. We consider extending the model
to incorporate data compression and compression-aware execution
techniques as interesting future work.

4.3 Efficient Cost Estimation
As shown in Equation 3, in order to evaluate the objective func-

tion, we need to obtain the values of Gq , Cq , and rqi . While Gq and
Cq can be easily derived without looking at the data, it is challeng-
ing to obtain the value of rqi , i.e., the number of rows that query q
needs to scan (after skipping) in Gi. In the following, we first show
how to compute the exact value of rqi . Since the exact-computation
approach is prohibitively expensive, we then propose an efficient
estimation approach. Our experimental results in Section 7 show
that the estimation approach takes 50× less time to execute than the
computation approach while providing high-quality estimations.

Computation Approach. To compute the exact value of rqi , we
can actually perform the partitioning on column group Gi and see
how many tuples query q reads after skipping. As discussed in
Step 5 of the GSOP framework (Section 3.3), in order to partition
a column group Gi, we need to perform the following steps: a) ex-
tract local features w.r.t. Gi, b) project the global feature vectors
onto local feature vectors, and c) apply partitioning to Gi based
on the local feature vectors. After these steps, column group Gi

is horizontally partitioned into blocks, each of which is associated
with union vectors as metadata. We then can obtain rqi by simply
running query q through the metadata of these blocks and see how
much data the query needs to scan. As we can see, this way of com-
puting rqi is time-consuming. The cost bottleneck is step c), as it in-
volves solving a clustering problem [39]. In the process of search-
ing for a good column-grouping scheme (details in Section 4.4), we
need to obtain rqi repeatedly for a large number of column-group
combinations. Therefore, computing the exact value of rqi as a sub-
routine for the column-grouping search is prohibitively expensive.
We next discuss how we can efficiently estimate rqi .

Estimation Approach. Recall that rqi is the number of rows
query q scans in Gi after data skipping. One simple approach is to
use the selectivity of q as an estimation of rqi . This way we could
leverage the existing techniques of selectivity estimation. However,
the value of rqi and the selectivity of q on Gi can differ dramatically,
since data skipping is block-based. For example, suppose a query
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has a highly selective predicate, i.e., only a small number of tuples
satisfy the predicate, rqi can still be quite large if this small number
of tuples are distributed over many different blocks. For this reason,
we need an estimation approach that takes into account the block-
based skipping mechanism.

As mentioned in Section 4.3, partitioning the local feature vec-
tors (step c) is the cost bottleneck of the computation approach.
Thus, in our estimation approach, we only perform step a) and step
b) of the compuation approach. After step b), each row in col-
umn group Gi has a corresponding local feature vector, which is
a boolean vector and stores the evaluation results of all local fea-
tures on this row. Instead of actually partitioning the data as step c)
of the computation approach, we exploit a simple property of this
partitioning process. That is, the partitioning process would always
prefer to put the rows having the exactly same local feature vectors
into the same block. Therefore, in step c) of our estimation ap-
proach, we simply group the rows that have the same local feature
vector. Let V be the set of distinct vectors after grouping in Gi.
For each v ∈ V , we denote by count(v) the number of rows whose
local feature vector is v. Let b be the size of each block. We can
calculate that the minimum number of blocks needed to accommo-
date the rows whose local feature vector is v is

⌊ count(v)
b

⌋
. These

blocks all have v as their union vector. As discussed in Section 2.2,
we can check whether a query can skip a block by looking at its
union vector. Specifically, for an incoming query q, we first check
which features can subsume q. Then given a union vector v, we
only need to look at the bits that correspond to thesse subsuming
features; if there is a 0 in these bits, we can skip this block. Using
this approach, given query q, we can divide V into two sets: V q

skip

and V q
read, where V q

skip consists of the vectors that q can skip and
V q
read consists of the vectors that q cannot skip. Thus, the mini-

mum number of blocks that q can skip is:
∑

v∈V
q
skip

⌊
count(v)

b

⌋
Let n be the total number of rows. Since each block has b rows, we
can deduce that the maximum number of rows that query q needs
to scan is: n−b ·

∑
v∈V

q
skip

⌊
count(v)

b

⌋
. We use this formula as the

estimate of rqi . Notice that this formula provides an upper-bound
of rqi . Intuitively, since our goal is to minimize the objective func-
tion, using an upper-bound estimation can guide us to a solution
with the least upper-bound of the objective value, which hopefully
would not deviate too much from the solution using the exact ob-
jective value. As shown in Section 7, using our estimation approach
can signicantly speed up the column grouping process without sac-
rificing the quality of results.

4.4 Search Strategy
For a given table, the number of possible column grouping schemes

is exponential in the number of columns. In practice, we cannot af-
ford a brute-force approach that enumerates all the possible group-
ing schemes. Therefore, we adopt a bottom-up heuristic search
strategy, which has been shown to be very effective in existing col-
umn grouping techniques [25]. Initially, each column itself forms
a group. We then iteratively choose two groups to merge until all
columns are in one group. At each iteration, we enumerate all pairs
of column groups and evaluate how their merge would affect the
objective function. We then pick the merge that leads to the mini-
mum value of the objective function. Starting from c columns, we
need c iterations to merge all columns into one group. After these c
iterations, we pick the iteration where the objective function has the
minimum value and return the grouping scheme from that iteration.

As we can see, the search process frequently invokes the objec-
tive function evaluation as a sub-routine. Specifically, since we
enumerate all pairs of column groups at each iteration, we need

to evaluate the objective function O(c2) times for a table with c
columns. Thus, computing the exact value of this function every
time is prohibitively expensive. When trying to merge every pair
of groups, we use the estimation approach discussed in Section 4.3
to obtain an estimate of the objective function. After enumerating
all pairs in a iteration, we select the merge that leads to the mini-
mum value on the estimated objective function. Before starting the
next iteration, however, we perform the computation approach in
Section 4.3 to obtain the exact value of the objective function for
this merge. This is to prevent the errors introduced by the estima-
tion approach from being propogated to future iterations. Thus, for
each iteration, we invoke the estimation approach O(c2) times and
the computation approach only once. This is much faster than per-
forming the computation approach O(c2) times for each iteration.
We also observe that the obtained values of rqi can be reused for
later iterations. As an optimization, we cache all the estimated and
exact values of rqi we have obtained and reuse them when needed.

5. LOCAL FEATURE SELECTION
Identifying Candidate Local Features. We have obtained a

set of global features generated from workload analysis. Suppose
we have three global features as shown in Figure 2 and a column
grouping scheme where each column itself forms a group, i.e., G1

= {A}, G2 = {B}, G3 = {C}, G4 = {D}. A simple approach
is to choose, for each column group, the features that involve the
columns from this column group. This way, we will choose feature
A=’m’ for G1, as this feature involves column A. Similarly, we
choose B<0 for G2, and C like ’y%’ for G3. We choose no
feature for G4, since no feature involves column D. Although all
the features chosen by this approach are relevant, some important
features may be missing. Consider the workload in Example 2 in
Section 4.1. When a query like Q3 comes, it can only skip data
in column C from group G3 but has to read the entire column D
in G4, as we did not choose feature C like ’y%’ for G4. This
example reveals that, for identifying candidate features, we also
have to look at the co-occurrence of columns and features in the
queries. For example, if we observe that in the workload the queries
with filter predicate C like ’y%’ frequently request column D in
their SELECT statement, we may want to include C like ’y%’

as local features for G4.
Based on this idea, we can formally define the candidate lo-

cal features as follows. Given a workload W and a column G,
let WG ⊆ W be the set of queries that need to access columns
in column group G. Let F be the set of global features gener-
ated through workload analysis. Given a query q ∈ W , we de-
note by F q the features that subsume query q. Hence, the candi-
date set of local features for a column group G can be defined as:
CandSet(G) =

⋃
q∈WG F q .

Feature Weighting and Selection. Given a set of candidate fea-
tures, in order to choose the most important features, we first need
to compute the importance (i.e., weight) of each candidate feature.
In SOP, feature selection was modeled as a frequent-itemset min-
ing problem, where the weight of a global feature is its occurrence
frequency in the workload. For local feature selection, however, we
cannot simply use this weight because the weight of a local feature
should indicate its importance on a column group instead of on all
columns. For this reason, we quantify the weight of a feature f
w.r.t a column group G as the number of queries that are not only
subsumed by this feature but also need to access the column group.
Hence, we have: weight(G, f) =

∣∣{q | f ∈ F q and q ∈ WG}
∣∣.

Using this formula, we can create a ranked list of local features for
each column group. Note that only the features in the candidate set
are considered.
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We now have to determine how many features to use for par-
titioning each column group. Using too few features may render
the partitioning ineffective, while using too many features does not
improve skipping but increases the cost for partitioning. One sim-
ple way is to set a heuristic number, say 15, for all column groups.
This number, however, may not be suitable for all column groups,
as their ranked lists of features may have different correlation char-
acteristics. Recall that, after the features are selected, we will eval-
uate these features against each tuple and generate a set of feature
vectors, which will be input to the partitioning algorithm. We no-
tice that the number of distinct feature vectors is a good indicator of
whether the number of features selected is appropriate. If the num-
ber of distinct feature vectors ends up too small, we can include
more features without affecting the skipping on existing features;
if this number is too large, this means the existing features are al-
ready very conflicting, so adding more features would not improve
skipping much. Another practical constraint is that the efficiency of
the partitioning algorithm depends on the number of distinct vec-
tors. Based on our tuning, we have found that around 3, 000 distinct
vectors provide a good balance between partitioning effectiveness
and efficiency across different datasets.

For a given number k, we need to quickly estimate how many
distinct feature vectors will be generated if we choose the first k
local features. We estimate this number by sampling the feature
vectors. In the augmentation step, we have evaluated all global
features and augmented each tuple with a feature vector, each bit
of which corresponds to a global feature. We now take a sample
of these feature vectors. For a given k, we pick the first k local
features and project each vector in this sample on the bits that cor-
respond to these k features. We can then obtain the number of dis-
tinct vectors by merging the vectors which have the same values on
these projected bits. Using this procedure as a sub-routine, we per-
form a binary search to determine the value of k that can produce
an appropriate number of distinct vectors (e.g., around 3, 000). Af-
ter obtaining the value of k, we return the top-k features with the
highest weights as selected features.

6. QUERY PROCESSING
In this section, we discuss how we process queries in GSOP.

Reading Data Blocks. We first describe the process of reading
data blocks. Figure 5 illustrates this process. When a query arrives,
we first check this query against the global features and see which
global features subsume this query. This information is represented
in a query vector. The query vector (1, 1, 0) says that features F1

and F2 subsume this query and thus can be used for skipping data.
We also extract the columns that this query needs to read and pass
it to the column grouping catalog. The column grouping catalog
stores the column grouping scheme. In the example of Figure 5,
the query needs to read column A from group G1 and columns
B,D from group G2. The catalog also maintains a mask vector for
each column group. The mask vector of a column group encodes
which local features were used for partitioning this group. For ex-
ample, the mask vector of G1 is (1, 0, 1), which tells us that its
local features are F1 and F3.

The query then goes through the actual data blocks. In Figure 5,
each column group is partitioned into 2 blocks. Each block is an-
notated with a union vector. As in SOP, we decide whether to skip
a block by looking at its union vector. A value 1 on the i-th bit
of a union vector indicates some data in this block satisfies feature
Fi. A value 0 on the i-th bit says that no data in this block satis-
fies feature Fi. In this case, any query subsumed by feature Fi can
safely skip this block. Unlike SOP, in our new framework, a bit of
union vectors can also be invalid. An invalid i-th bit tells us that

requested
columns

F1: A = ‘m’
F2: B < 0
F3: C like ‘%y’

 (1, 1, 0�

(-, 1, -)(0, -, 0)

G1

(-, 0, -)(1, -, 1)

   B     D

block 1
block 2

A, C (1, 0, 1)

select A, D from T 
where A = ‘m’ 
and B < 0

column grouping catalog

group columns
mask 
vector

query global features

G1

G2 B, D (0, 1, 0)

t2
t3

t2
t4

t1
t3

t1
t4

A, B, D query 
vector

   A     C

G2

X

  A  B  D
t1
t3
t4

X
X

Figure 5: Query Processing

Fi is not a local feature of this column group and thus cannot be
used for skipping. Therefore, all blocks of a column group should
have invalid values on the same bits of their union vectors. In Fig-
ure 5, both union vectors of G1 have their second bit invalid, which
indicates that F2 is not a local feature of G1. In practice, we do
not need a special representation for the invalid bits. The query can
learn which bits of the union vector should be ignored from the col-
umn grouping catalog. To skip a block, we compute a OR between
the query vector and its union vector. If the result has at least one
bit as 0, except the invalid bits, we can skip this block. When we
cannot skip a block, we read the columns requested in this block.
In Figure 5, we end up reading column A from block 1 of G1 and
columns B and D from block 2 of G2.
Tuple Reconstruction. If the requested columns of the query span
multiple column groups, as shown in Figure 5, we need to assem-
ble the columns back into tuples using their original tuple ids, as
columns across different groups may not be aligned. When all the
requested columns of a query are in one column group, we do not
need to read tuple-ids. Before actually reading any data, the query
can learn whether to read tuple ids based on the column grouping
catalog. The tuple ids can be stored as a column within each block.
Note that we only need to read the tuple ids in the blocks that can-
not be skipped.

Once we have read the columns along with their tuple ids, we
can reconstruct the tuples. As mentioned, both SOP and GSOP are
applied to to each individual horizontal partition, e.g., each date
partition. We assume all the tuples of a horizontal partition reside
in one machine. Therefore, even in a distributed architecture, tu-
ple reconstruction does not require shipping data across machines.
We also assume that the columns to be assembled can fit in main
memory. Take Hadoop Parquet [2] files as an example. Typically,
each Parquet file is around 1 GB in size and has fewer than 15 mil-
lion tuples. Using a Hadoop or Spark-based execution engine, this
means tuple reconstruction can be handled within a single mapper.

Once the columns have been read into memory, we simply sort
each of the columns based on their tuple ids. Columns within a
group can be stitched first and then sorted together. After all col-
umn groups have been sorted, they can be easily stitched into tu-
ples. Notice that we only keep the tuples for which all of the re-
quested columns are present. In the example shown in Figure 5, we
only return tuple t1 while dropping t3 and t4, even though we have
read some of their columns. This is because if we have not read
a column from a tuple, that means this tuple has been skipped by
some local features and thus can be safely ignored.

7. EXPERIMENTS

7.1 System Prototype
We implemented GSOP using Apache Spark and stored the par-

titioned data as Apache Parquet files. First, given a query log, we
extracted global features as in [39]. We then used SparkSQL to
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Figure 6: Query performance (Big Data Benchmark).

batch evaluate these features on a table and generate a global fea-
ture vector for each tuple. We implemented our column grouping
and feature selection techniques in Scala. Finally, we performed
the actual data partitioning using Spark.

Note that we do not apply GSOP on the entire table at once. In-
stead, we process roughly 10 million rows at a time and partition
them using GSOP. The resulting partitioned data can fit in a Parquet
file of roughly 1GB in size. In effect, we store a table as a set of
GSOP-enabled Parquet files. In a Parquet file, data are horizontally
partitioned as row-groups, and within each row group, data are or-
ganized as a set of column chunks. Each row group corresponds to
a block in GSOP. Parquet files do not natively support the notion
of column groups. We implemented column groups in Parquet by
simply marking certain columns absent in each row group. Sup-
pose a table has 3 columns A,B,C. If we mark C absent in a
Parquet row group, then this row group becomes a block of col-
umn group A,B in GSOP. We also made optimizations so that the
absent columns do not incur overhead. Since Parquet already sup-
ports per-row-group metadata, we simply added the fields needed
in GSOP, such as union vectors. With predicate pushdown, a query
can inform each Parquet file what columns it requests and what
filter predicate it has. Then each GSOP-enabled Parquet file will
use this information to skip row-groups, read the unskipped row-
groups, and finally return the data as reconstructed tuples. In the
prototype, we implemented most of the query processing compo-
nent in Parquet internally; only minimal changes were needed in
the upstream query engine, i.e., SparkSQL. We turned on the built-
in compression mechanisms in Parquet, such as RLE and Snappy.

7.2 Workloads
Big Data Benchmark. The Big Data Benchmark [3] is a public

benchmark for testing modern analytics systems. Due to its flex-
ibility in query generation, we use this benchmark for sensitivity
analysis by varying query parameters. We populated the data us-
ing a scaling factor of 0.1 and generated a denormalized table with
11 columns and 15 million rows. Note that this table can fit in a
single Parquet file. As mentioned, even for large-scale datasets,
we should apply GSOP within each individual Parquet file. Thus,
our focus with this dataset is to perform micro-benchmarking on
a single run of GSOP over a single Parquet file. We will perform
large-scale performance tests in TPC-H and SDSS, as discussed
later. This benchmark consists of four classes of queries: scan, ag-
gregation, join, and UDF. We only used the scan queries as they
are simple and thus easy for us to understand how GSOP performs
under different parameter settings. We generated the scan queries
in the form of:
SELECT A1, A2, · · · , Ak FROM T WHERE filter(B,b)

where filter(B,b) can be one of these three cases: B < b,
B = b and B > b, and b is a constant.

First, we use 0 < s < 1 to set the selectivty of filter predi-
cates. For example, if we set s = 0.2, we would only use the
predicates whose seletivity is 0.2 ± 0.01 for filter(B,b) in
the generated queries. Given selectivity s, we have a pool of filter

predicates which satisfy this selectivity requirement. In real-world
workloads, some predicates are used more often than others. We
thus pick predicates from this pool under a zipf distribution with
parameter z. We set k as the number of columns in the SELECT
statement of each query. Real-world queries usually do not access
column randomly. To model the column affinity in the queries, we
restrict that the columns A1, A2, · · · , Ak can only be generated
from column templates. We use parameter t to control the number
of column templates in the workload. For example, when t = 1,
all queries will have exactly the same k columns in their SELECT
statement; when t =

(
11
k

)
, we have a template for each k-column

combination, and thus the queries will in effect randomly select
A1, A2, · · · , Ak from the 11 columns of the table.

Given a setting of s, z, k and t, we generate 100 queries for
training and 100 queries for testing.

TPC-H. TPC-H [6] is a decision support benchmark consisting
of a suite of business-oriented ad-hoc queries with a high degree
of complexity. We choose a scale factor of 100 to generate the
data. We used the TPC-H benchmark for two scenarios. Since our
techniques are focused on the layout design of single tables, in the
first scenario, we denormalized all TPC-H tables. We considered
this resulting denormalized table of 70 columns and 600 million
rows as the input to GSOP. In the second scenario, we considered
the original TPC-H normalized schema as the input to GSOP and
used the approach discussed in Section 3.3.

We selected ten query templates in TPC-H that have relatively
selective filter predicates, namely, q3, q5, q6, q11, q12, q16, q19,
q20, q21 and q22. The number of columns accessed in these query
templates are: 7, 7, 4, 4, 5, 4, 8, 3, 5 and 2, respectively. For each
template, we generated 100 queries using the TPC-H query gen-
erator. This gave us 1000 queries in total, which we used as the
training workload. We then independently generated 100 queries,
10 from each template, as test queries. The TPC-H query work-
load is a good example of a template-generated workload, which is
very common in real-world data warehouse applications. In gen-
eral, more templates used in the workload would potentially lead
to higher feature conflict, where the performance benefit of GSOP
over SOP would be more significant.

SDSS. Sloan Digital Sky Surveys (SDSS) [5] is a public dataset
consisting of photometric observations taken on the sky. SDSS pro-
vides a SQL interface and also makes the SQL query logs pub-
licly available [4]. We focused on a table called Star in the SDSS
database server (DR7). The Star table contains the photometric pa-
rameters for all primary point-like objects in the sky. The table has
over 260 million rows and 453 columns. We process 4 milion rows
at a time, apply GSOP to partition these rows, and store the results
in a Parquet file. We collected 2340 real queries issued on this table
from 01/2011 to 06/2011. We sorted these queries by their arriving
time. We used the first 3/4 queries as training workload to guide the
partitioning of the Star table. We then ran the rest 1/4 queries on
the table to test the effectiveness of the partitioning schemes. The
mean and standard deviation of the number of columns in projec-
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tions are 13.6 and 5.13, respectively. The maximum and minimum
number of columns in projections are 23 and 3, respectively.

7.3 Settings
For the Big Data Benchmark, our focus is on micro-benchmarking.

The experiments were conducted on an Amazon EC2 m3.2xlarge
instance with Intel Ivy Bridge Processors and 80 GB of RAM, and
a 2TB SSD. For the TPC-H and SDSS workloads, our focus is on
large-scale query performance. The experiments were conducted
on a Spark cluster of 9 Amazon EC2 i2.2xlarge instances, with 1
master and 8 slaves. Each i2.2xlarge instance is equipped with Intel
Ivy Bridge Processors, 61GB of RAM, and 2× 800G SSD. Before
running each query, we cleared the OS cache so that the query ex-
ecution times were measured against SSD-resident data. All the
query execution times were measured on an average of 3 runs.

7.4 Big Data Benchmark
Let us now discuss the results from the Big Data Benchmark.

Given the workload parameters s, z, k and t, as described in Sec-
tion 7.2, we vary these parameters and see how GSOP performs un-
der different workload characteristics. By default, we set s = 0.2,
k = 2, z = 1.1, and d = 6. In this set of experiments, we measure
the average query response time of the 100 test queries on the data
partitioned by three approaches: GSOP is our proposed framework,
SOP represents the state-of-the-art partitioning framework [39] for
data skipping, and GSOP-single represents our proposed extension
to SOP, as discussed in Section 3.1, which partitions each column
individually without column grouping. Recall that SOP and GSOP-
single represent the two ends of the partitioning layout spectrum
considered by GSOP. Thus, GSOP subsumes both SOP and GSOP-
single. GSOP may generate the same partitioning layout as SOP or
GSOP-single as appropriate. As we will see, GSOP performs no
worse than either SOP or GSOP-single under all circumstances and
can significantly outperform them in several settings.

In Figure 6(a), we vary the parameter k, i.e., the number of
columns accessed, while the other parameters remain constant. We
can see that, when the number of columns is small, GSOP-single
is better than SOP. However, the cost of GSOP-single increases
dramatically as k increases. This is because the cost of tuple-
reconstruction overhead introduced by GSOP-single becomes dom-
inant when k is large. When k is small, GSOP is slightly better than
GSOP-single due to column grouping. When k is large, GSOP au-
tomatically switches to the same layout as SOP, which becomes the
ideal layout when queries access over 70% of the columns. Note
that the query response time is CPU-bound, where over 95% of the
read time was spent on decompression and object parsing.

In Figure 6(b), we vary t, i.e., the number of column templates.
We can see that GSOP can significantly outperform SOP and GSOP-
single when t is small. A small t indicates the strong column affin-
ity existed in the workload, which makes the column grouping pro-
vided by GSOP much more effective. When t is 45, the queries,
in effect, access columns purely randomly. In this case, the bene-
fit of column grouping in GSOP becomes marginal, but GSOP is
still guaranteed to perform no worse than SOP or GSOP-single. As
expected, neither SOP or GSOP-single is sensitive to t.

In Figure 6(c), we vary z, i.e., the skewness of filter usage. No-
tice that greater skewness in the filter usage results in less feature
conflict. For example, if all the queries are using the exactly same
filter predicate, then there would be no conflict at all. As we can
see, as we increase z, SOP clearly becomes better, since the feature
conflict is reduced. On the other hand, the feature conflict is already
mitigated in GSOP-single and GSOP, and thus further reducing it
does not improve much for GSOP-single or GSOP. GSOP con-

�

�

��

��

��

��

��

����� ����� ��� ����
������

����

�
�
�
��
��

�
��
��
��
�

����������������

�����������
��������

�
��
��
��
��
���
���
���
���

����� ����� ��� ����
������

����

��
��
��
�

�����������������������

����

Figure 7: Query performance (TPC-H)

stantly outperforms GSOP-single because GSOP lessens the tuple-
reconstruction overhead through column grouping.

In Figure 6(d), we vary s, i.e., the query selectivity. Clearly, as
we increase the selectivity, we see higher query execution costs in
all approaches. It is interesting to note that GSOP-single is the most
sensitive to the selectivity change. Recall that our objective func-
tion (Section 4.2) indicates that the tuple-reconstruction overhead
depends on how much data we need to scan. While all approaches
need to read more data as selectivity is increased, GSOP-single suf-
fers more due to its increased tuple-reconstruction overhead.

The above results showed how different workload parameters
may affect the data layout design. Clearly, no single static layout is
the best across different settings. Thus, we need GSOP to help us
automatically choose an appropriate layout based on workload and
data characteristics.

7.5 TPC-H Benchmark
Query performance. We compare the performance of test queries
on five different layouts. PAR-d is a baseline approach where we
store the denormalized TPC-H table in Parquet. PAR-n is a baseline
approach where we store the normalized TPC-H tables in Parquet.
SOP, GSOP-single and GSOP represent three alternatives of our
approaches as described in Section 7.4. For both normalized and
denormalized scenarios, we will apply these approaches on the de-
normalized columns. Thus, the query performance results of SOP,
GSOP-single and GSOP are the same for both normalized and de-
normalized scenarios and we only show them once here. Note that
we issued the test queries as join queries on PAR-n and as single-
table queries on the other four layouts.

In Figure 7(a), we measure the average number of actual data
cells and tuple ids read by a test query. Overall, our approaches
can significantly outperform the baseline approaches which rely on
Parquet’s built-in data skipping mechanisms. Our best approach
GSOP can reduce the data read by 20× over PAR-d. Note that nor-
malized tables are good for dimension-table-only queries. Interest-
ingly, a significant proportion of our test workload are dimension-
table-only queries, i.e., 40 out of 100. Even so, GSOP can reduce
the data read by 14× over PAR-n. Of our three approaches, as ex-
pected, SOP reads the most data cells but does not need to read any
tuple ids. GSOP-single reads much less actual data cells due to mit-
igated feature conflict and improved data skipping, but has to read
a lot of tuple-ids. By employing column grouping, GSOP reads
much less tuple ids than GSOP-single while maintaining compara-
ble skipping effectiveness. Note that Figure 7(a) only focuses on
the amount of data read but does not factor in the CPU cost of join-
ing the columns back into tuples. In Figure 7(b), we show the end-
to-end query response time. First, PAR-n outperforms PAR-d. This
is because PAR-n reads much less data, even though PAR-n involves
joins in the queries. We can see that GSOP-single outperforms
SOP, as the skipping benefit outweighs the tuple-reconstruction
overhead for this particular workload. GSOP can significantly out-
perform GSOP-single due to its comparable skipping effectiveness
with GSOP-single and yet much reduced tuple-reconstruction over-
head. Overall, our proposed GSOP outperforms the baselines PAR-
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Figure 8: Query performance (TPC-H).

d and PAR-n by 6.7× and 5.1×, respectively, and outperforms the
state-of-the-art SOP by 3.3×.
Column grouping. In Section 4, we proposed column grouping
techniques for GSOP. The GSOP framework, in general, can in-
voke any column grouping technique as a sub-routine. We now
compare our proposed column grouping technique with the state-
of-the-art. We picked two state-of-the-art column grouping tech-
niques, namely HillClimb [32] and Hyrise [27], as they showed su-
perior performance in a recent experimental study [25]. In Figure 8,
we evaluate the query performance on the data prepared by GSOP
using three different column grouping sub-routines: GSOP uses
our own grouping algorithm GSOP-hc uses HillClimb and GSOP-
hy uses Hyrise. For our workload, Hyrise and HillClimb generate
18 and 17 column groups, respectively, while GSOP only gener-
ates 8 groups. Let us take a close look at the column grouping
results1. The columns l extendedprice and l discount always apprear
together (in 400 out of the 1000 queries). Thus, all three algorithms
put these two columns in the same group. However, these algo-
rithms differ on what other columns should be grouped together
with them. For instance, l extendedprice, l discount also co-occur
with l shipdate, l shippriority, l orderkey, o orderdate, c mktsegment in
100 queries (from template q3) and with p size, p container, p brand
in another 100 queries (from template q19). Given these co-occurrence
patterns, Hyrise and HillClimb both chose to put l extendedprice and
l discount alone in a column group, due to their relatively weaker
correlations with other columns, but our algorithm put l extendedprice,
l discount and l shipdate, l shippriority, l orderkey, o orderdate, c mktsegment
in the same group. While Hyrise and HillClimb only look at the
column co-access patterns, our algorithm additionally incorporates
feature conflict and skipping horizontal blocks.

In Figure 8(a), we can see that, by forming a smaller number
of column groups, GSOP reads much less tuple ids while reading
slightly more actual data. Note that Figure 8(a) does not factor in
the joining cost. If we look at the end-to-end query response time
in Figure 8(b), GSOP improves GSOP-hy and GSOP-hc by 35%.
This is because our proposed column grouping techniques, unlike
existing techniques, can effectively balance the trade-off between
tuple-reconstruction overhead and skipping effectiveness involved
in GSOP.
Memory Consumption. Our proposed approaches, i.e., GSOP-
single, GSOP, GSOP-hy and GSOP-hc, need to assemble columns
in memory when the query reads data from multiple column groups.
Since we only assemble columns within each Parquet file, in the
worst case, we need to hold all the data from a single Parquet file
in memory. In our experiments, the data size in each Parquet file is
smaller than 1G after compression and 3G before compression. In
practice, however, the actual data held in memory is much smaller,
as queries usually access a small subset of rows and columns. For
processing our test queries, the average memory footprint for read-
ing a single Parquet file in GSOP-single, GSOP, GSOP-hy and
GSOP-hc are 1.9G, 0.8G, 1.5G and 1.5G, respectively. GSOP-
single incurs column assembly for every query that accesses more

1Please refer to [6] for the details of the workload.

than one column. Since GSOP generates a small number of wide
column groups, out of 1000 test queries, GSOP only incurs column
assembly for 400 queries, while GSOP-hy and GSOP-hc need to
assemble columns for 900 queries. Thus, GSOP uses less memory
than GSOP-hy and GSOP-hc.
Objective function evaluation. To quantify the goodness of a col-
umn grouping scheme, we develop an objective function in Sec-
tion 4.2. In the search of column grouping schemes, we need to
evaluate this objective function frequently. Since computing the
exact value is expensive, we proposed estimation approaches in
Section 4.3. We now evaluate the efficiency and effectiveness of
these approaches. In this experiment, we compare three alterna-
tives: Full Compt. is the approach that computes the exact value of
the objective function, Sel. Est. is the baseline estimation approach
based on traditional selectivity estimation, and Block Est. is our
proposed block-based estimation approach. Figure 9(a) shows the
running time of a column grouping process with Full Compt., Sel.
Est., and Block Est. as objective-evaluation sub-routines. We can
see that Full Compt. takes more than a day, which is prohibitively
expensive. If using the estimation approaches Sel. Est. and Block
Est. instead, we can finish this process within 44 minutes. Given
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Figure 9: Objective function evaluation (TPC-H).

that the estimation approaches are much cheaper to run, we now
evaluate their quality. To do this, we simply compute the exact
objective value on the column grouping results generated by Full
Compt., Sel. Est. and Block Est.. Recall that our goal of the column
grouping is to minimize the objective function. In Figure 9(b), we
can see that, using Block Est. we can produce a column grouping
scheme whose objective value is almost as small as Full Compt..
On the other hand, Sel. Est. generates much worse results. This
is because our proposed estimation approach incorporates the fact
that data skipping is block-based, while the traditional selectivity-
estimation approach is not ideal for our estimation here.
Local feature selection. Given a column grouping scheme, we
need to select a set of local features for each column group. We
propose techniques to automatically determine the number of local
features used for each column group. For the 8 column groups
we have generated in TPC-H, we observe that the number of local
features selected are: 21, 48, 23, 100, 23, 100, 26, 101, 6 and
1. We find that this number can vary greatly for different groups.
This result validates our argument in Section 5 that different sets of
local features may have different correlation characteristics and we
cannot simply set a fixed number of features for all column groups.
Loading cost. We now examine the loading costs in two scenarios.
In Figure 10(a), the input data is a single denormalized table, and
in Figure 10(b), the input data is a set of normalized tables. For
both cases, we stored the input data in text. We view our partition-
ing approaches as two phases. Phase 1 is the preparation phase,
where we perform workload analaysis, column grouping and lo-
cal feature selection. In practice, Phase 1 needs to run once upfront
and only needs to be re-run only when there is a dramatic change to
the workload or data characteristics. Phase 2 is the loading phase,
where we load and reorganize the actual data within individual Par-
quet files. In Figure 10(a), we compare five alternative approaches
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Figure 10: Loading cost (TPC-H).

and PAR-d, which is a baseline cost of simply loading text into Par-
quet. GSOP spends the most time in Phase 1, because GSOP con-
siders more information in column grouping. The cost of Phase 2
depends on the number of column groups, as we need to run a par-
titioning algorithm for each individual column group. Thus, SOP
has the cheapest Phase 2 and GSOP-single has the most expensive
Phase 2. Phase 2 of GSOP is cheaper than GSOP-hy and GSOP-hc,
as GSOP generates a smaller number of columns groups. In Fig-
ure 10(b), we consider the case when the input is a set of normal-
ized tables. To apply our approaches, we have to perform an extra
step of partial denormalization (as part of Phase 1).Overall, for the
denormalized scenario, GSOP takes 2.6× the time as the baseline.
Since data loading is an offline and one-time process, we believe
that there are many applications for which this overhead is worth
improving the query performance by 6.7×. When the input data is
normalized, GSOP takes 7.6× as much time as simply loading the
normalized data, while providing a 5.1× query performance im-
provement. We leave as future work the layout design techniques
that support normalized tables without partial denormalization.

7.6 SDSS
We now examine the performance of GSOP on a real-world work-

load. In Figure 11, we plot the average query response times of
600 test queries against a baseline approach of using Parquet built-
in data skipping mechanisms and five partitioning approaches. For
this workload, GSOP-single performs better than SOP. Also, it is
interesting to see that GSOP-hy and GSOP-hc exhibit quite dif-
ferent performance, and GSOP-hy is even worse than SOP. Since
these techniques do not take into account feature conflict or hori-
zontal skipping, their performance is highly unreliable. Note that
GSOP-hy and GSOP-hc generate 8 and 20 column groups, respec-
tively, while GSOP generates only 2 column groups. We also see
that GSOP improves GSOP-single by only 30%. The reason why
GSOP-single performs well for this workload is that most of the
queries were concentrated on a very small set of columns and the
tuple-reconstruction overhead is small. After all, GSOP outper-
forms the baseline by 4.7× and the state-of-the-art SOP by 2.7×.
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Figure 11: Query performance (SDSS).

8. RELATED WORK
In this section, we review related work.
Data Skipping. Partition pruning has been an important tech-

nique in database systems, where queries can skip partitions based

on their partition key ranges. As a generalization, some early work
proposed to store small materialized aggregates [21,31], such as
min and max values of each column, to enable data skipping. Nowa-
days, most analytics systems have adopted data skipping. Exam-
ples include Amazon Redshift [8], Google Powerdrill [1], Hive [43],
IBM DB2 [40], Parquet [2], Vertica [11], Snowflake [16] and so on.
Data skipping can be used to reduce data scan whether the under-
lying data layout is row-major or column-major. These systems
mostly rely on range partitioning to generate data blocks. Amazon
Redshift also uses z-order instead of hierarchical range partitioning
in order to given multiple columns equal chances of skipping. Re-
cent work [39] proposed a fine-grained partitioning framework for
data skipping. Our framework generalizes this work by allowing
different columns to adopt different partitioning schemes.

Horizontal Partitioning. Many research efforts have been de-
voted to workload-driven physical design (e.g., [34,35,37]). Such
work aims for automatic physical design, such as indexes and mate-
rialized views [34], based on workload information. While workload-
driven horizontal partitioning techniques have been studied [15,33,
35,45], they were built on top of range partitioning or hash parti-
tioning. Instead of specifying which columns to range- or hash-
partition on, GSOP is based on features, or representative filters,
extracted from the workload. GSOP seeks to operate at a finer gran-
ularity than these traditional horizontal partitioning techniques. In
fact, it is a good practice to apply GSOP on each individual range
partition as a secondary partitioning scheme. Also, GSOP does
not move tuples across machines. Schism [18] is also a workload-
driven fine-grained partitioning technique, but it is designed for re-
ducing cross-machine transactions for transactional workloads.

Vertical Partitioning. Vertical partitioning divides the columns
of a table into groups. As an important database technique, vertical
partitioning has been studied extensively [10,14,25,27,30,32,35,37,
46]. Most of the existing vertical partitioning techniques focus on
the trade-off between a row store and a column store: when the
table has many narrow vertical partitions, it resembles a column
store, in which case the queries that access multiple partitions suffer
from the cost of tuple reconstruction. When the table has a few
wide vertical partitions, it resembles a row store, in which case the
queries that assess a small number of columns suffer from the cost
of reading unwanted columns. Thus, existing techniques base the
partitioning decision on column co-access patterns in a workload.
In contrast, our column grouping technique takes into account the
opportunities of skipping horizontal blocks and balances the trade-
off of skipping effectiveness vs tuple-reconstruction overhead.

Physical Design in Column Stores. Column store has become
the mainstream architecture for analytics systems (e.g., [2,8,17,26,
40,43]). In a column store, columns can form column groups [11,
12,28]. Different from the vertical partitioning problem mentioned
above, where a vertical partition is a row store, each column group
here is still a column store. In GSOP, we adopt a PAX-style lay-
out [7] within a column group: we horizontally partition each col-
umn group into blocks (e.g., of 10k rows) and use columnar lay-
out within each block. Existing approaches [11,28] allow different
column groups to choose different orders for efficient read or com-
pression purposes. The main difference between GSOP and these
approaches is that GSOP focuses on fine-grained skipping-oriented
partitioning instead of simply choosing column-level sort orders.

Database cracking [23,24,38] studies the problem of automat-
ically and adaptively creating indexes on a column store during
query processing. While it is similar to our problem in several
aspects, such as involving re-ordering of columns and balancing
reading cost and tuple-reconstruction overhead, the problem GSOP
targets is fundamentally different from cracking. The application
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scenario for database cracking is when we have no access to past
workloads or the luxury of paying an upfront cost of organizing
data. GSOP, to the contrary, is designed for the data warehouse
scenarios where we can perform a statistical analysis on workloads
and use this information to organize the data at data loading time.

Columnar Storage in Hadoop. Columnar layouts have been
widely adopted in Hadoop. RC Files [41] is a PAX-style layout [7]
for HDFS, where data is horizontally partitioned into HDFS blocks
and each block uses columnar layouts internally. ORC Files [43]
and Parquet [2] also adopted the PAX-style layout with perfor-
mance optimizations over RC Files. Floratou et al. [22] proposed a
pure columnar format for HDFS. Unlike a PAX-style layout, their
solution allows different parts of a row to span different HDFS
blocks, but makes sure these blocks reside in the same machine
by modifying HDFS block placement policy. See [42] for a per-
formance study on these HDFS formats. These formats commonly
have built-in skipping mechanisms, sometimes known as predicate
pushdown. We can apply our techniques to organize data stored in
these formats and leverage their built-in skipping mechanisms.

9. CONCLUSION
The GSOP framework generalizes SOP by employing two new

components: column grouping and local feature selection. We eval-
uated the effectiveness of GSOP using two public benchmarks and
a real-world workload. The results showed that GSOP can always
find a partitioning layout no worse than SOP and can dramatically
outperform SOP in many settings. In particular, in the TPC-H
benchmark, GSOP improved the query response time by 3.3× over
SOP. GSOP is a good example of boosting query performance by
exploiting workload analysis and flexible data layouts. Along these
lines, in the future, we plan to incorporate advanced statistical anal-
ysis on query workloads and consider even more layout options,
such as replication. We are also interested in how these flexbile
layout designs can be adaptive to workload or data changes.
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