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ABSTRACT

Analytical graph algorithms commonly compute metrics for
a graph at one point in time. In practice it is often also of
interest how metrics change over time, e.g., to find trends.
For this purpose, algorithms must be executed for multiple
graph snapshots.

We present Single Algorithm Multiple Snapshots (SAMS),
a novel approach to execute algorithms concurrently for mul-
tiple graph snapshots. SAMS automatically transforms graph
algorithms to leverage similarities between the analyzed
graph snapshots. The automatic transformation interleaves
algorithm executions on multiple snapshots, synergistically
shares their graph accesses and traversals, and optimizes the
algorithm’s data layout. Thus, SAMS can amortize the cost
of random data accesses and improve memory bandwidth
utilization—two main cost factors in graph analytics. We
extensively evaluate SAMS using six well-known algorithms
and multiple synthetic as well as real-world graph datasets.
Our measurements show that in multi-snapshot analyses,
SAMS offers runtime improvements of up to two orders of
magnitude over traditional snapshot-at-a-time execution.

1. INTRODUCTION
Graphs are a natural representation for many real-world

concepts like relationships in social networks, interactions
in communities, and the topology of the Web. There has
been growing interest in graph processing from both industry
and academia which led to the creation of diverse analytical
algorithms that extract knowledge from graphs. At the same
time, various systems have been developed that efficiently
execute predefined [18] as well as user-specified graph al-
gorithms [5, 8, 15]. Most analytical algorithms operate on
a static graph, i.e., the snapshot of a graph at a specific
point in time. Consequently, existing analytical systems only
optimize for this scenario.
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Figure 1: We propose Single Algorithm Multiple Snapshots
(SAMS) to automatically interleave graph analytics algo-
rithm executions on multiple snapshots such that they share
graph accesses and traversals. SAMS significantly reduces
the processing times for multi-snapshot analytics.

In many practical use cases, however, data analysts are
interested in changes of graph metrics over time, e.g., to find
trends and to project into the future. Consider, for example,
analyzing the evolution of each user’s importance in a social
network. Using temporal graph information like vertex and
edge creation times, a snapshot of the network can be recon-
structed for each day of interest. Various existing ranking
algorithms can then determine the users’ importance in each
of the snapshots. The rankings at multiple points in time
can then be analyzed using standard data mining algorithms,
e.g., to find the users who have been rising in importance
most quickly, or to determine users that maintained a high
rank over an extended period of time.

The execution of a graph algorithm for multiple snapshots
is called multi-snapshot analytics, temporal graph mining [7],
or snapshot-model stream analysis [23]; we use the first term
to highlight that this work is not limited to temporal graphs
or streams but applies to arbitrary graphs with snapshots.
Multi-snapshot analytics adds the temporal dimension to
numerous well-known, well-researched and readily-available
graph analytics algorithms, that can not only determine im-
portance metrics, but, for example, also find communities,
weak links, or vertices and edges that fulfill specific criteria.
Often, multi-snapshot analyses appear as part of complex an-
alytical computations that comprise pre-computation steps,
graph algorithm executions on snapshots that are based
on the pre-computed data, and result aggregations which
leverage data mining approaches like clustering or outlier
detection.
By considering each snapshot as a separate graph and

executing the algorithms on them independently, complex
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multi-snapshot analyses can be executed in existing graph
analytics systems. This snapshot-at-a-time execution, how-
ever, leads to heavily redundant computation because the
algorithms are executed repeatedly for very similar graphs—
the snapshots of a single temporal graph. As a result, every
execution exhibits the challenges that are inherent to graph
algorithms, most notably their frequent random data accesses
that lead to cache misses and compute stalls.
In this paper we present Single Algorithm Multiple Snap-

shots (SAMS), a novel automatic algorithm transformation
that enables efficient execution of existing graph analytics
algorithms in multi-snapshot graph analyses. SAMS reduces
the runtimes of multi-snapshot analyses by exploiting struc-
tural similarities in snapshots of the same temporal graph.
It automatically transforms graph algorithms that operate
on a single graph snapshot such that they can be efficiently
executed for multiple snapshots at the same time, letting the
executions share common graph traversals and data accesses.
Thus, SAMS greatly reduces data stalls and avoids redundant
computation in multi-snapshot analytics.
Figure 1 visualizes the differences between snapshot-at-a-

time execution and SAMS. It shows the scenario of executing
a simple algorithm for three graph snapshots. For each snap-
shot, the algorithm searches a specific vertex using Find, and
runs a breadth-first search, BFS, from it. Snapshot-at-a-time
processing executes the algorithm separately for each snap-
shot and, thus, accesses graph elements multiple times that
exist in more than one snapshot. In contrast, SAMS executes
the algorithm for all snapshots at the same time, sharing
graph and data accesses among multiple concurrent Find

executions as well as among concurrent BFS executions. This
allows SAMS to significantly reduce the overall processing
time in multi-snapshot analyses.
To achieve concurrent algorithm execution and graph ac-

cess sharing on multiple snapshots, SAMS automatically
transforms graph algorithms in three steps: First, SAMS
applies a rule-based transformation that interleaves multiple
executions of the original algorithm such that they run con-
currently and instruction-synchronously. We refer to these
executions, that each operate on one graph snapshot, as
algorithm instances. Second, SAMS replaces the instances’
independent graph accesses with shared synchronized graph
accesses. By means of synchronized graph access, all concur-
rently executed instances work on the same graph element,
sharing their graph traversal logic, state, and data accesses.
Third, SAMS adapts the algorithm’s memory layout and
introduces novel data structures that collocate the instances’
concurrently processed data.
The fully-transformed SAMS algorithm efficiently com-

putes the original algorithm’s results on multiple graph
snapshots. Exploiting structural similarities between the
processed snapshots, SAMS greatly improves data locality,
increases its cache hit rate, amortizes the cost of memory
accesses, and significantly reduces CPU stalls. Furthermore,
SAMS leverages redundancies in the executed program in-
stances to improve code locality, avoid duplicate computation,
and take advantage of modern CPUs’ wide vector instructions.
SAMS is the first approach that automatically optimizes ex-
isting graph algorithms for multi-snapshot analytics.

As the SAMS transformation does not change the instruc-
tion order within the concurrently executed instances, the
original algorithm’s conceptual and machine-specific opti-
mizations are retained. Similarly, the original algorithm’s

degree of parallelism is unchanged because the concurrency
of SAMS derives from our novel interleaving, not from the
introduction of additional task parallelism.
While this paper focuses on in-memory graph analytics

and its challenges, SAMS can also be applied to out-of-core
and distributed processing. In out-of-core scenarios, SAMS
can reduce the number of random disk accesses and decrease
the amount of data that is accessed. For distributed graph
analytics, SAMS facilitates merging data accesses that cannot
be satisfied from the local data partition, and can, thus,
reduce traffic and avoid high-latency network requests.

This paper’s contributions are:

• We propose Single AlgorithmMultiple Snapshots (SAMS)
and describe how its synchronized concurrent execution
allows shared data access and avoids redundant compu-
tations among program instances.

• We present formal transformation rules that automati-
cally interleave multiple instances of a graph algorithm
for instruction-synchronous concurrent execution. An im-
plementation of our rule system is available for download.

• We describe how interleaved algorithms can automati-
cally leverage structural similarities between snapshots
through synchronized graph accesses and traversals.

• We describe how SAMS-optimized complex traversals
and data structures can further improve the performance
of multi-snapshot analyses.

• We extensively evaluate the performance of SAMS for
widely-used graph analytics algorithms using multiple
synthetic and real-world datasets. We show that SAMS
exhibits up to two orders of magnitude speedup over
snapshot-at-a-time execution.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces central terminology. Section 3 defines multi-
snapshot analytics and compares SAMS with existing execu-
tion methods. Section 4 describes the automatic transforma-
tion of arbitrary graph algorithms to their SAMS variants.
In Section 5 we evaluate SAMS. Section 6 gives an overview
of related work, and Section 7 summarizes this paper.

2. BACKGROUND
This section introduces central terminology that is used

in the rest of this paper.

2.1 Graph Analytics
We define a graph as a tuple G = (V,E) of vertices v∈V

and edges (s, d) ∈ E where s, d ∈ V are the source and
destination vertices of that edge, respectively. Vertices and
edges may have named properties.

Analytical graph algorithms compute results that are based
on the structure and properties of a graph. They commonly
traverse the whole graph or significant parts of it. Examples
of analytical graph algorithms include PageRank, triangle
counting, and strongly connected components.

The main challenges in efficient graph analytics arise from
the algorithms’ inherent random data accesses. For large
real-world graphs, these accesses often cannot be served
from the fast but small CPU caches and, thus, cause high-
latency main memory accesses that can stall the CPU and
waste compute cycles. While random data accesses cannot be
avoided in graph algorithms, their frequency can be reduced
by improving the algorithms’ spatial and temporal data
locality [19].
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2.2 Temporal Graph Analytics
Graphs evolve over time through the insertion and deletion

of vertices and edges. We define temporal graphs as graphs
which contain existence information for all vertices and edges
at every point in time. Many real-world graphs are actually
temporal because the creation times for vertices and edges
are known. We refer to a temporal graph G at a point in time
t as the snapshot Gt. Further, we define a multi-snapshot
graph GS as a graph in which vertex and edge existence
information exists only for certain points in time. Multi-
snapshot graphs are often induced by efficient updatable
graph data structures [10,14].
There has been much research about how the properties

of graphs change over time, especially in the area of online
communities and social networks. This work is especially
based on the findings that graphs grow and densify over
time [12,13]. We leverage them by combining graph accesses
to similar structures in multiple snapshots.

We distinguish two kinds of analytical algorithms that work
on temporal graphs: temporal vs. time-agnostic. Temporal
algorithms are aware of the graph’s temporal nature and
incorporate time-related information [17, 22]. In contrast,
time-agnostic algorithms do not have a notion of time. They
only yield sensible results when executed on a snapshot of
a temporal graph. In this work we efficiently apply time-
agnostic algorithms to multiple graph snapshots.

3. MULTI-SNAPSHOT ANALYTICS
In multi-snapshot analytics, a time-agnostic graph algo-

rithm F is evaluated on multiple snapshots S={Gt1 , ..., Gtn}
of the same temporal or multi-snapshot graph GS . The goal
of multi-snapshot analytics is producing the results Rt for
all snapshots S such that

∀Gt ∈ S : Rt = F(Gt)

We refer to the evaluation of the algorithm on a particular
snapshot Gt as the program instance it. Conceptually, a pro-
gram instance holds the algorithm’s state and manages its
execution on the instance’s respective snapshot. By conven-
tion, we use the same subscript for program instances and
the graph snapshots they process; for example, the algorithm
execution for snapshot Gt1 is managed by program instance
it1 . Furthermore, we define the set of all program instances
I = { it | Gt ∈ S }.

3.1 Independent Snapshot Execution
Various execution strategies can be used to actually exe-

cute the program instances I. Two strategies are common
in existing systems: First, the instances can be executed
sequentially, “snapshot at a time”. Using this strategy, only
one program instance is active at a time, so it can utilize
all the system’s resources to execute the algorithm for its
respective snapshot. In particular, it can leverage the full
CPU cache. Second, the instances can be executed in parallel,
assigning each program instance a subset of the available
CPU cores. As the program instances are independent, no
inter-instance locking and communication overhead exists.
However, when multiple independent program instances are
active at the same time, they potentially thrash their shared
caches, and hence may reduce their execution efficiency.
Both the snapshot-at-a-time and the parallel execution

strategy have a common issue: They do not leverage that

in multi-snapshot analytics the processed snapshots are cre-
ated from the same graph at several points in time, and
that they are, thus, likely very similar. Consequently, these
execution strategies perform redundant data accesses and
computations.
As an example, consider the execution of a simple 1-hop

neighborhood traversal from v0 on the two snapshots of GS ,
depicted in Figure 2a, by the program instances it1 and it2 .
GS ’s solidly-outlined vertices v0, v1 and v3 and their incident

Algorithm 1 1-hop neighborhood traversal.

1: visit(v0)
2: for n ∈ GS .neighbors(v0) do
3: visit(n)

edges already exist at t1, while the dashed vertex v2 and
edge b are added at t2.
In Figure 2b we show snapshot-at-a-time execution, and

visualize the order in which the program instances visit the
graph’s elements during the neighborhood traversal. The
traversal is first executed completely for snapshot Gt1 , then
snapshot Gt2 is traversed independently. Thus, the execu-
tion lacks data access locality. While this is not an issue for
graphs as small as GS , for real-world graphs with millions of
vertices, and algorithms that access graph properties, this
lack of locality can cause frequent cache misses which lead
to CPU stalls. In addition, the figure shows that many of
the vertices are accessed twice—once for each of the two
processed snapshots. These independent duplicate accesses
further exacerbate the execution’s locality issues. Similar to
snapshot-at-a-time execution, the parallel execution strategy
also traverses the graph independently for the snapshots;
hence, it also suffers from the locality and redundant access
issues. As its data access pattern is similar to the former
strategy, we omit it in Figure 2.

3.2 Single Algorithm Multiple Snapshots
Instead of processing them independently, we propose that

program instances should be executed together concurrently
and synchronized. In synchronized concurrent execution, mul-
tiple program instances are executed at the same time, so
that they can synergistically exploit similarities in the pro-
cessed snapshots and, thus, avoid redundant data accesses
and computations. We propose Single Algorithm Multiple
Snapshots (SAMS), an algorithm transformation that enables
synchronized concurrent execution of an arbitrary graph algo-
rithm’s instances. The SAMS transformation comprises two
major steps: interleaving the program instances’ executions,
and synchronizing their graph accesses.
Note that in this paper we use the term concurrent for

statements that are processed on the same compute core in
temporal proximity without any pre-determined order. SAMS
does not introduce task parallelism; SAMS-transformed al-
gorithms inherit the original algorithms’ task parallelism.

3.2.1 Instance Interleaving

Interleaving transforms algorithms such that all of their
instances concurrently execute the same algorithm statement.
For a statement sequence stmt1; stmt2, this means that all
interleaved instances concurrently execute stmt1 before any
instance processes stmt2. Hence, interleaving can significantly
improve code locality. Furthermore, when interleaved pro-
gram instances concurrently access a graph element and
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Figure 2: Example multi-snapshot graph and execution sequence for Algorithm 1.

its properties, they can share this access, amortizing their
memory access costs.
Consider again the example neighborhood traversal from

v0. Figure 2c depicts the order in which the two interleaved
instances it1 and it2 of the traversal visit the vertices in GS .
The interleaved traversal starts at v0, which is visited by
both instances before its neighborhood is explored. Then,
during neighborhood exploration, each instance iterates v0’s
neighbor list in its respective graph snapshot:

it1 : GS
.neighbors(v0) = [v1, v3]

it2 : GS
.neighbors(v0) = [v1, v2, v3]

v1 is the first neighbor in both snapshots, so the interleaved
instances visit it concurrently. The second neighbor element
does, however, differ between the instances, so in the second
iteration it1 visits v3, and it2 visits v2. In the last neigh-
borhood iteration, it2 visits v3, and it1 is idle as it already
finished traversing its neighbor list.

Figure 2c highlight steps s1 and s2. In these steps shared
graph element accesses are possible as a result of interleaving.
We see that while interleaving is always beneficial for code
locality, without further modifications it only allows access
sharing for very similar graph structures. Thus, for SAMS
we propose graph-synchronous interleaved execution.

3.2.2 GraphSynchronous Interleaved Execution

Graph-synchronous interleaved execution synchronizes the
interleaved program instances, such that all concurrently ex-
ecuted statements process the same graph element. Hence, it
ensures maximum data access sharing between the instances.
As a processed graph element may not exist in all of the

instances’ respective snapshots, we introduce the concept
of active instances. Intuitively, we call a program instance
active for a given statement stmt when an equivalent single-
snapshot execution of this instance would execute stmt in
the same context. In Section 4.1 we give formal rules to
determine when a program instance is active, and show that
the concept of active instances is also important for the
interleaving of complex control flows.

Algorithm 2 is the neighborhood traversal algorithm trans-
formed to SAMS, i.e., interleaved and with synchronized
graph accesses. Figure 2d shows the order in which its exe-

Algorithm 2 SAMS variant of Algorithm 1 that allows its
concurrent execution for two graph snapshots.

1: visit(v0, {it1 , it2})
2: for (n, activen) ∈ GS .neighbors∗(v0, {it1 , it2}) do
3: visit(n, activen)

cution visits GS ’s vertices. Because the instances it1 and it2
always process the same vertex, the SAMS algorithm also

traverses the same neighbors list for them, using the set of in-
stances activen to determine which are active for a neighbor
n. SAMS further allows to merge the instances’ visit calls,
as is shown in the listing and the figure. In addition to the
vertices v0 and v1 that were already visited concurrently by
interleaved execution, SAMS is also able to correctly share
the visit of v3.

4. AUTOMATIC TRANSFORMATION

TO SAMS EXECUTION
Time-agnostic graph algorithms analyze the structure and

properties of a graph snapshot. They can be transformed
to Single Algorithm Multiple Snapshots (SAMS) algorithms
that concurrently compute the original algorithms’ results
for multiple snapshots and share common graph accesses.
While this transformation can be done manually, SAMS is
the first work that automatically transforms algorithms for
efficient multi-snapshots analytics, thus, also allowing its use
in ad-hoc queries.
In this section we describe the three steps of the SAMS

transformation. First, we explain formal transformation rules
to interleave graph algorithms such that multiple of their
instances can be processed concurrently and instruction-syn-
chronously, improving the algorithm’s code locality as well
as its data locality for scalars. Second, we elaborate the
synchronization of the instances’ graph accesses to improve
the algorithms’ temporal data locality for graph structure
traversals and property accesses. Finally, we propose a SAMS-
optimizedmemory layout and specialized data structures that
greatly improve the the algorithms’ spatial locality and cache
utilization for multi-snapshot analytics.

4.1 Interleaving of Program Instances
For algorithms that neither contain branches nor use local

variables, interleaving can simply be done by duplicating each
algorithm’s statements for every instance. However, once non-
trivial control flow and variables are considered, this does
not work because local variables can have different values
in the program instances, and because branch predicates
may evaluate differently, leading to differing runtime control
flows in the instances. Furthermore, duplicating branches
and loops does not interleave their contents.

We propose statement-specific transformation rules, shown
in Table 1 that overcome these issues by managing local state
per program instance, determining for each statement which
program instances are active, and translating control flow to
data flow. As each rule is responsible for interleaving one type
of statement, Table 1 also implicitly defines the constructs of
the language used in this paper. The statements’ semantics
closely follows that of commonly-used imperative languages,
e.g. the IMP language described in [21], augmented with
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graph-specific collections and iterations over collections that
are similar to the GreenMarl language [8].

We implemented all interleaving rules using the rewriting
logic tool Maude [3]. Our implementation is available online1

and includes a graph algorithms syntax that resembles the
one used in this paper, executable semantics for this syntax,
and our rules to automatically perform the interleaving. Fur-
thermore, it contains the example discussed in this section
and other graph algorithms.

We use Algorithm 3 as the running example in this section.
Similar to a single PageRank iteration, the SumNeighbors
function sums the global property P for each vertex’s neigh-
bors into a temporary property R, which it returns.

Algorithm 3 Property aggregation algorithm.

1: fun SumNeighbors(G)
2: for v ∈ G.vertices() do
3: R[v] := 0
4: for n ∈ G.neighbors(v) do
5: R[v] := R[v] + P [n]

6: return R

The SAMS algorithm interleaving is based on the inter-
leaving marker sim which tags statements that must be in-
terleaved. By applying our transformation rules, statements
that are marked for interleaving are successively transformed
either to statements that are interleaved, or into partly in-
terleaved statements which still contain interleaving markers
and must, thus, be further transformed.
We start a graph algorithm’s transformation by marking

all of its root elements with sim. For most graph algorithms
there is only a single root element: the actual algorithm
function definition. Adding the interleaving marker to Algo-
rithm 3 gives:

sim (−−) do
fun SumNeighbors(G)

[ algorithm implementation ]

This matches the left hand side of Rule 1 in Table 1.
Applying this rule results in an interleaved function header
and a body that is marked for interleaving:

fun SumNeighbors∗(S,G∗)
A(SumNeighbors∗) := S

sim (SA(SumNeighbors∗)
) do

[ algorithm implementation ]

In the remainder of this section we explain the transfor-
mation rules for all statements that may appear in function
bodies. After the interleaving, SumNeighbors∗ may be exe-
cuted for a set of program instances A⊆I, and guarantees
the same results as snapshot-at-a-time execution:

R∗ := SumNeighbors∗(A,G∗)

⇔ ∀it ∈ A : Rit := SumNeighborsit(Gt)

By convention, we use the asterisk ∗ on functions to denote
that they are interleaved and can be executed for multiple
program instances, and on variables to show that they hold
values for multiple program instances. Thus, in this case,
R∗ contains values for all instances in I. In it, Rit is the
variable R for program instance it. We further use subscript
indices to refer to function evaluations or variable accesses
in a specific program instance.
1http://db.in.tum.de/~then/data/SAMS-rules.tar.gz

Table 1: Rules for algorithm interleaving.

Rule 1 Function definition

sim (−−) do

fun F (args...)
stmt

〉

fun F∗(S, args∗...)
A(F∗) := S

sim (SA(F∗)) do

stmt

Rule 2 Statement sequence

sim (SD) do

stmt1
stmt2

〉

sim (SD) do

stmt1

sim (SD) do

stmt2

Rule 3 Expression evaluation and assignment

sim (SD) do

v := E

〉

v∗ := eval∗(E, S ∩D)

Rule 4 Conditional branch statement

sim (SD) do

if E then

stmtt
else

stmtf

〉

e∗ := eval∗(E, S ∩D)
T := {i | ei= true}

sim (TD) do

stmtt

sim (
S\T
D

) do

stmtf

Rule 5 While loop

sim (SD) do

while E do

stmt

〉

A(φ) := S

φ: while D ∩ A(φ) 6= ∅ do

e∗ := eval∗(E,A(φ) ∩D)
T := {i | ei= true}
A(φ) := A(φ) ∩ T

sim (TD∩A(φ)) do

stmt

Rule 6 Loop φ break statement

sim (SD) do

break

〉

A(φ) := A(φ) \ (S ∩D)

Rule 7 For loop

sim (SD) do

for v ∈ E do

stmt

〉

A(φ) := S

φ: for v∗ ∈ collect∗(E, S ∩D) do

sim (
S∩A(v∗)

D∩A(φ)
) do

stmt

Rule 8 Function call

sim (SD) do

v := F (x...)

〉

v∗ := F∗(S ∩D, x∗...)

Rule 9 Function ψ return statement

sim (SD) do

return E

〉

sim (SD) do

R(ψ) := E

A(ψ) := A(ψ) \ (S ∩D)
if A(ψ) = ∅ then return R(ψ)

We previously introduced the notion of active program in-
stances for a statement as the instances that must execute it.
The active program instances—or active set—is determined
by the statement’s scope as well as by interactions with other
statements. For example, a break statement influences the
active set of its respective loop. We use the interleaving
marker sim to model the scope and inter-statement influ-
ences as scope constraints S and dynamic constraints D,
respectively. Their details are discussed in Sections 4.1.2 and
4.1.3; there, we also introduce the active set access function
A. Marking a statement with sim

sim (SD) do stmt

means that stmt must be executed for the program instances
A=S ∩D. All instances must posess an exclusive program
state so that executions are independant. Note however, that
the interleaving marker is not meant to have execution seman-
tics; thus, the algorithm is not executable in our framework
as long as it contains interleaving markers.
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4.1.1 Variables

In an interleaved algorithm, a variable v may have different
values for multiple concurrently processed program instances.
Thus, unless it can be inferred that all instances of v always
have the same value, it is necessary to store an instance of v
for each program instance.

Rule 3 uses the concurrent expression evaluation function
eval∗(E) to transform assignments such that multiple in-
stances of the assigned variable are introduced. It evaluates
the expression E for every active program instance i∈A:

v∗ := eval∗(E,A) ⇔ ∀i ∈ A : vi := eval i(E)

Depending on the variable’s data type and the evaluated
expression, concrete implementations of eval∗ may use highly-
tuned vectorized evaluation or fallback to evaluating the
expression separately for each program instance. For program
instances that are not active, the value of v∗ is not changed.
Consider again Algorithm 3. Applying the assignment

transformation to Line 5 yields:

R∗[v∗] := eval∗(R[v] +P [n], A)

Note how R∗ denotes that one instance of the variable R is
created per program instance, and how eval∗ operates on
the original expression R[v]+P [n].

4.1.2 Branches

Conditional branches are created using the if statement
shown in Rule 4. It evaluates its predicate E and executes
either stmt1 or stmt2, but never both.
In an interleaved algorithm the predicate may, however,

evaluate differently for the active program instances, so that
a subset T ⊆ S must execute the true branch stmtt, and
all other instances execute the false branch stmtf . Rule 4
models this by adding the scope constraints T and S\T to
the respective branches:

sim (TD) do
stmtt

sim (
S\T
D ) do

stmtf

Scope constraints—the upper part of the sim marker—
restrict the active sets of all statements within a scope, e.g.,
a specific branch or a loop. They are evaluated when the
scope is entered and their resulting active set does not change
within the scope. For optimizations it is important to note
that scope constraints are monotonous: given a scope a that
contains scope b implies for their active sets that Ab ⊆ Aa.
By means of this branch transformation, we transform

control flow to data flow [1]. After the branch, the instances’
potentially diverged control flows reconverge.

4.1.3 While Loops

while loop interleaving must solve two issues: First, loop
conditions may evaluate differently in the active program in-
stances. Second, loop bodies may contain break statements
which immediately stop the respective instances’ loop execu-
tions. Taking these issues into consideration, an interleaved
while loop iterates as long as at least one program instance
is still active for it.

Rule 5 shows our while loop interleaving. We handle loop
conditions similar to conditional branches. The instance set
T is computed before each iteration and used as the loop

body’s scope constraint. Thus, each instance is only executed
as long as E evaluates to true for it. If T is empty the loop
is exited.

In contrast, break statements may influence whether state-
ments outside of their scope are active or not. Thus, they
cannot be implemented by means of scope constraints. In-
stead, we create a new active set A(φ) that tracks which
program instances have not yet finished the while loop, and
add it as a dynamic constraint to the loop body. Dynamic
constraints, which are denoted in the lower part of the sim

marker, are more general than scope constraints. They are al-
lowed to influence the active sets of all subsequent statements
and may change within a scope. This means, however, that
dynamic constraints must—conceptually—be re-evaluated
for every statement in the loop.

Rule 6 describes how break statements influence the active
set of their respective loop using the active set access function
A. In nested loops, we distinguish the different active sets
by assigning each loop a unique label φ. For loops that do
not contain break statements, no dynamic constraint needs
to be added, as we show in Section 4.2, Algorithm 4.

4.1.4 For Loops

Interleaved for loops concurrently iterate over the ele-
ments of a collection. As the interleaved neighbor iteration
in Figure 2c visualizes, this collection may contain different
elements for the active program instances. Hence, Rule 7
introduces the loop variable v∗ which holds a value for each
instance. For notational convenience, we introduce the func-
tion collect∗ which assigns values from the collection that
each active program instance iterates, such that:

∀a ∈ A : x ∈a collect∗(E,A) ⇔ x ∈ evala(E)

We write x∈aC∗ to denote that x is an element of C in
instance a. To handle differing collection sizes between the
active program instances, we further introduce the active set
A(v∗) for the loop variable. In each loop iteration, collect∗
sets A(v∗) to all program instances for which a value was
assigned to the loop variable. Specifically, program instances
that are finished iterating their collections are not in the loop
variable’s active set. We add A(v∗) as a scope constraint on
the loop’s body to ensure that it is only executed by program
instances that did assign a loop variable value in the current
iteration.
As we described for the while loop, we add the dynamic

constraint A(φ) to handle break statements.

4.1.5 Function Calls

Rule 8 transforms function calls into calls to the same
function’s interleaved variant. In case it is not possible to
build an interleaved variant of the function, we call the
original function for every active program instance using
eval∗. For example, this is necessary when a system function
is called for which the source code is not available.

4.1.6 Return Statements

The return values of an interleaved function F∗ are stored
in the variable R(F∗), see Rule 9. It is set for program
instances that execute a return statement, in which case
that instance is also removed from the function’s active set
A(ψ) (where ψ is F∗’s identifier). Once the function’s active
set is empty, the function completed its execution.
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4.1.7 Confluence and Termination

Algorithm transformations must be confluent, i.e., have the
same result independently of the rule application order, and
terminate, i.e., finish after a finite number of rule applications.
The SAMS interleaving transformation presented in this
section fulfills these requirements.

Intuitively, the rules are confluent because first, for every
statement there is only one rule that can match it, and sec-
ond, whenever there is a choice of which rule to apply, rule
applications do not prevent any of the other choices from
being applied later. Furthermore, the rule application must
terminate because every rule application strictly reduces the
number of language constructs that are left for transforma-
tion. Considering that all algorithms are finite by definition,
successive rule application on any algorithm must reach a
point at which no statements are left for transformation,
which means that the transformation is finished.

4.1.8 Correctness

To demonstrate the correctness of the transformation rules
we need to prove for every rule, that the program on the
left-hand side (LHS) of the rule always produces the same
result as the right-hand side (RHS). For brevity, we only
show a proof sketch for Rule 7, as it covers all important
aspects of SAMS transformations:

sim (SD) do

for v ∈ E do

stmt

〉 A(φ) := S

φ: for v∗ ∈ collect∗(E, S ∩D) do

sim (
S∩A(v∗)

D∩A(φ)
) do

stmt

We need to show, that for every program instance it in
which the LHS transforms the initial program instance state
St into the final state S′

t, the RHS does so as well. The LHS
contains the sim (SD) marker with a for loop. It indicates
that the loop must be executed for every program instance
it ∈ S ∩ D. Let the result of evaluating the expression E

in it be a list L containing the elements e1 through en:
L = eval(E, it) = [e1, ..., en]. The for loop iterates over
L and invokes the loop body stmt with the loop variable
v bound to an element e ∈ L: stmt [v = e]. During loop
execution, every invocation of stmt produces an intermediate
state, leading to the final state S′

t:

St
stmt[v=e1]
−−−−−−−→ St,1 . . . St,n−1

stmt[v=en]
−−−−−−−→ St,n; St,n = S

′
t

The RHS contains a for loop with a sim marker which
contains stmt . We show that for every program instance the
same sequence of state transitions is produced. Therefore,
per Rule 7 let

S ∩D = {i1, ..., ik}

L∗ = collect∗(E,S ∩D) = [(e1,1, ..., e1,k), ..., (en,1, .., en,k)]

A : L∗ → P(S ∩D)

where P is the powersetfunction and A is a function from
L∗ to P(S ∩D) such that (as per definiton of collect∗)

I) ∀it ∈ S ∩D. eval(E, it) = [ lit | l ∈ L∗ ∧ it∈A(l) ]

the elements in L∗ contain the values that would have been
produced by eval for the program instances S ∩D, so that
with respect to any specific program instance they are in
the same order as produced by eval. As the number of
results produced by eval may differ in the program instances,
some values ej may be invalid. An element l ∈ L∗ is only
guaranteed to be valid for the active program instances A(l).

The RHS for loop φ executes its body

sim (
S∩A(v∗)

D∩A(φ) ) do
stmt

for every v∗ ∈ L∗. In each execution sim, according to its
definition, changes the state of every program instance it

II) it ∈ S ∩ A(v∗) ∩D ∩ A(φ)

by invoking stmt on the program instance state St,j to pro-
duce state St,j+1. In every invocation of stmt , v is bound to
the element of v∗ that corresponds to it: vit = ej,t:

St,j

stmt[v=vit ]−−−−−−−−→ St, j+1.

Due to I), in every program instance the same values
as on the LHS are applied in the same order. Due to the
restriction to A(v∗) in II), only valid values are assigned
to v. Consequently, the RHS produces the same chain of
transitions as the LHS within every program instance. �

4.2 Graph-Synchronous Execution
The second component of SAMS is graph-synchronous exe-

cution. Graph-synchronous execution leverages the structure
of interleaved algorithms and ensures that all active program
instances process the same graph element. It greatly reduces
redundant memory accesses and computations, and, thus,
further improves the efficiency of multi-snapshot algorithms.
Similar to existing graph analytics languages like Green-

Marl [8], the algorithm language we use in this paper spec-
ifies basic graph traversals as for loops over vertices and
neighbors sets. We interleave loops using Rule 7 to achieve
concurrent and instruction-synchronous iterations in the ac-
tive program instances. As explained before and illustrated
in Figure 2c, this generic loop interleaving does not make
any assumptions about the iterated data or its layout, so
each program instance executing the loop may process a
different data element. It is, however, more cache-friendly for
all instances to process the same data element synchronously.

While enabling element-synchronous iteration on arbitrary
collections is beyond the scope of this paper, structure traver-
sals in multi-snapshot graphs allow us two important addi-
tional assumptions: First, active program instances traverse
collections that are part of the graph’s structure and, thus,
very similar. This is based on the observation that the differ-
ences between graph snapshots are only minor compared to
the graph’s size. Second, we assume that the multi-snapshot
graph representation allows efficient traversals of all graph el-
ements as well as determining the snapshots in which they ex-
ist. Leveraging these assumptions, we rewrite graph structure
iterations in interleaved programs to be graph-synchronous.
To that end we introduce specialized collect∗ functions

for vertex, neighbor and property for loops. Consider the
following collect∗ for a graph-synchronous neighbors loop
which yields all neighbors of v that exist for any program
instance:

collect∗(G∗.neighbors∗(v), A) =
⋃

i∈AG∗.neighborsi(v)

When the for loop iterates over the neighbors set, the same
neighbor is processed by all program instances. Because some
neighbors do not exist in all instances we additionally define
the loop variable’s active set for each neighbor:

n ∈ collect∗(G∗.neighbors∗(v), A)

⇒ A(n) = { i | i ∈ A ∧ n ∈ G∗.neighborsi(v)}
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The active set ensures that even though all neighbors are
iterated, they are only visible to program instances for which
they actually exist. As per our second assumption, the active
set can be efficiently derived from the graph data structure.
Applying optimized graph iteration collect∗ functions to

an interleaved variant of Algorithm 3, the graph-synchronous
Algorithm 4 can be automatically derived. Note that in this
algorithm, the loop variables v and n do not have the ∗
subscript. This signifies that they contain the same value for
all program instances, which is the key to graph synchronicity.

Algorithm 4 Graph-synchronous interleaved variant of
Algorithm 3.

1: fun SumNeighbors∗(S, G∗)
2: for v∈collect∗(G∗.vertices∗(), S ∩ Φ1) do
3: Sv := S ∩ A(v)
4: R∗[v] := eval∗(0, Sv ∩ Φ2)
5: for n ∈ collect∗(G∗.neighbors∗(v), Sv ∩ Φ2) do
6: R∗[v] := eval∗(R[v] + P [n], Sv ∩ A(n) ∩ Φ3)

7: return R∗

Φ1 through Φ3 denote dynamic constraints that were in-
troduced by applications of the function and loop rules;
e.g., Φ1 = A(SumNeighbors∗). However, as the original algo-
rithm does not contain break statements, and because the
return statement is unconditional, all dynamic constraint
evaluations can be automatically optimized away, such that
Φ1 = Φ2 = Φ3 = S.

Graph-synchronous loops over vertices, neighbors and prop-
erties greatly improve the algorithm’s temporal and spatial
access locality because all program instances access share
their data accesses. This property is even preserved in nested
loops, distinguishing SAMS from existing approaches [7, 23].

4.3 Locality-optimized Data Layout
Interleaving and graph-synchronous execution greatly im-

prove algorithms’ temporal locality for accesses to the graph
structure and to immutable data, i.e., values that are the
same for all analyzed snapshots. An example of this is the
global property P in Algorithm 4. Because P is immutable
it is equal for all program instances; hence, in a graph-
synchronous traversal the vertex v’s property value can be
accessed at the same memory location P [v] for all program
instances, greatly improving the accesses’ locality.

In contrast, mutable local variables like R∗ in Algorithm 4
require changes to the algorithms’ data layout to fully benefit
from interleaving and graph-synchronous execution. As our
transformations cannot make assumptions about the equality
of R∗’s values in two different program instances i, j∈I, it
must allocate R∗ for all of them. When the algorithm’s
original data layout is applied, a separate block of memory
Ri is allocated for each program instance i. This is especially
problematic for local properties because in this layout there
is no spatial locality between a vertex v’s property values
Ri[v] and Rj [v] in two program instances. Consequently, the
temporal locality achieved by graph-synchronous execution
cannot be leveraged.

We improve local variables’ spatial locality by collocating
their values in all program instances. For scalars we allo-
cate all instances’ variables as arrays with |I| elements. For
properties, instead of allocating a separate block of memory

Ri for each instance i, we allocate R∗ as one property that
stores the instances’ values as arrays:

R∗[v] = [ RM [0][v], . . . , RM [|I|−1][v] ]

Here, M : {0, . . . , |I|−1}→I is a bijective mapping of dense
numbers to program instances. Using this data layout, graph-
synchronous accesses to R∗[v] have spatial locality and, thus,
take advantage of the CPU’s caches and prefetchers. Further-
more, the collocated layout allows leveraging modern CPUs’
wide SIMD instructions to execute interleaved statements
for multiple active program instances at the same time.
Note that independent of our data layout, SAMS algo-

rithms’ memory consumption for mutable local properties
grows linearly with the number of concurrently executed
program instances.

4.4 Further Optimizations Opportunities
Interleaving, graph-synchronous traversal, and our opti-

mized data layout transform graph algorithms to greatly
improve their efficiency in multi-snapshot analyses. While
our automatic transformation changes how the algorithm is
executed, it fully preserves its original semantics. For a valid
transformation, as described in Section 4.1.8, it is, however,
only necessary to preserve the algorithm’s externally observ-
able semantics, especially its result. By leveraging this obser-
vation, specialized multi-snapshot graph traversal algorithms
and data structures can be designed that use optimizations
which are beyond the scope of automatic transformations. In
the following we sketch two examples how traversals and data
structures can be optimized for multi-snapshot analytics. We
envision that multi-snapshot-optimized variants of common
algorithms and data structures are part of graph analytics
frameworks that leverage SAMS, but they can be provided
by algorithm implementers and users as well.

4.4.1 Complex Traversal: BFS

By applying our SAMS transformations, simple textbook
BFSs become efficient multi-snapshot BFSs. State-of-the-
art BFS algorithms, however, collect heuristics and switch
between specialized traversal variants depending on the BFS
phase [2]. When such BFSs are automatically transformed,
their heuristics are collected separately in each program
instance. As a result, the instances independently decide on
their locally optimal traversal variant, which can lead to
diverging execution paths among the program instances.
We propose that SAMS-optimized BFSs should collect

aggregated statistics for all program instances and decide on a
global traversal variant, similar to [19]. Our experiments show
that this greatly improves multi-snapshot BFSs’ data access
and computation sharing potential, and, thus, improves their
performance.

4.4.2 Complex Data Structure: Stack

Consider a simple stack of vertices that stores its entries
in an array and keeps the top element’s index. The automat-
ically transformed SAMS variant of this vertex stack stores
its entries in a locality-optimized array of arrays. As the top
element indexes may differ between program instances, pop
operations are not guaranteed to result in the same vertex for
all instances. Thus, popped vertices cannot take advantage
of graph-synchronous execution.
We propose a SAMS-optimized stack that fosters graph-

synchronous execution by ensuring that all active program
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instances process the same value. Our SAMS vertex stack
comprises an entry array E that contains the actual vertices,
an array B of bitsets which indicate for which program
instances each vertex was pushed onto the stack, and a top
element index t that is shared among all instances. We map
sets of active instances to bitsets as described in [19].

Pushing a vertex v onto the stack increments t, writes v to
E[t] and stores the currently active instances in B[t]. Note
that v is only stored once no matter how many instances
are active. In case the vertex v to be pushed is equal to the
current top of the stack and the top value’s active bitset does
not contain any instance for which v must be pushed, i.e.,
E[t] = v ∧ B[t] ∩ A = ∅, no new value needs to be added.
Instead, the new instances can be added to the bitset of the
stack’s top element, B[t] := B[t] ∪A, thereby improving the
potential for future graph-synchronous execution.

The pop operation in the active instances A scans B from
i := t downward to the first entry with B[i]∩A 6= ∅, i.e., the
top entry that was pushed by any of the active instances. It
returns E[i] for all instances B[i]∩A and sets B[i] := B[i]\A.
If B[i] = ∅ the stack removes the entry and updates t.
Our SAMS-optimized vertex stack enables shared graph-

synchronous computation and data accesses, and can signifi-
cantly reduce memory consumption compared to an automat-
ically transformed stack. Its principles—storing the actual
values only once and leveraging bitsets to track in which
instances they are valid—can be applied to create SAMS-
optimized variants of other common data structures. Exam-
ples include priority queues, e.g., for Dijkstra’s algorithm, or
sets, e.g. for Brandes’ betweenness centrality algorithm.

5. EVALUATION
In this section we evaluate the efficiency and scaling behav-

ior of SAMS-transformed multi-snapshot graph algorithms.
After describing our experimental setup, we evaluate the
influence of different parameters on SAMS’s speedup over
snapshot-at-a-time execution. Specifically, we look at the
number of concurrently processed graph snapshots, the total
number of analyzed snapshots, and their similarity. Further-
more, we compare SAMS against two competitors.

5.1 Experiment Setup
We implemented the evaluated six algorithms as stand-

alone single-machine C++14 programs and compiled them
with GCC 5.2.1. They are built using the primitives and
structures elaborated in Section 4, and transformed to their
SAMS variants as described in the same section.
Similar to state-of-the-art graph analytics systems [5, 8],

we store graphs in the compressed sparse row (CSR) format.
To model the graphs’ temporal dimension, we store vertex
and edge creation times directly within the CSR.
We ran all experiments on a dual-socket machine with

two Intel Xeon E5-2660 v2 CPUs having 20 logical threads
at 2.2GHz and 256GB of main memory. The system used
Ubuntu Linux 15.10 with kernel 4.2.

5.1.1 Algorithms

To evaluate SAMS, we chose six common graph analytics
algorithms that are representatives of different graph access
patterns. The pull-based PageRank algorithm has a simple,
predictable memory access pattern in which the in-neighbor
lists of all vertices are traversed and a neighbor property is

Table 2: Properties of the evaluated data sets.
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LDBC 1 34.4 1,010.6 29.4 5 2.8 X

LDBC 10 226.9 10,141.4 44.7 6 3.0 X

LDBC 100 1,611.9 101,747.9 63.1 6 3.2 X

Baidu 2,753.2 17,643.7 6.4 24 6.6 X

Citeseer 384.4 1,751.5 4.6 70 18.6 X

Mailinglist 27.9 1,014.1 36.3 112 7.2 X X

Wiki Talk 2,502.0 5,021.4 2.0 14 5.0 X

Wikipedia 1,870.7 39,953.1 21.4 376 4.6 X X

aggregated. We run it for 20 iterations. Triangle counting tra-
verses each vertex v’s neighbors n and intersects the neighbor
lists of v and n. It represents more complex structure-only
graph traversal. For triangle counting, we implicitly undi-
rected all graphs. Breadth-first traversal (BFS) traverses the
graph with increasing distance from the source and, thus, ran-
domly accesses vertices’ neighbors. We run 4-hop BFSs from
40 deterministically random selected sources; these traversals
stop once all vertices that are reachable within four hops
of the source were visited. To show the performance of un-
bounded BFSs we calculate each vertex’s closeness centrality
value—its average shortest distance to all other vertices [20].
Depth-first traversal (DFS) traverses long paths of previously-
unvisited vertices in the graph. In contrast to BFS, a DFS
from a source v can follow significantly different paths in two
graph snapshots Gt1 and Gt2 . We run 10-hop DFSs from 40
deterministically random selected sources. For unbounded
DFS traversals we experimented with Tarjan’s strongly con-
nected components algorithm (SCC). We run SCC only on
directed graphs because undirected graphs’ SCCs are equal
to their weakly connected components, for which significantly
more efficient algorithms exist.

Our implementations of PageRank, triangle counting and
closeness centrality are parallelized. The BFS, DFS and
strongly connected components implementations are serial.

5.1.2 Datasets

We evaluate SAMS using multiple real-world graphs as
well as synthetic graphs of various sizes. Because of their
predominance in practice, we focus on small-world networks.
Table 2 shows the evaluated graphs and their properties:
vertex and edge count, average degree, full and average
diameter, and whether they are directed and temporal.

The synthetic Linked Database Counsil (LDBC) graphs are
designed to resemble a social network’s friendship graph [9].
We generated them at different scales using the LDBC gener-
ator2, version 0.2.6. Although LDBC graphs are undirected,
in our SCC experiments we use them as directed graphs
by not generating the implicit back edges to show the algo-
rithm’s graph size scalability. All real-world graph datasets
were obtained from the KONECT repository [11].

Unless stated differently, we evaluate all algorithms for 512
distinct graph snapshots, where the first snapshot comprises
80% of all edges and their incident vertices. We add the
remaining edges and vertices in the subsequent 511 snapshots.
For temporal datasets, the subsequent snapshots span equal
periods of time but may contain varying edge counts. For

2https://github.com/ldbc/ldbc_snb_datagen
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non-temporal graphs, we deterministically randomize the
edges’ order and create the subsequent snapshots with equal
edge counts. We base our assumption of 20% change rate,
i.e., edges added after the first snapshot, on multiple social
networks’ published growth averages per year.

5.1.3 Competitors

We compare our SAMS-transformed algorithms against
the respective original non-SAMS algorithms, and variants in
Chronos’s strategy and a commercial graph analytics system.
Chronos [7] is a graph analytics system that is designed

to execute scatter/gather algorithms on multiple snapshots.
In contrast to SAMS’s algorithm-centric approach, Chronos
executes vertex or edge-centric algorithms. This simplifies
processing algorithms vertex or edge-synchronously without
applying complex transformation rules. As we were not able
to obtain the source or a binary of Chronos, we implemented
three multi-snapshot scatter/gather algorithms in the au-
thors’ proposed design, using the same language and compiler
as for our algorithms. We compare the performance of SAMS
and our implementation of Chronos’s strategy in Section 5.3.

Furthermore, we implemented multi-snapshot analyses for
PageRank and triangle counting in a commercial in-memory
graph analytics system. While this system showed perfectly
linear runtime scaling with the number of analyzed snapshots,
its absolute runtimes were not competitive. For example, we
ran the experiment from Section 5.3, measuring 1024 snap-
shot computations, on the much smaller LDBC 10 graph.
With the commercial system this experiment took 129 min-
utes for PageRank and 47 minutes for triangle counting as
compared to SAMS’s 3.8 seconds and 1.5 seconds, respec-
tively. This highlights that existing general purpose graph
analytics systems are not suited for multi-snapshot analyses
yet. We excluded this system from our further evaluation.

5.2 Degree of Concurrency
An algorithm’s SAMS variant is concurrently executed

on multiple graph snapshots. We refer to the number of
concurrently processed instances as the degree of concurrency
ω. While the SAMS transformation works for arbitrary ω,
its choice has implications on the maximum possible graph
access and computation sharing. The higher ω, the more
sharing is potentially possible; however, higher ω also means
that a given vertex’s algorithm-local properties consume more
space in the CPU cache, possibly evicting other important
data. To analyze more than ω snapshots, the SAMS algorithm
is executed for each batch A⊆S, |A|≤ω.

In this section we evaluate how the degree of concurrency
ω influences the overall runtime and, thus, the speedup of
SAMS execution over traditional snapshot-at-a-time execu-
tion. Figure 3 shows the SAMS algorithms’ speedup for each
evaluated algorithm and varying degrees of concurrency.

Our measurements show that SAMS significantly improves
the performance of multi-snapshot analytics for all tested
algorithms. Yet, the actual speedup factors are dependent on
the algorithms as well as the datasets, as is expected because
of their different respective properties. The SAMS PageRank
algorithm shows speedups of up to one order of magnitude.
It already saturates the machine’s memory bandwidth for
low degrees of concurrency, and the achieved speedup does
not change significantly for ω >16. In contrast, SAMS tri-
angle counting does not need to access vertex properties.
For datasets with a high average degree, it scales almost
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Figure 3: Speedup of SAMS over snapshot-at-a-time execu-
tion for varying degrees of concurrency.

linearly with increasing ω, exhibiting a nearly 200x speedup
at ω=256 for the LDBC-100 graph. This speedup is caused
by SAMS’s graph-synchronous execution which avoids redun-
dant computation during common neighbors traversals. The
BFS-based algorithms 4-hop BFS and closeness centrality
also show good ω-scalability, mainly because SAMS’s shared
data accesses amortize the cost of memory accesses. For the
depth-limited 10-hop DFS, we see speedups of one to two
orders of magnitude because the same paths are traversed
in many snapshots, sharing data accesses, and, thus, again
amortize the cost of main memory accesses. However, SCC ’s
SAMS variant only exhibits limited speedup. This is be-
cause SCC runs unbounded depth-first traversals for which
the paths taken by the program instances diverge heavily,
so that only very limited data and computation sharing is
possible. For the Wikipedia dataset SAMS even caused a
slowdown for ω>64 because the cost of SAMS techniques,
e.g., the use of data flow instead of control flow (Rule 4),
outweighed the initial iterations’ performance gains shown
in our 10-hop DFS measurements. Such slowdowns can be
avoided using a fallback to simple DFS execution when no
more sharing is possible, i.e., |A|=1.

For ω=64 SAMS shows very good speedups for all tested
algorithms. This degree of concurrency is, thus, an advisable
choice for practical implementations, should no additional
cost model be available.

5.3 Snapshot Count and Competitor
The previous section evaluated SAMS for a fixed number of

512 snapshots. In practical scenarios, other snapshot counts
may be of interest. Figure 4 shows the absolute runtimes of
executing the PageRank, closeness centrality and triangle
counting algorithms on a varying number of snapshots using
SAMS and Chronos’s strategy. The measurements were done
using the LDBC 100 dataset which exhibits typical speedups
in our ω-scalability measurements. For SAMS and Chronos’s
strategy we set the degree of concurrency 4≤ω≤256 such
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Figure 4: Absolute runtime to process a varying number of
snapshots, using the LDBC 100 graph.

that ω is always as close as possible to the actual number of
processed snapshots.

Our measurements show that the SAMS PageRank is not
sensitive to the number of processed snapshots, showing a
3-4× speedup over snapshot-at-a-time execution. Because
our original PageRank algorithm is already highly optimized,
both the snapshot-at-a-time and the SAMS PageRank per-
form virtually the same computations. As SAMS improves
the execution’s locality, its speedup results from amortized
random memory accesses during neighbor traversal, which
give an almost constant factor. For triangle counting, we
see that the SAMS variant’s speedup over snapshot-wise
processing increases with the number of processed snapshots,
as more snapshots allow more computation sharing. We see
the maximum relative speedup of 173× at 256 snapshots;
for more snapshots the speedup remains constant. The rea-
son for this is that our implementation is only designed for
ω≤256 and runs multiple SAMS batches beyond this num-
ber of snapshots. Closeness centrality can also leverage the
similarities between snapshots well. It shows between 3 and
18× speedup for 4 and 1024 snapshots, respectively.

As pull-based PageRank matches the scatter/gather com-
pute model very well, Chronos’s strategy exhibits a similar
speedup as SAMS when many snapshots are analyzed. For
few snapshots its speedup is less pronounced because it must
amortize higher fixed costs from the compute model’s active
vertex management. For the BFS-based closeness centrality,
Chronos’s strategy is significantly slower than the SAMS-
transformed algorithm because it must amortize the synchro-
nization cost of message scattering and gathering which is
inherent in the vertex-centric approach. This synchronization
cost is largely independent of the number of processed snap-
shots because in Chronos’s strategy only one batched message
must be sent per vertex and neighbor. We found that for less
than 256 processed snapshots the Chronos strategy closeness
centrality even exhibits higher absolute runtime than our
original snapshot-at-a-time algorithm. The synchronization
issue also exists in the triangle counting algorithm which
scatters each vertex’s incident vertices to its neighbors to
ensure locality in the gather step. While Chronos’s strategy
greatly improves the relative performance of scatter/gather
triangle counting, its absolute performance is more than an
order of magnitude lower than that of SAMS. Furthermore,
as a result of temporarily storing the broadcasted neighbor
lists, for triangle counting Chronos’s strategy inherently has
a much bigger memory footprint.

5.4 Snapshot Similarity
SAMS leverages similarities between graph snapshots to

avoid redundant data accesses and computations. Thus, it
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Figure 5: SAMS speedup for varying percentage of edges in
the base graph, using the LDBC 100 graph.

can be expected that the effectiveness of SAMS is propor-
tional to the analyzed snapshots’ similarity. To that end,
we measured how SAMS’s speedup over snapshot-at-a-time
execution changes for varying base snapshot sizes between
0%, i.e., the base graph is empty and all edges are added
in the snapshots, and 95%, i.e., most edges are in the base
graph and only few are added in the snapshots. As we used
a fixed snapshot count of 512, the analyzed snapshots are
more similar when there are more edges in the base graph.
Figure 5 shows our results for fixed ω = 64 for LDBC 100.

We see that SAMS’s speedup for PageRank is independent
of the snapshots’ similarity. This is expected because, as
we explained in the previous section, PageRank’s snapshot-
at-a-time and SAMS variants perform the same number of
computations, only differing in their achieved data locality.
In contrast, closeness centrality shows higher SAMS speedups
for more similar snapshots, confirming our expectation that
SAMS’s effectiveness is proportional to the snapshots’ simi-
larity. For the triangle counting algorithm this is even more
pronounced, as it can share more computation among similar
snapshots. Our other algorithms also followed this trend.

6. RELATED WORK
Recently, various systems to efficiently store and analyze

large graphs have been proposed [5, 8, 15, 18]. In accordance
with the majority of analytic graph algorithms, these systems
are designed to process graphs at a single point in time.
SAMS also uses algorithms that are designed to process
graphs at a single point in time, but is able to efficiently
evaluate them for multiple snapshots of a graph at arbitrary
points in time. SAMS does so by means of batched execution.

Existing work shows that in graph analytics, batched exe-
cution has great potential to improve the efficiency of spe-
cialized algorithms [19] and programming models. In the
context of the vertex and edge-centric programming models,
Chronos [7] and the very similar PED [23] were proposed for
graph analytics on snapshots. Vertex and edge-centric
algorithms are, however, less expressive [16], hence, they give
fewer opportunities to optimize nested computations, data
structures and complex graph traversals. We compare SAMS
with Chronos in Sections 5.1.3 and 5.3.

Batching has also been studied in the context of SQL

database queries. Cook and Wiedermann have presented
a compiler which groups requests to a remote server to save
communication time [4]. Guravannavar and Sudarshan de-
signed a rule-based transformation system for user-defined
functions intermixed with SQL [6]. It can hoist recurring
SQL queries from for loops and expose optimization poten-
tial to the database optimizer. SAMS’s data access batching
and algorithm transformation are conceptually similar to
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both approaches’ SQL query batching. In contrast, SAMS
does not rely on subsequent relational optimizers but directly
builds the final execution—the transformed algorithm for a
fixed batch size. This is beneficial to avoid runtime overhead,
because SAMS’s unit of batching is a single data access in-
stead of a complex query. Furthermore, SAMS is specifically
targeted at the requirements of multi-snapshot graph analyt-
ics, which allow leveraging graph specific assumptions that
enable, for example, graph-synchronous traversal and our
locality-optimized data layout. Thus, SAMS extends existing
batching work towards the requirements of graph analytics
on modern architectures.

Update-optimized graph database systems like Del-
taGraph [10] focus on efficiently storing updates and pro-
viding potentially compressed views of the graph at multiple
points in time. Similarly, data structures like LLAMA [14]
were proposed to efficiently store graph snapshots. SAMS is
well-suited to process algorithms on this basis.

In addition, temporal graph algorithms that explic-
itly use the time dimension were proposed in various ar-
eas, e.g., shortest paths [22] and centralities [17]. They take
into consideration how the graph changes over time and,
thus, have different semantics than SAMS-transformed al-
gorithms. Moreover, designing and understanding temporal
algorithms poses additional challenges compared to SAMS
which automatically applies algorithms to multiple snapshots
of temporal and multi-snapshot graphs.

7. CONCLUSION
We showed that Single Algorithm Multiple Snapshot

(SAMS) can automatically transform existing graph algo-
rithms such that they share common computation and graph
accesses in multi-snapshot analyses. Depending on the al-
gorithm, SAMS can give up to two orders of magnitude
speedup over snapshot-at-a-time execution.

8. ACKNOWLEDGMENTS
This research was supported by the German Research

Foundation (DFG), Emmy Noether grant GU 1409/2-1, and
by the Technical University of Munich - Institute for Ad-
vanced Study, funded by the German Excellence Initiative
and the European Union Seventh Framework Programme un-
der grant agreement no 291763, co-funded by the European
Union. Manuel Then was a recipient of the Oracle External
Research Fellowship.

9. REFERENCES
[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren.

Conversion of control dependence to data dependence.
In SIGACT-SIGPLAN, pages 177–189, 1983.

[2] S. Beamer, K. Asanović, and D. Patterson.
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