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ABSTRACT

Spatial data is pervasive. Large amount of spatial data is
produced every day from GPS-enabled devices such as cell
phones, cars, sensors, and various consumer based applica-
tions such as Uber, location-tagged posts in Facebook, In-
stagram, Snapchat, etc. This growth in spatial data coupled
with the fact that spatial queries, analytical or transactional,
can be computationally extensive has attracted enormous
interest from the research community to develop systems
that can efficiently process and analyze this data. In recent
years a lot of spatial analytics systems have emerged. Exist-
ing work compares either limited features of these systems or
the studies are outdated since new systems have emerged. In
this work, we first explore the available modern spatial pro-
cessing systems and then thoroughly compare them based on
features and queries they support, using real-world datasets.
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1. INTRODUCTION
There has been an explosion in the amount of spatial data

being generated at the moment. It comes from the web, bil-
lions of phones, sensors, cars, satellites, and a huge array of
various other sources. For example, NASA [16] provides cli-
mate projections since 1950 until 2100 for conducting stud-
ies of climate change impact. The dataset is approximately
17 TB in size. Gartner has also forecasted that there will be
more than 20 billion connected devices in 20201 which will
lead to even more spatial data being generated. Location-
based services are also on the rise. These services generate a
large amount of location data on a daily basis. Foursquare,
a popular cell phone application, has over 12 billion check-
ins till date and has more than 105 million venues mapped

1http://www.gartner.com/newsroom/id/3165317
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around the world [7]. Uber, a Transportation Network Com-
pany (TNC), recently reported completing 5 billion rides [25]
till date, more than doubling the reported 2 billion rides
completed last year. Lyft, another TNC, now serves 1 mil-
lion rides a day [13]. Twitter, a popular social media giant,
generates approximately 10 million [23] geo-tagged tweets
every day. The value of the data is ultimately tied to its
use. Analyzing such large amount of spatial data can lead
to variety of insights and better services as well as new prod-
ucts. An analysis [19] of NYC Taxi dataset and Uber barely
scratches the surface of the information that is available
in such datasets, which could lead to better business deci-
sions. Analysis of geotagged tweets helps in predicting vari-
ous trends, such as eating habits of people [24], and effects of
temperature on happiness [2] to predicting the people who
may need help during disasters [20]. Uber uses its data to
provide better services by predicting price surges and mak-
ing city transportation more efficient [27]. Moreover, these
TNCs are now providing aggregated information about the
trips taken in various cities to the Transportation Author-
ities of respective cities for analysis [26] [22]. Foursquare,
which started as a check-in company has evolved its prod-
uct Swarm to be a personal data collector of all the places a
user has been to and has also launched Location Intelligence
for brands to locate and message consumers.

The era of big spatial data has lead the research com-
munity to focus on developing systems that can efficiently
analyze and process spatial data. Systems to manage and
analyze big data have existed for a long time (Hadoop [8],
Impala [9], Spark [35], however, spatial support in these sys-
tems had not existed. This lead to various Hadoop based
spatial systems being developed (HadoopGIS [1], Spatial-
Hadoop [5]). Similarly, there have been plenty of spatial
processing and analytics systems that have been developed
for Spark (SpatialSpark [31], GeoSpark [33], Simba [30], Lo-
cationSpark [21], and Magellan [14]). Spatial extensions for
databases, have seen a similar trend with Oracle Spatial [17],
MemSQL [15], Cassandra [3], and HyPer [18]. The general
approach of building such systems is on-top, from-scratch
and built-in and has been well documented in [6].

In this Experiment and Analysis paper we present:

• A brief survey of available modern spatial analytics
systems, including two new systems that have not been
covered in literature previously

• A thorough performance evaluation of the available
systems using a real world dataset, focusing on major
features that are supported by the systems
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The remainder of this paper is structured as follows: Sec-
tion 2 gives the motivation to carry out this study. Section 3
presents the spatial queries domain explaining which queries
we consider for this study. Section 4 summarizes a broad
variety of existing big spatial data analytics systems high-
lighting salient features of each system. Section 5 gives the
details about the experimental setup and datasets used for
evaluation of the spatial analytics systems. Section 6 gives
the details about the performance evaluation of the systems
which is followed by the conclusions in Section 7.

2. MOTIVATION
The aim of our study is to compare five Spark-based sys-

tems namely, SpatialSpark, GeoSpark, Simba, Magellan and
LocationSpark, using five different spatial queries (range
query, kNN query, spatial joins between various geometric
datatypes, distance join, and kNN join) and four different
datatypes (points, linestrings, rectangles, and polygons). Al-
though we include SpatialHadoop and HadoopGIS in the
brief survey of modern big data spatial analytics systems,
we decided to omit them from evaluation. We only consider
spatial analytics systems based on Spark for evaluation since
Hadoop based systems like SpatialHadoop and HadoopGIS
have consistently been shown to perform poorly compared
to Spark based systems in existing work.

There have been multiple studies that compare these sys-
tems based on various queries and performance metrics but
all of them are incomplete or only compare a limited fea-
tures of the systems. SpatialSpark [31] implements two
join algorithms, point-in-polygon and point-to-polyline

distance join, and evaluates the two implementations. In
the extended study [32], point-in-polygon and polyline-

with-polyline intersection join performance is evaluated
for Hadoop-GIS, SpatialHadoop, and SpatialSpark. In [33],
GeoSpark compares itself with SpatialHadoop for intersec-
tion based join between linestring-polygon and kNN query
performance. In [21] LocationSpark compares the kNN join
performance against the state-of-the-art kNN join algorithms.
Simba [30] evaluates itself with a variety of systems including
Hadoop-GIS, SpatialHadoop, SpatialSpark, GeoSpark, and
the state-of-the-art kNN join algorithms only on the point
data type. Both Simba and LocationSpark support kNN
joins but they have not been evaluated against each other.
Simba does not support linestring and polygon datatypes
yet. The join and range query performance comparison for
these geometric objects are missing. Also, Simba only con-
siders a small window of selection ratio for range queries,
and only compares itself with SparkSQL variant for these
windows. Moreover, all the performance comparison in the
aforementioned studies were done using a large cluster,
and a scalability study of these systems is missing.

Meanwhile, some of these systems have been actively de-
veloped and many optimizations have been added. Since
the previous studies, GeoSpark has introduced many new
datatypes and has also added a query optimizer. Also,
Magellan [14] has gathered attention in the Free And Open
Source Software for Geospatial2 (FOSS4G) committee and
has not been evaluated in any existing study.

To summarize, these are some open ended questions miss-
ing in the existing literature:

2http://foss4g.org/

• How do the modern in-memory spatial analytics sys-
tems perform for all the major features that they sup-

port?

• How do these systems perform for all possible spatial
join combinations of various geometric data types?

• Where is the time actually spent during various join
queries?

• How well do these systems perform for different se-
lection ratios for range queries for different geometric
objects?

• What are the memory costs related to the systems?

• Do the memory costs have any impact on query per-
formance?

• How well do these systems scale for the queries that
they support?

We aim to fill this gap and compare the modern in-memory
spatial analytics systems to present a complete study, while
the experiment files and setup provided will make it easier
for researchers to benchmark these systems against future
spatial analytics systems or spatial algorithms.

3. QUERIES
For the queries, we consider four geometric features or

datatypes: points, linestrings, rectangles and polygons sub-
sets (or all) of which are supported in most of the evaluated
systems.

The queries considered for evaluation are: single relation
operations (range query, kNN query) and join operations
(distance join, spatial joins and kNN join). There can be
other spatial queries such as computational geometry opera-
tions, spatial data mining operations, and raster operations.
These queries are well-defined in [6]. We do not consider
these queries since the evaluated systems do not support
these queries and evaluating systems that do is out of the
scope of this paper. We will now briefly describe the set of
queries that we consider for evaluation.

3.1 Range Query
A range query takes a range R and a set of geometric

objects S, and returns all objects in S that lie in the range
R. Formally,

Range(R,S) = { s|s ∈ S, s ∈ R }.

3.2 k Nearest Neighbors Query
A kNN query takes a set of points R, a query point q, and

an integer k ≥ 1 as input, and finds the k nearest points in
R to q. Formally,

kNN(R, q) = {T ⊆ R, |T | = k ∧ ∀t ∈ T,

r ∈ R− T : d(q, t) ≤ d(q, r)}.

3.3 Spatial Join
A spatial join takes two input sets of spatial records R and

S and a join predicate θ (e.g., overlap, intersect, contains,
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Figure 1: A generalized indexing scheme for distributed spa-
tial analytics systems.

within, withindistance) and returns a set of all pairs (r,s)
where r ∈ R, s ∈ S, and θ is true for (r,s). Formally,

R ⊲⊳θ S = { (r, s) | r ∈ R, s ∈ S, θ(r, s) is true }.

A distance join is a special case of spatial join where the join
predicate is withindistance. For the sake of clarity, we will
refer to distance join as is and do not include it in spatial
joins.

3.4 k Nearest Neighbors Join
A kNN join takes two input sets of spatial records R and

S and an integer k ≥ 1 and returns for all objects r ∈ R
theirs k closest neighbors in S. Formally,

R ⊲⊳kNN S = { (r, s) | r ∈ R, s ∈ kNN(S, r) }.

4. SPATIAL ANALYTICS SYSTEMS
In this section, we briefly review the cluster-based systems

that support spatial data management, queries and analyt-
ics over distributed data using a cluster of commodity ma-
chines. We study the various features, data partitioning and
indexing schemes, and queries that are supported in these
systems. Table 1 gives an overview of the features of the
different spatial analytics systems.

An important point to make here is that distributed sys-
tems, generally, use a two level indexing scheme consisting of
a global index in the master node and multiple local indices
in the slave nodes. Figure 1 shows the generalized indexing
scheme. The input file is first partitioned based on a parti-
tioning scheme, each partition is then indexed using a spe-
cialized spatial index (e.g., R-tree, R+-tree, Quadtree etc.),
and finally these local indices are indexed in a global index
on the master node. This is also known as the preprocessing
phase, wherein the data is loaded from the distributed file
system, and is partitioned logically or physically which is
useful for query processing. The quality and performance of
partitioning techniques have been thoroughly covered in [4].

4.1 Hadoop-GIS
Hadoop-GIS [1] is a scalable and high-performance spa-

tial data warehousing system for running large scale spatial
queries on Hadoop. It was the first system based on Hadoop
to support spatial queries. Hadoop-GIS treats Hadoop as a
black box and relies on underlying architecture for process-
ing. For partitioning, Hadoop-GIS uses a uniform grid to
partition the space first and then map the objects to the
tiles. If partitioning creates some high density tiles, these
tiles are broken down into smaller tiles to handle this data
skew. In [29], Hadoop-GIS added more partitioning tech-
niques to provide flexibility to the system. Here, the input
data is partitioned in four steps: Sample, Analyze, Tear and
Optimize (SATO). 1-3% of the data is sampled and the den-
sity distribution of the dataset is computed. The Minimum
Bounding Rectangles (MBR) from the sampled dataset are
fed to the Analyzer which decides the optimum global par-
titioning scheme for the global partitions. In the Tear phase
each global partition is further partitioned to create local
partitions. The physical partitioning takes place in this step.
In the Optimize phase the data is re-scanned and statistics
about the partitions are collected to build the multi-level
index. This is an example of dynamic partitioning and in-
dexing, which takes into consideration the distribution and
skew of spatial data. These indices are used to process the
queries supported: range and spatial join queries. Hadoop-
GIS supports points, rectangles, and polygons. Hadoop-GIS
extends HiveQL with spatial query support and integrates
the spatial query engine into Hive.

4.2 SpatialHadoop
SpatialHadoop [5] is a full-fledged MapReduce framework

with native support for spatial data. It enriches Hadoop
with spatial constructs and awareness of spatial data inside
the core functionality of Hadoop and is thus able to ob-
tain better performance than Hadoop-GIS since it has to
deal with no layer overhead. SpatialHadoop partitions the
dataset into n partitions that confirm to three conditions (i)
each partition should fit one HDFS block (64MB), (ii) the
objects close to each other in space should be assigned to
same partition and, (iii) all partitions should be of similar
size for load balancing purposes. The input dataset can be
partitioned and indexed using either Grid Index, R-tree or
R+-tree. Since, R-tree performs the best in most cases as
reported in the publication, we will describe the partition-
ing phase using R-tree. SpatialHadoop bulk loads a sample
from the input dataset into an in-memory R-tree using the
Sort-Tile-Recursive (STR) algorithm. It computes the num-
ber of partitions, n, based on the size of the input file. It
then fills the R-tree with degree d (

√
n) using the STR algo-

rithm. The STR algorithm ensures that the tree is balanced
and the degree d of the tree ensures that there are at least n
nodes in the second level of the tree. The second level of the
tree is used to physically partition the input dataset. In the
physical partitioning step, each input record is assigned to a
partition which requires the least enlargement to cover the
record. After physical partitioning, each partition is bulk
loaded into an R-tree using the STR algorithm and dumped
to a file. The block in local index file is annotated with the
MBR of its content. In the global indexing phase, all local
indexed files are concatenated and the global index is cre-
ated by bulk loading all the blocks into an R-tree using the
annotated MBR as the index key. SpatialHadoop extends
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Table 1: Overview of features in spatial analytics systems

Hadoop-

GIS

SpatialHadoop SpatialSpark GeoSpark Magellan SIMBA LocationSpark

In-Memory
Processing

No No Yes Yes Yes Yes Yes

Language HiveSP Pigeon N.A. N.A. Extended
SparkSQL

Extended
SparkSQL

N.A.

Partitioning
Techniques

SATO
Framework
(Multiple

partitioning
techniques)

Quad, STR,
STR+, K-d,

Hilbert,
Z-curve

Uniform,
Binary-Split,

STR

Quad, KDB,
R-tree,
Voronoi,
Uniform,
Hilbert

Z-curve STR Uniform,
R-tree, Quad

Index R*-tree R-tree R-tree R-tree,
Quadtree

None R-tree R-tree,
Quadtree, IR

tree

Datatypes Point,
Rectangle,
Polygon

Point,
Rectangle,
Polygon

Point,
LineString,
Rectangle,
Polygon

Point,
Rectangle,
Polygon,

LineString

Point,
LineString,
Polygon,

MultiPoint,
MultiPolygon

Point Point,
Rectangle

Queries Range,
Spatial Joins

Range, kNN,
Spatial Joins

Range, Spatial
Joins

Range, kNN,
Spatial Joins,
Distance Join

Range, Spatial
Joins

Range, kNN,
Distance Join,

kNN Join

Range, kNN,
Spatial Join,

Distance Join,
kNN Join

FileSplitter and RecordReader in Hadoop to support spatial
records. SpatialFileSplitter uses the global index to prune
out blocks that do not contribute to the query result. Spa-
tialRecordReader exploits the local index in the partitions
received from SpatialFileSplitter to efficiently process the
query. It also extends Pig Latin, called Pigeon, with spa-
tial support. SpatialHadoop supports range queries, kNN
queries, and spatial joins. It has support for point, rectan-
gle, and polygon datatypes.

4.3 SpatialSpark
SpatialSpark [31] is a lightweight implementation of spa-

tial support in Apache Spark. It targets in-memory pro-
cessing for higher performance. SpatialSpark supports mul-
tiple geometric objects including points, linestrings, poly-
lines, rectangles, and polygons. It supports multiple spatial
partitioning schemes fixed grid, binary split and STR par-
titioning. For indexing, SpatialSpark uses an R-tree. Spa-
tialSpark offers a variety of operations on spatial datasets
including range queries on all types of geometric objects,
spatial joins between various geometric objects and distance
joins. It supports 1NN queries but does not support kNN
queries and kNN joins.

4.4 GeoSpark
GeoSpark [33] is an in-memory cluster computing frame-

work based on Apache Spark for processing large spatial
data. It consists of three layers: (i) Apache Spark Layer,
(ii) Spatial RDD Layer, and (iii) Spatial Query Processing
Layer. GeoSpark extends the core of Apache Spark to sup-
port spatial datatypes, indexes, and operations. GeoSpark
extends the resilient distributed datasets (RDDs) to support
spatial datatypes. Apache Spark Layer is responsible for na-
tive functions that are supported by Spark such as load/save
data to persistent storage. Spatial RDD layer extends Spark

with spatial RDDs (SRDDs) that can efficiently partition
SRDD elements across machines and also introduces paral-
lelized spatial transformations. GeoSpark introduces sup-
port for various types of spatial objects: points, linestrings,
rectangles, and polygons. It also provides a Geometrical
Operations library which has geometrical operations such
as Ovelap() (find overlapping objects), MinimumBoundin-
gRectangle() which returns the MBR of either every object
in the SRDD or largest MBR encompassing every object
in the SRDD, Union() which returns the union of all poly-
gons in the SRDD. GeoSpark also comes with a query op-
timizer. GeoSpark supports multiple partitioning schemes
including, Quadtree, KDB tree, R-tree, Voronoi, fixed grid,
and Hilbert partitioning. GeoSpark has two indexes avail-
able, R-tree and Quadtree. GeoSpark has support for range
queries, spatial join queries, and kNN queries. GeoSpark
does not support kNN joins.

4.5 Magellan
Magellan [14] is a distributed execution engine for spa-

tial analytics on big data. It leverages modern database
techniques in Apache Spark like efficient data layout, code
generation, and query optimization in order to optimize spa-
tial queries. Magellan extends SparkSQL to accommodate
spatial datatypes, geometric predicates, and queries. Magel-
lan has support for points, linestrings, rectangles, polygons,
multipoints, and multipolygons. Magellan supports range
queries and spatial joins but does not support kNN queries,
distance joins, and kNN joins. Magellan also adds geometric
predicates such as intersects, within, and contains. Magel-
lan uses on the fly indexing of the geometrics objects but can
also leverage the indices if they were persisted earlier. Mag-
ellan uses Z-order curve for indexing and appends a column
to the dataset with the Z curve values. To perform join
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queries efficiently, Magellan intercepts the query plan and
overwrites it to use Z-curve index. It uses an inner join on
the Z-curve and a predicate filter on top of the inner join, in-
stead of a cross join between two input datasets. In this way,
the Z-curve actually ends up acting as a spatial partitioning
technique in Magellan.

4.6 SIMBA
Simba [30] (Spatial In-Memory Big Data Analytics) is a

distributed in-memory analytics engine that supports spa-
tial queries and analytics over big spatial data in Spark 3.
Simba extends Spark SQL to support spatial operations.
Simba also adds spatial indices in RDDs and SQL context,
which helps in reducing query latencies and increasing ana-
lytical throughput by executing queries in parallel. It also
introduces logical and physical optimizers to select better
query plans. Tables are represented as RDDs of records of
the table, thus indexing records of the table means index-
ing elements of the RDDs. To partition the data, Simba
uses a similar strategy as SpatialHadoop where an R-tree
is constructed by sampling the input dataset and filled us-
ing the STR algorithm to get the first level of the tree that
represents the partition boundaries. These boundaries are
only the MBR of the sampled set, which are extended as
each record is added to the partition. Simba provides flex-
ibility to the user to specify its own partitioning scheme
as well, since the Partitioner abstract class in Spark allows
users to specify their own partitioning strategy. For index-
ing within an IndexRDD, Simba uses an R-tree by default.
Finally, a global index is constructed by using the parti-
tion boundaries from the partitioner and statistics from the
local index. Simba supports a variety of queries which in-
clude, range (rectangle and circle) queries, kNN queries (on
points), distance joins (between points), and kNN joins (be-
tween points). Simba does not have support for spatial joins.

4.7 LocationSpark
LocationSpark [21] is a spatial data processing system

based on Apache Spark. It provides a wide range of spa-
tial features. It supports a rich set of spatial queries: range
queries, kNN queries, spatial joins and kNN joins. Loca-
tionSpark introduces a spatial RDD layer named Location-
RDD which can be cached in memory. LocationSpark has
a query scheduler component which can detect if there is
a query skew, by actively collecting statistical information
from each partition. If it detects a hotspot partition for a
query, a cost model evaluates the overhead of repartition-
ing and takes suitable action. For data partitioning, similar
to other systems, LocationSpark samples the input dataset
and partitions data accordingly. A user has the flexibility
to choose between either a uniform grid or Quadtree as the
partitioning scheme. It also provides flexibility for local in-
dices. A user can choose between Fixed-Grid, R-tree, or a
Quadtree for indexing the data locally within a partition.
Furthermore, LocationSpark also has a spatial bloom filter
termed sFilter embedded with the global and local indices
to prune out more partitions for a query, which helps in re-
ducing network communication costs. LocationSpark sup-
ports two geometric datatypes: points and rectangles. Loca-

3Note: The latest stable Simba release is the standalone
package outside of Spark (i.e. a library running on top of
Spark) and we benchmark it and not the version in the orig-
inal publication which is built inside Spark core

Table 2: Evaluated systems, their compatible Spark version,
and defaults for the experiments

System Version Amazon
EMR and

Spark
Version

Spatial
Partition-

ing

Index

SpatialSpark 1.0 emr-5.9.0
(2.2.0)

STR R-tree

GeoSpark v1.1.3 emr-5.9.0
(2.2.0)

Quadtree R-tree

Magellan v1.0.5 emr-5.9.0
(2.2.0)

Z-curve Z-curve

LocationSpark the first
version

emr-4.9.3
(1.6.3)

Quadtree Quadtree

Simba Standalone
package

compatible
with Spark

2.1.x

emr-5.7.0
(2.1.2)

STR R-tree

tionSpark supports range queries (on points), kNN queries
(on points), spatial joins between points and rectangles, and
kNN joins (between points).

5. EXPERIMENTAL SETUP

5.1 Cluster Setup And Tuning Spark
To evaluate the systems we deploy variable sized clusters

on Amazon AWS. We make use of the Amazon Elastic Map
Reduce (EMR) framework to deploy the Spark cluster. The
master node which runs the YARN resource manager for
the cluster is an EC2 instance of type m4.xlarge that has 8
vCPUs and 16 GB main memory. For slave nodes we make
use of r4.8xlarge EC2 instances which have 32 vCPUs and
244GB main memory. We also attach 100GB general pur-
pose SSDs to each slave node. We deploy 1, 2, 4, 8, and 16
slaves nodes in the cluster to evaluate the systems and their
scalability. We will only count the slave nodes in the clus-
ter since the master node only runs the resource manager
and is in no way responsible for any computation for the
applications. We deploy the Spark applications in cluster-
mode where the Spark driver is deployed on one of the slave
nodes as Application Master. Since not all systems were
compatible with latest Spark release we deployed clusters in
different EMR versions. Table 2 shows the different systems
evaluated, their compatible Spark versions and the default
values we used for the experiments. The default number of
partitions in every system has been set to 1024 for every
query unless stated otherwise.

Amazon EMR cluster model has a master node and slave
nodes. The master node runs the resource manager, by
default YARN, which manages the cluster resources. The
Spark applications are deployed on the slave nodes. The
Spark execution model has two main components, the driver
and the executors. The driver breaks up the work into tasks
and assigns them to the executors. By default, Amazon
EMR launches the cluster with maximizeResourceAllocation,
which means that if there are four slave nodes in the cluster,
then one node is selected as the driver and the other three as
executors. This means that 25% of the cluster resources are
dedicated to the bookkeeping tasks that the driver performs
and only 75% of the resources are available for processing
data. Moreover, having only three executors with all cores
per node assigned to these executors in the cluster is not
the optimal setting and often leads to poor HDFS through-
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Table 3: Details of the datasets used for evaluation

Dataset Geometry
type

Number of
records

Raw file
size

(GBs)

Total
number
of co-

ordinates

OSM Nodes Point 200 million 5.4 200
million

OSM Roads LineString 70 million 18 803
million

OSM
Buildings

Polygon 114 million 19 764
million

OSM
Rectangles

Rectangle 114 million 14 573
million

put and failed Spark jobs4. We tuned every cluster in our
experiments to utilize resources optimally by following the
guidelines in the Cloudera Engineering Blog5.

5.2 Datasets
To evaluate the systems we make use of the Open Street

Maps (OSM) dataset made available by [5]. The OSM dataset
comprises of All Nodes (Points), Roads (LineStrings), and
Buildings (Polygons) datasets. The full OSM dataset con-
tains 2.3 billions points on earth (All Nodes), 70 million
roads and streets around the world (Roads), and 114 mil-
lion buildings (Buildings). We sampled a subset of 200
million points from All Nodes dataset. We sampled the
points from the dataset because some join results can be ar-
bitrarily large with the full dataset and will not fit entirely in
driver’s memory. To extract the subset we make use of the
shuf command in Linux. In addition to these datasets, we
also generated a Rectangle dataset which is generated from
the Buildings dataset by computing the minimum bound-
ing rectangles of the polygons. We also needed to clean the
datasets since some of the geometric objects did not com-
ply with the OGC standard for spatial objects. To clean
the datasets we used Java Topology Suite (JTS6) library
which is OGC compliant. It is important to point out here
is that certain systems only expect geometries in a particu-
lar format (such as Well-Known Text) as input, so we had to
pre-process files in order to make them suitable as inputs for
the different systems. In some cases the files sizes reduced
because we had to strip the metadata from the files. Table 3
shows the details of the datasets used for evaluation. The
datasets used for evaluation are available on our server7 and
all experiment files are available on GitHub8. We will refer
to the datasets as Point, LineString, Rectangle, and Polygon
datasets from now on.

We also ran the experiments with the US Census TIGER
dataset provided by [5]. We used the LineString dataset
from the TIGER dataset which contains approximately 70
million linestrings in US. There are other datasets in TIGER
but they are limited in size (less than 2 million spatial ob-
jects). To have a larger dataset to join with, we generated
a rectangle dataset by computing bounding boxes of these
linestrings. We also extracted 170 million points that are
in the US region from the OSM dataset to join with these
datasets. Due to space constraint, we do not include the
results of the queries on these datasets here, but they are

4https://databricks.com/session/top-5-mistakes-when-
writing-spark-applications
5http://blog.cloudera.com/blog/2015/03/how-to-tune-
your-apache-spark-jobs-part-2/
6https://github.com/locationtech/jts
7http://osm.db.in.tum.de/
8https://github.com/varpande/spatialanalytics

available on the aforementioned GitHub page. The results
are similar to the OSM dataset.

5.3 Spark Memory Management Model and
Caching RDDs

Spark’s memory management model is split into two parts,
storage memory and execution memory. The amount of
memory assigned to Spark after reserving memory for in-
ternal data structures is split into execution and storage
memory. Execution memory refers to the memory that is as-
signed for computations such as joins, aggregations, shuffles,
and sorts. Storage memory is the amount of memory that is
used for caching the user datasets in memory. The total as-
signed memory is split 50/50 between storage and execution
memory and is managed by spark.memory.storageFraction
parameter. If no execution memory is needed, storage can
acquire all the memory and vice versa. Execution memory
can evict (spill to disk) storage blocks in case more execu-
tion memory is needed, and execution memory is immune
to eviction.

Spark allows the user to cache (or persist) the RDDs in
memory if they are used multiple times for computation. If
sufficient storage memory is available in the cluster it is ad-
visable to cache such RDDs. One purpose of choosing the
AWS instance r4.8xlarge is that it comes with large mem-
ory so the RDDs can be cached. Even if RDDs do not fit
in the memory in deserialized form, they can be serialized
and persisted in memory. Most of the evaluated systems
come with a custom serializer for the spatial RDDs which
is based on Spark’s KryoSerializer. Caching such RDDs
is system specific and differs quite a bit because of differ-
ent design choices. GeoSpark has an abstract SpatialRDD
layer. It consists of three RDDs: RawSpatialRDD, Spa-
tialPartitionedRDD, and IndexedRDD. When a SpatialRDD
is initialized (e.g., new PointRDD()), the RawSpatialRDD
gets populated. SpatialPartitionedRDD can be initialized
by specifying the spatial partitioning technique, and then
calling some action on the RDD. Initially for every type of
query we keep the RawSpatialRDD in MEMORY_ONLY persis-
tence level. Once the SpatialPartitionedRDD is generated,
we unpersist the RawSpatialRDD as it is not needed in any
query operation and keeping it in memory even in serial-
ized form just incurs extra memory cost. We then populate
the IndexedRDD and keep it along with the SpatialParti-
tionedRDD in memory at all times for all query operations.
In Magellan, we make use of the dataframe API. We only
persist a dataframe that contains the spatial object and the
index for the object. LocationSpark has a LocationRDD and
QueryRDD abstraction layer. We only cache these Location-
RDD and QueryRDD for all query operations. In Simba, we
make use of the dataframe API. For single relation opera-
tions we cache a dataframe with an index. For join opera-
tions we do not build an index on the dataframe, since Simba
spatially partitions and indexes the datasets on the fly in-
side the join algorithms and does not utilize the persisted
index. Spatially partitioning the data and building index
on the dataframe is an overhead in case of join operations.
In SpatialSpark, we cache the spatial RDDs which have a
unique ID for every spatial element.

5.4 Performance Metrics
To measure and compare performance for single relation

queries, we submit a batch of 100 queries and compute the
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Figure 2: Memory footprint for various datasets

throughput of the systems in queries/minute. To measure
and compare the performance of different systems for join
queries, we make use of the following six performance met-
rics:

• Preparation time: the preparation time is the total
time spent by the system in reading the two datasets
from HDFS, partitioning the input datasets, and in-
dexing the partitions.

• Join time: the join time is the total amount of time
spent by the system to complete the join query. This
metric is a useful indication for use cases where the
datasets are already indexed and the join queries need
to run multiple times.

• Total runtime: the total runtime is the total of the
two aforementioned performance metrics. It is a useful
indication of end-to-end performance of the query.

• Shuffle write costs: the shuffle write is the sum of all
written serialized data on all executors before trans-
mitting to other executors at the end of a stage.

• Shuffle read costs: the shuffle read is the amount of
read serialized data on all executors at the beginning
of a stage in query execution.

• Peak Execution Memory: the peak execution memory
is the maximum amount of memory used at any point
in time for execution of a query.

In addition to the performance metrics, we also report the
index sizes for the different datasets.

6. EVALUATION

6.1 Memory Costs
In this section, we report the in-memory consumption of

the various data structures by caching the respective data
structures and observing the Storage tab in the Spark Web
UI9. Note that memory consumption for RDDs in Spark
cannot be obtained programmatically, as it can only report
approximate memory consumption of RDDs, hence these
values are not available in the Scala codes for the systems
in the GitHub page.

Figure 2 shows the raw spatial RDD sizes for various
datasets for the systems. It is normal for Java objects to
consume more memory than raw file size on disk10. We see

9https://spark.apache.org/docs/latest/tuning.html
10https://spark.apache.org/docs/latest/tuning.html#memory-
tuning
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Figure 3: Indexing costs

most of the systems consume almost 3x more memory for
every dataset. Also spatial partitioned RDDs add additional
overhead because most of them use a replication-based tech-
nique to handle boundary objects. As mentioned before, the
common technique for these systems to generate partitions
is to sample the dataset first and decide spatial boundaries
for the partitions based on this sampled data. When the
spatial objects are loaded from the file system, they are
mapped to these partitions. When a spatial object overlaps
with multiple partitions, it is replicated to these multiple
partitions, which increases the memory cost. Another point
to make here is that both GeoSpark and SpatialSpark store
JTS Geometry objects in the raw spatial RDD. The differ-
ence in their memory consumption is because SpatialSpark
also adds a unique ID to each element in the RDD, which
accounts for a slightly higher memory usage.

Figure 3 shows the index sizes for various systems for the
different datasets. Simba and LocationSpark have the low-
est memory consumption for indices for the Point dataset.
LocationSpark only keeps the point coordinates and its two
MBR coordinates in the Quadtree, and thus the indexing
cost is low. Simba serializes its index (default persistence
level is MEM_AND_DISK_SER) and thus the index cost
is very low. An unusual case is Magellan’s LineString index
which consumes close to 60 GB of main memory compared
to its indices for other datasets. The reason is that Magellan
generates Z-curve to approximate the shapes. For Points, it
has to generate one cell value for each coordinate. Polygons
and Rectangles can be approximated using large cells and
hence the cell counts for these geometric objects is low. For
LineStrings, Magellan ends up generating cells for each co-
ordinate in each linestring record in the dataset. There are
a total of 803 million coordinates in the LineString dataset
and hence Magellan ends up generating the same amount of
cells for the LineString dataset.

6.2 Range Query Performance
To evaluate range queries, we varied the selection ratio

(σ) to cover a wide range for selection. We generated six
ranges for each dataset that cover six selection ratios for
each dataset. In this experiment, we loaded and indexed
the datasets in every system and do not include the costs
to prepare them. We submit a batch of 100 queries for
each range for each type of dataset and evaluate the query
throughput in queries/minute.

Figure 4 shows the range query performance for the differ-
ent systems on a single node varying the selection ratio (σ)
from 0.0001 to 100. Magellan does not have any optimiza-
tion for range queries and ends up scanning all partitions
for all selection ratios for all datasets. It serves as a base-
line for other systems. For the point dataset, LocationSpark
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Figure 4: Range query performance on a single node for
different selection ratio (σ)
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Figure 5: Range query performance for all geometric objects
scaling up the number of nodes [selection ratio (σ) = 1.0]

performs the best for selection ratios 0.0001 and 0.01. This
is due to the sFilter (spatial bloom filter) that it puts on
top of the global and local indices. The global index in the
systems provides multiple overlapping partitions that inter-
sect with the given range. LocationSpark can further filter
out partitions using the sFilter from the global index and
local indices that do not contribute to the answer and avoids
unnecessary scans of partitions and network costs. As the
selection ratio increases, LocationSpark’s performance de-
grades as well, similar to other systems, which is expected
as more partitions need to be scanned for higher selection
ratios. GeoSpark performs better than Simba, because it
utilizes the deserialized IndexedRDD compared to the seri-
alized index that Simba uses to minimize memory costs and
for fault tolerance. Figure 5 shows the range query perfor-
mance for different datasets, fixing the selection ratio (σ) to
1.0 and scaling up the number of nodes in the cluster. This
experiment shows that all the systems scale well with the
number of nodes. The scalability is not perfectly linear, but
it is acceptable.

Figure 6 shows the range query performance for differ-
ent datasets for all selection ratio (σ) while scaling up the
number of nodes in the cluster. GeoSpark dominates in per-
formance for all the datasets, except in Points dataset where
LocationSpark performs 5x better for low selection ratios.

6.3 kNN Query Performance
To study kNN query performance, we generate 100 ran-

dom location points in the longitude range (-180.0,180.0)
and the latitude (-90.0,90.0) range, issue the random loca-
tions to the systems and measure the throughput of the
systems in queries/minute. We also vary the value of k be-
tween 5 and 50. Only three systems support kNN queries:
GeoSpark, Simba, and LocationSpark.

Figure 7 shows the kNN query performance varying the
value of k on a single node. It can be seen that Loca-
tionSpark’s throughput fluctuates a lot and is not as sta-
ble compared to Simba and GeoSpark. We repeated the
experiments multiple times and encountered performance
spikes for all values of k. This can be attributed to the
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Figure 6: Range query performance scaling up the number
of nodes for different selection ratio (σ) on different datasets

sFilter that can significantly decrease the number of parti-
tions to scan. GeoSpark utilizes the JTS library for most of
its operations. GeoSpark uses nearestNeighbour function in
JTS which uses the Branch-and-Bound tree traversal algo-
rithm to provide efficient search for k nearest neighbor in the
STRtree (IndexedRDD in GeoSpark). This means distance
computation to other objects would only be limited to one
(or at most two in case the query point overlaps with multi-
ple partitions or is close to the boundaries of partitions). It
then uses takeOrdered from the results to produce k nearest
neighbors. Simba, on the other hand first computes a safe
pruning bound to select partitions that contain at least k
candidates. It then computes the tight pruning bound by
issuing the kNN queries on the selected partitions. Again,
similar to GeoSpark, the selected partitions are usually one
or two for low values of k since most partitions would contain
way more than k elements. Simba, also uses takeOrdered on
distances to return the first k elements. The difference in
their performance comes from the serialized index in Simba.
Simba scans over the serialized index while GeoSpark has to
scan the deserialized index. LocationSpark, can efficiently
utilize the sFilter on global and local indices to reduce the
distance computations to points in the LocationRDD. The
fluctuation in performance is due to periodic updates to the
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Figure 8: kNN query scalability with k = 10

sFilters. Figure 8 shows the kNN query performance scala-
bility with value the of k fixed to 10.

6.4 Distance Join Performance
Only three systems support distance join queries: Simba,

GeoSpark and SpatialSpark. Note that DJSpark (Distance
Join) in Simba partitions the datasets inside the algorithm
and thus we had to embed the timers to compute Prepara-
tion Time inside the join algorithm. This is the case with
SpatialSpark as well. To measure the performance of dis-
tance joins we use the Points dataset. The distance for the
query is set to 5 meters.

Figure 9 shows the distance join cost breakdown for these
systems while scaling up the number of nodes. For distance
join, Simba samples both datasets and partitions the two
datasets, R and S, using the STR algorithm. Simba then
produces partition pairs (i,j) such that r ∈ Ri, s ∈ Sj and
distance(r,s) ≤ D (where D is the distance for the join). Af-
ter generating these candidate pairs, Simba generates a com-
bined partition P = (Ri,Sj) for each pair (i,j) and broadcasts
them to the workers for local join processing. In local join
processing, Simba creates local indices for Sj on the fly, and
uses Ri to probe into the index to produce the final result.
SpatialSpark samples data from only one input dataset and
uses partition MBRs to build a spatial index to assign par-
tition IDs for each data item on both sides of the join. This
index is broadcasted to all nodes. The data items in both
dataset are used to query the index to compute the partition
ID that each data item should be assigned to. This assign-
ment of the partition IDs is done using the STR algorithm.
The partitioned data items are grouped based on the parti-
tion ID on both sides of the join using groupByKey function
of the RDD. Then the partitions on the two sides are joined
into one using the hash-based join on the partition IDs (one-
to-one integer matching). Finally, these combined partitions
are sent to the nodes for local join processing where local
indices are built for the partitions and geometric refinement
is done. This is how SpatialSpark handles all types of joins
(including spatial joins). The spatial predicate (intersects
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Figure 9: Distance join cost breakdown scaling up the num-
ber of nodes
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Figure 10: Distance join scalability
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Figure 11: Distance join shuffle costs

or withindistance) for refinement is handled in the local join
processing phase. GeoSpark handles the joins in a similar
way. An advantage with GeoSpark is that user has more
control since it exposes the spatial partitioning and index
RDD APIs for applications. This means that distance join
(or any join) can be called multiple times without incurring
extra costs of partitioning and indexing the RDDs again. In
the case of SpatialSpark and Simba, the partitions and the
indices are created on the fly which means that partitioning
and indexing is tightly coupled with the join algorithm. This
implies that the input datasets will be partitioned again, in
case distance join has to be invoked again. SpatialSpark
and Simba can be tuned to reuse the partitions from the
previous join query, but this would require changes to the
systems source code rather than the application code. Fig-
ure 10 shows the scalability of the systems for distance join
query based on Total Join Time and Figure 11 shows the
shuffle read and shuffle write costs related to the systems. It
can be seen that Simba has the highest shuffling costs. The
peak memory consumption by GeoSpark, SpatialSpark, and
Simba for distance join are 149 GB, 287 GB, and 211 GB

respectively for the three systems.

6.5 Spatial Joins Performance
In this experiment, we measure spatial join performance

for all possible combinations of geometric objects. To eval-
uate the systems, we make use of the intersects predicate
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Figure 12: Scalability of all spatial joins for different systems while scaling up the number of nodes
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Figure 13: Spatial joins peak execution memory consump-
tion
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Figure 14: Spatial joins shuffle read costs
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Figure 15: Spatial joins shuffle write costs
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Figure 16: Total runtime cost breakdown for spatial joins
between various geometric objects on a single node
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Figure 17: Point-Rectangle spatial join cost breakdown scal-
ing up the number of nodes

in every case. We study the Preparation Time, Join Time,
Peak Execution Memory consumption, Shuffle Write costs
and Shuffle Read costs for evaluating join query perfor-
mance. It is also important to mention here is that at the
time of writing, Magellan does not have a full implemen-
tation of Point-LineString and LineString-LineString join.
These joins only work for the filter phase where join partners
can be filtered out based on the Z-curve value but no exact
intersection test takes place. The results produced are only
an approximation of the actual join.

Figure 12 shows the scalability of all possible spatial joins
based on Total Runtime. Figure 13 shows the peak execu-
tion memory consumption, Figure 14 shows the shuffle write
costs and Figure 15 shows the shuffle read costs related to
the systems. Figure 16 shows the spatial joins cost break-
down and join performance for different systems on a single
node and Figure 17 shows the Point-Rectangle join perfor-
mance for different systems while scaling up the number of
nodes in the cluster.

It can be seen that SpatialSpark has the highest Peak Ex-
ecution Memory consumption, like in the case of distance
join. It can also be seen that Magellan has high Shuffling
costs compared to the other systems, especially in the case
of joins that involve LineStrings. For the join, Magellan
rewrites the plan, to use Z-curve value as the key and adds
a filter that checks if the curves intersect or not. If the curves
intersect, only then does Magellan check whether the spatial
objects actually intersect or not. In the refinement phase,
Magellan ends up shuffling a lot of data. Note that very
little data is shuffled for Point-LineString and LineString-
LineString joins, since these join only have the filter phase.
Although, Geospark has high memory consumption for in-
put RDDs, it does not exhibit high Peak Execution Memory
consumption or high Shuffling costs. In almost all cases,
GeoSpark performs best for the spatial joins if Total run-
time is considered.

From the figures we can also see that LocationSpark out-
performs the closest competitor GeoSpark for Point-Rectangle
join (the only supported spatial join in LocationSpark) by
1.5x. This is due to couple of reasons. Firstly, its has
low memory related costs. Secondly, LocationSpark has
two abstract spatial layers, LocationRDD (for locations or
points) and queryRDD (for rectangles), and a query sched-
uler. LocationRDD is globally and locally indexed along
with their embedded sFilters. The query scheduler first
estimates the cost of query runtime using sampled queries
and partitions from queryRDD and LocationRDD. Location-
Spark uses reservoir sampling [28] to sample queries from the
queryRDD and partitions from the LocationRDD and esti-
mates the runtime costs if queries are executed on the sam-
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Figure 18: kNN join cost breakdown scaling up the number
of nodes
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Figure 19: kNN join scalability

pled partitions. The costs are estimated using techniques
proposed in [12]. It then takes the partitions with high
query runtime estimates and estimates the cost of repar-
titioning these partitions and computes the runtime costs
to run sampled queries on repartitioned partitions. If the
estimated cost of repartitioning and runtime is less than the
previously estimated runtime costs, it adds the repartition-
ing step in the execution plan. This ensures that not only
the partition sizes are well balanced but also the amount
of work on the executors is also more or less well balanced.
Secondly, LocationSpark also filters out multiple partitions
for a tuple from the queryRDD to join against using its sFil-
ter, in a similar way as it does it in the case of range and
kNN queries.

6.6 kNN Join Performance
Only two systems support kNN join: Simba and Loca-

tionSpark. For kNN join query we fix the value of k to 5
and measure the join performance for the two systems. An-
other point to make here is that the kNN Join query for
the Points datasets (200 million points) crashed in Simba.
We will explain the reason later. Since, Simba [30] used a
maximum of 10 million points (for both datasets) in their
evaluation of kNN join, we decided to do the same. We sam-
pled 10 million points from the Points dataset and then ran
the kNN join query on them. Since we reduced the dataset
to 10 million points for both datasets we had to run multiple
experiments to determine a good number of partitions for
Simba. LocationSpark does not require tuning the number
of partitions for the LocationRDDs as the query scheduler
and optimizer already does it and overwrites the number of
partitions specified by the user. On the other hand Simba,
by default, sets the number of join and index partitions to
200 each. We found that 50 partitions performed the best
for Simba for 10 million points.

Figure 18 shows the kNN join cost breakdown and Fig-
ure 19 shows the scalability of the systems based on Join
Time. LocationSpark balances the work among the Spark
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Figure 20: kNN join shuffle costs

workers well, using the query cost estimation mentioned pre-
viously in Section 6.5. Simba is not able to do so, and
ends up creating overloaded partitions because of duplicated
points. This can be attributed to how the kNN join algo-
rithm (RKJSpark) works in Simba: Let the two datasets be
R and S. RKJSpark algorithm tries to find n partitions of S
to pair with n partitions of R, such that these paired parti-
tions can be combined into one RDD partition using zipPar-
titions and then kNN join can be run on them locally. The
pairing is done by computing distance bounds (γ). Simba
partitions R into n partitions (Rn) and computes a distance
bound (γi) for each partition Ri in two steps. First, for
each partition Ri, the algorithm computes the distance of
centroid (Ci) of the MBR (minimum bounding rectangle) of
the partition to the furthest point in the partition (we de-
note this distance as Di1). Second, it samples a set of points
from S and builds an R-tree on the sampled dataset. It then
computes the kNN of the centroid (Ci) of each partition (Ri)
from the sampled dataset using the R-tree and selects the
distance of the furthest kth neighbor (Di2). The distance
bound (γi) is then set to 2Di1 + Di2. Note that the distance
bound is different for each partition. The algorithm then
partitions S into n partitions based on

Si = { s|s ∈ S, distance(Ci, s) ≤ γi }

This means that for every s ∈ S, RKJSpark includes a copy

of s in Si if distance(Ci,s) ≤ γi. This creates a lot of dupli-
cated points in the partitions for S and leads to more and
redundant computations. This is also the reason, why Simba
crashes for the Points dataset (200 million) where it simply
runs out of heap space because of a lot of duplicated points.

Figure 19 shows the scalability of the systems for kNN
join query based on Join Time. It can be noticed that Lo-
cationSpark shows a slight increase in runtime for 8 and 16
nodes. This is due to the communication cost where more
executors return the local result to the driver.

Figure 20 shows the shuffle costs for each system. It can
be seen that Simba has a higher Shuffling related costs as
compared to LocationSpark. The peak memory consump-
tion for LocationSpark and Simba is 2.24GB and 1.75GB

respectively for the two systems.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we evaluated five Spark based spatial an-

alytics systems. We performed an experimental evaluation
of these systems using real-world datasets. Table 4 summa-
rizes the strengths and weaknesses of the systems. From our
experience, GeoSpark comes close to a complete spatial an-
alytics systems because of data types and queries supported
and the control user has while writing applications. It also

Table 4: Strengths and Weaknesses

System Strengths Weaknesses

GeoSpark Query optimizer No kNN join

Scales well

Rich in features

Active development

Simba Query optimizer Limited data types

Scales well No recent development

LocationSpark Query optimizer and scheduler Limited data types

Spatial bloom filter No recent development

Magellan Join query optimizer High shuffle costs

Low join time High preparation times

Scales well No range query optimization

Active development

SpatialSpark Scales well No recent development

High memory costs

exhibits the best performance in most cases. There are a
few drawbacks though. First, it consumes a large amount
of memory for the input datasets. Second, GeoSpark does
not support kNN joins yet. Magellan also exhibits good
performance for some spatial joins especially if only Join
Time is considered, but it does not have any optimization
for range queries. Also, it does not support kNN queries,
distance joins and kNN joins. Moreover, Magellan has very
high shuffling related costs. An advantage of GeoSpark and
Magellan is that they are actively under development. Lo-
cationSpark is interesting since it has a very good query
scheduler and optimizer. Also, it has a spatial bloom filter
sFilter which brings the query costs down. The aforemen-
tioned systems may look to incorporate such filters in their
system as well. Again, the limitation is that it has limited
data types and there has not been any development recently.
Simba, like LocationSpark, has very limited data types (only
points) and does not support spatial joins. SpatialSpark is
competitive but has high Peak Execution Memory consump-
tion. Moreover, there has been no active development. We
also see that all the systems evaluated scale pretty well with
more resources.

A recent development in the area of spatial joins has been
in the area of approximate and adaptive joins with precision
guarantees [34] [11] [10]. The motivation behind such joins is
that many applications today do not require the join results
to be accurate and only need an approximation to make cer-
tain decisions. The systems studied in this paper may look
to add such joins for such applications. Another interesting
field is the area of trajectory similarity search, and an oper-
ator for such queries in these systems would be a welcome
addition for many users. Also, Postgres with its extension
PostGIS is rich with a variety of spatial operators that the
Spark based spatial systems do not currently have and could
be implemented in the future.
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