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ABSTRACT
Interactive data visualization and exploration (DVE) appli-
cations are often network-bottlenecked due to bursty request
patterns, large response sizes, and heterogeneous deploy-
ments over a range of networks and devices. This makes it
difficult to ensure consistently low response times (< 100ms).
Khameleon is a framework for DVE applications that uses
a novel combination of prefetching and response tuning to
dynamically trade-off response quality for low latency.

Khameleon exploits DVE’s approximation tolerance: im-
mediate lower-quality responses are preferable to waiting for
complete results. To this end, Khameleon progressively
encodes responses, and runs a server-side scheduler that
proactively streams portions of responses using available
bandwidth to maximize user-perceived interactivity. The
scheduler involves a complex optimization based on available
resources, predicted user interactions, and response qual-
ity levels; yet, decisions must also be made in real-time.
To overcome this, Khameleon uses a fast greedy heuris-
tic that closely approximates the optimal approach. Using
image exploration and visualization applications with real
user interaction traces, we show that across a wide range
of network and client resource conditions, Khameleon out-
performs existing prefetching approaches that benefit from
perfect prediction models: Khameleon always lowers re-
sponse latencies (typically by 2–3 orders of magnitude) while
keeping response quality within 50–80%.
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1. INTRODUCTION
Interactive data visualization and exploration (DVE) ap-

plications, such as those in Figure 1, are increasingly popular
and used across sectors including art galleries [13], earth
science [38], medicine [9], finance [45], and security [27]. Like
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(a) (b)

Figure 1: Two DVE applications. (a) Image exploration:
hover over the left thumbnails mosaic to load full image on
the right. (b) Falcon visualization [49]: drag and resize range
filters in a subset of charts to update the others. We use
these in our experiments §6.

typical web services, DVE applications may be run on het-
erogeneous client devices and networks, with users expecting
fast response times under 100 ms [16, 41, 60]. However,
the resource demands of DVE applications are considerably
magnified and highly unpredictable, making it difficult to
achieve such interactivity.

Traditional interactive applications are based on point-
and-click interfaces such as forms or buttons, where there
may be seconds or minutes of delay between user requests.
In contrast, DVE applications update the visual interface
continuously as the user drags, hovers, or otherwise manip-
ulates the interface [18] (Figure 1). For example, all of the
charts in Figure 1b are updated continuously as the user
drags and resizes range filters. In short, DVE applications
support a large number of potential requests rather than a
few buttons, exhibit bursty [7] user interactions that gener-
ate a huge number of back-to-back requests with nearly no
“think time” between them, and issue data-dense requests
for tens of kilobytes to megabytes of data in order to render
detailed statistics or high-resolution images [14].

As a result of these combined factors, DVE applications
place considerable and unpredictable pressure on both net-
work and server-side data processing resources. Fortunately,
the database and visualization communities have made con-
siderable progress in reducing server-side [45, 83, 42, 12,
78] and client-side [27, 42] data processing and rendering
latencies. However, network bottlenecks still persist, and
can cripple user-facing responsiveness even if server and
client-side overheads are eliminated. Addressing network
bottlenecks is becoming paramount with the continued shift
towards cloud-based DVE applications that must remain
responsive across a wide variety of client network conditions
(e.g., wireless, throttled).
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The primary approach to masking network delays in in-
teractive applications is prefetching [21, 5, 36, 20, 75, 11, 2],
where responses for predicted future requests are proactively
cached on the client. Prefetching benefits inherently depend
on prediction accuracies, but sufficiently high accuracies have
remained elusive, even for well-studied classic applications
such as web pages [63]. DVE applications pose an even
more challenging setting for several reasons. Their bursty
request patterns, when combined with data-dense responses,
can easily exceed the bandwidth capacities of existing net-
works and cause persistent congestion. At the same time,
the massive number of potential requests makes building a
near-perfect predictor that can operate over long time hori-
zons infeasible—developing such oracles is an open problem.
Thus, prefetching for DVE applications is either ineffective or
wastes precious network resources which, in turn, can cause
(detrimental) cascading slowdowns on later user requests.

In this paper, we depart from traditional prefetching frame-
works that hope to accurately predict a small number of
future requests to prefetch, towards a framework that contin-
uously and aggressively hedges across a large set of potential
future requests. Such framework should also decouple request
burstiness from resource utilization so that the network does
not get overwhelmed at unpredictable intervals, and instead
can consistently employ all available network resources for
subsequent prefetching decisions.

A trivial, but undesirable, way to meet these goals is to
limit the user’s ability to interact with the interface, thereby
reducing the burstiness and scope of possible requests. In-
stead, we leverage the fact that DVE applications are ap-
proximation tolerant , meaning that response quality can
be dynamically tuned [44, 82, 25] to enable more hedging
within the available resources (at the expense of lower re-
sponse quality). Of course, this introduces a fundamental
tradeoff: the prefetching system can focus on low-quality
responses for many requests to ensure immediate responses,
or high-quality responses for a few requests at the risk of
more cache misses and slow responses. Balancing this trade-
off requires a joint optimization between response tuning and
prefetching, which, to date, have only been studied inde-
pendently. This involves a novel and challenging scheduling
problem, as the optimization space needs to consider the
likelihood of the user’s future access patterns over a large
number of possible requests, applications preferences between
response quality levels and responsiveness, and limited re-
source conditions. At the same time, the scheduler must run
in real-time.

We present Khameleon, a novel prefetching framework
for DVE applications that are bottlenecked by request latency
and network transfer. Khameleon dynamically trades off re-
sponse quality for low latency by leveraging two mechanisms
that collectively overcome the joint optimization challenges.

First, we leverage progressive encoding1 to enable fine-
grained scheduling. Each response is encoded as an ordered
list of small blocks such that any prefix is sufficient to ren-
der a lower quality response, and additional blocks improve
response quality. This encoding is natural for DVE ap-
plications, which can leverage existing encodings for e.g.,

1Progressive encoding is distinct from progressive com-
putation, such as online aggregation [32], which returns full,
yet approximate, responses by processing a sample of the
database. §7 discusses how progressive computation can
exacerbate network bottlenecks in more detail.

images [72, 25] and visualization data [5]. Progressive encod-
ing lets the prefetching system vary the prefix for a given
response based on its (predicted) future utility to the user.

Second, we shield network and server resources from pre-
diction errors and client burstiness by using a push-based
model, rather than having clients issue requests directly to
the server. The server streams blocks for likely requests
to the client cache using the available (or user-configured)
network capacity. The server-side scheduler determines a
global sequence of blocks to continually push to the client.
By default, it assumes that all requests are equally likely.
However, the application can define a predictor to estimate
future requests; in this case, the client uses the predictor to
periodically send forecasted probability distributions to the
scheduler, which updates the global sequence accordingly.
To ensure real-time operation, the scheduler uses a greedy
heuristic, which closely approximates the optimal algorithm.

Khameleon is a framework that is compatible with exist-
ing DVE applications. Khameleon transparently manages
the request-oriented communication between the DVE client
and server, and shields developers from the challenges of the
joint optimization problem. Developers can instead focus
on high-level policies, such as determining their preference
between latency and quality, and developing application-
specific progressive encoding schemes and prediction models.
§3.4 describes the steps that a developer would take to use
Khameleon with an existing DVE application.

We evaluate Khameleon using the two representative
DVE applications in Figure 1. Our experiments consider
a broad range of network and client resource conditions,
and use real user-generated interaction traces. Across these
conditions, we find that Khameleon is able to avoid net-
work congestion and degraded user-facing responsiveness
that arises from using indiscriminate prefetching (even if
that prefetching uses a 100% accurate predictor). For in-
stance, for the image exploration application, Khameleon
(using a simple predictor [74]) reduces response latencies by
up to 3 orders of magnitude (> 10s to ≈ 10ms) and maintains
a response quality of 50–80%. Similarly, with the Falcon
data visualization [49], Khameleon’s progressive encoding
improves response latencies on average by 4× and improves
response quality by up to 1.6×. Our experimental setup also
reveals that porting existing applications to use Khameleon
entails minimal burden. For example, modifying Falcon to
use Khameleon as the communication and prefetching layer
required fewer than 100 lines of code to issue requests to the
Khameleon client library and use a formal predictor.

Our contributions include 1) design and implementation
of Khameleon, a framework that combines real-time pre-
diction, progressive encoding, and server-side scheduling
for interactive DVE applications, 2) formalization and fast
greedy implementation of the server-side scheduling optimiza-
tion problem that balances request qualities and likelihoods,
3) and extensive evaluation using two DVE applications to
highlight the benefits of the Khameleon design.

2. DVE APPLICATIONS
Cloud-based DVE applications are information dense,

in that they render hundreds or thousands of data items
(e.g., records, images) that users can directly interact with.
The request patterns from these interactions are bursty with
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negligible think time between requests. These characteris-
tics lead to a rate of requests that stresses the network, often
exceeding the available capacity and resulting in congestion.

In order to address the potential network bottlenecks,
Khameleon leverages two key properties of DVE applica-
tions. First, interactions are preemptive: since responses
can arrive out of order (e.g., due to network or server delays),
the client renders the data for the most recent request and
(silently) drops responses from older requests to avoid con-
fusing the user [79, 80]. Second, they are approximation
tolerant : it is preferable to quickly render a low-quality
response (e.g., fewer points [61] or coarser bins [42]) than
to wait for a full quality response. As concrete examples,
consider the following two DVE applications which exhibit
these properties; we use both in our evaluation (§6).

Large-scale image exploration. We developed an image
exploration application (Figure 1a) based on large image
datasets of e.g., art [13], satellite data [38], cellular mi-
croscopy [9], and maps [30]. The user’s mouse can hover one
of 10, 000 image thumbnails on the left (akin to a zoomed-out
map view) to view the full resolution 1.3 – 2Mb on the right
(akin to a zoomed-in map tile).

We consider this an exemplar and difficult DVE applica-
tion because it has a high request rate, large response sizes,
and with 10K thumbnails, it is difficult to build an accurate
predictor for. For instance, from the user traces used in
our experiments, clients request up to 32 images per second
(32–64 MB)/s),2 not including any prefetching requests. In
addition, this application imposes fewer interaction restric-
tions than existing exploration applications that are plagued
by prefetching inefficiencies. For instance, applications like
Google Maps only let users pan to adjacent tiles and incre-
mentally zoom; this both simplifies prediction and limits the
rate of images that the user can request at a time.

Interactive data visualizations. Falcon [49] is a state-
of-the-art interactive visualization application specifically
optimized for prefetching (Figure 1b). As the user selects
and resizes range selections in any of the charts, the other
non-selected charts immediately update their statistics to
reflect the conjunction of all of the selections. The challenge
is that the space of possible combinations of selections is
exponential in the number of charts, and is infeasible to
fully precompute and send to the client up front. Yet, even
movements across a single pixel trigger many requests.

In order to minimize interaction delays, the Falcon devel-
opers [49] manually implemented prefetching to mask request
latencies. They observed that the user can only interact with
one chart at a time, and selections in the other charts are
fixed. When the user’s mouse moves onto chart A, Falcon
sends SQL queries to a backend database to compute low
dimensional data cube slices between chart A and each of
the other charts to update. Once these slices are constructed,
user interactions in chart A are handled instantaneously.

Falcon’s predictor prefetches data slices when the user hov-
ers over a chart, and it progressively encodes the data slices
as cumulative counts. However, these policies are hardcoded
in a monolithic codebase, making it challenging to improve
the predictor (e.g., estimate the chart the mouse will interact
with, rather than wait for a hover event), response encod-
ing (e.g., pixel-resolution and a coarse resolution ), or user

2For reference, streaming HD and 4K video typically
requires 5-20 Megabits (Mb)/s.
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Figure 2: Comparing Khameleon to a traditional prefetch-
ing architecture for an image exploration DVE application.
The interface is a 4× 4 grid of image thumbnails. The cursor
moved over images 16 and 11 (yellow line) and is now posi-
tioned over image 7; the probability of the mouse’s future
position is a gaussian distribution illustrated by the blue
ellipses (center is the highest probability). The gray boxes
are sized according to response sizes. Khameleon separates
the predictor from the cache, sends probability distributions
instead of explicit requests, and uses a scheduler to determine
the sequence of small request blocks to send to the client.

preferences (e.g., which attributes they favor). §6.4 describes
the details of how we adapted Falcon to use Khameleon
as the communication layer, and switched its database from
OmniSci to PostgreSQL.

3. KHAMELEON OVERVIEW
This section first describes traditional prefetching archi-

tectures and their limitations for DVE applications. It then
provides a high-level design overview of Khameleon, ex-
plaining its individual components (we elaborate on each
in the following sections), how they collectively overcome
the limitations of prior architectures, and how existing DVE
applications can be seamlessly migrated to use Khameleon.

3.1 Traditional Prefetching Architecture
Figure 2(a) depicts the workflow of a common prefetching

architecture for an image exploration DVE application. In
this application, a user interacts with a grid composed of 16
image thumbnails such that mousing over an image enlarges
its display size. As the user moves the mouse, the local cache
manager receives requests and immediately responds if the
data is cached, or forwards the request to the server. In
parallel, the gaussian distribution representing predictions of
the mouse’s future location is updated based on the mouse’s
current position (to improve prediction accuracy), and is
used to pick a set of requests to prefetch; these requests are
issued to the cache manager in the same way.

In this example, the user mouse has moved quickly along
the yellow path, triggering requests for images 16 and 11.
Given the bursty nature of these requests, the correspond-
ing responses are still being transmitted as the next user-
generated request is issued (for image 7).
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Unfortunately, because the full response data for images
16 and 11 fully utilize the available network bandwidth,
the response for 7 will have to contend with those old re-
sponses, delaying its arrival. To make matters worse, the
client prefetching mechanism will concurrently issue requests
for the k most likely next requests (2 and 6 in this example).

Limitations. The problem here is that the information that
enables the most accurate predictions (i.e., the mouse’s cur-
rent position) is available exactly when the user issues bursts
of requests that already congest the network. This has two
consequences. First, this largely eliminates any prefetching
benefits, and highlights its drawbacks: accurate prefetch-
ing requests are unlikely to return to the cache before the
user explicitly requests them (recall that DVE applications
experience low user think times), and inaccurate prefetch-
ing requests add unnecessary network congestion that slows
down explicit user-generated requests and future prefetch-
ing. Second, it is difficult to know what requests should
be prefetched during the times between user interactions
because the user, by definition, is not generating events; un-
fortunately, prefetching everything is impractical given the
high data footprint of DVE applications (§2).

3.2 Khameleon Architecture
Khameleon (Figure 2(b)) consists of client-side and server-

side libraries that a cloud-based DVE application can import
and use to manage data-intensive network communication.
These components operate as follows to overcome the afore-
mentioned limitations of traditional prefetching architectures.

The client-side library serves to decouple prefetching re-
quests from the (bursty) network utilization triggered explic-
itly by the user. User-generated requests are not sent out on
the network, and instead are registered with the local Cache
Manager. The Cache Manager waits until there is cached
data to fulfill the request, and then makes an application
upcall to update the interface with that data. This approach
helps absorb high user request rates. As this happens, client
events (e.g., mouse movements) and requests are also passed
to an application-provided Predictor Manager that continu-
ally updates a distribution of predicted future requests and
sends a summary of that distribution (e.g., the parameters
of a gaussian distribution) to the server.

The server-side library uses intelligent push-based schedul-
ing and progressive encoding of responses to make the most of
the available network resources, i.e., balancing user-perceived
latency and response utility while hedging across potential
future requests. The Scheduler continually maintains a sched-
ule of response blocks to push to the client; the set of blocks
covers a wide range of explicit and anticipated requests, e.g.,
images 11, 7, etc. in Figure 2(b). The specific sequence of
blocks depends on the predicted request probabilities received
from the client, as well as an optional application-provided
Utility Function that quantifies the “quality” of a response
based on the number of prefix blocks available. Note that a
single block is a complete response, with additional blocks
improving “quality” according to the Utility Function. A sep-
arate Sender thread reads the schedule and retrieves blocks
from backend systems. For example, the file system could
be pre-loaded with the blocks for progressively encoded im-
ages, or a database could dynamically execute queries and
progressively encode the results before returning the subset
of required blocks to the Sender.

Finally, the server streams the sequence of response blocks
to the client, which updates its local cache accordingly.

As we describe in §3.4, this design enables the application
to independently improve its prediction model, utility func-
tions, data encodings, backends, or scheduling policies. The
Khameleon architecture is agnostic to how the application
client interprets and decodes the blocks, as well as to the
specific backend system that is employed.

3.3 System Components
Predictor Manager. This client-side component relies on
an application-provided predictor to forecast future requests
(as a probability distribution over the possible requests), and
periodically sends those predictions to the server. Predictors
must satisfy two properties. First, at time t, the predictor
must return a probability distribution Pt(q|D) over requests
q and future times t + D. Second, it must be Anytime,
so that the Predictor Manager can ask for distributions of
predicted requests to send the server at any time during
system operation. It is also important that the predictor’s
state is efficient to maintain, and that the distributions can be
compactly represented for transmission to the server. These
mechanisms enable the Predictor Manager to control policies
for how often to make and send distributions.

Progressive Results and Caching. Each request’s pro-
gressively encoded response is modeled as an ordered list of
fixed size blocks; any prefix is sufficient to render (a possibly
lower quality) result, and the full set of blocks renders the
complete result. Smaller blocks can be padded if block sizes
differ. Our client-side cache implementation uses a ring buffer
(FIFO replacement policy) for its simplicity and determinism;
in particular, this simplifies the server-side scheduler’s ability
to track cached state at the client, since the FIFO policy can
be simulated without explicit coordination.3

During operation, the cache puts the ith block received
from the server into slot i%C, where C is the cache size.
The cache responds to a request if there is ≥ 1 response
block in the cache for the request. To implement preemptive
interactions (§2), the cache assigns each request an increasing
logical timestamp when it is registered, and deregisters all
earlier timestamps when an upcall for request i is made.

Utility Functions. In practice, the first few blocks of
a response are likely to contribute more than subsequent
blocks [61, 72, 43]. To quantify this, the application can op-
tionally provide a monotonically increasing Utility Function
U : [0, 1] 7→ [0, 1], which maps the percentage of data blocks
for a request to a utility score. A score of 0 means most
dissimilar, and 1 means identical to the full result, in expec-
tation. By default, Khameleon conservatively assumes a
linear utility function. As an example, Figure 3 plots the
utility curve for the image exploration application, which is
based on the average visual structural similarity measure [73]
between the progressive result and the full image.

Scheduler and Backends. The Scheduler decides the
sequence of blocks to push to the client. It schedules in
batches of C blocks (the client cache size) because the client’s
ring buffer will overwrite itself once it is filled. A given
batch (a schedule) is chosen to maximize the user’s expected
utility with respect to the probability distribution over future
requests. The separate Sender thread reads the schedule to

3Other deterministic replacement policies are possible and
incorporating them is left for future work.
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Figure 3: Utility functions: image exploration application
uses structural similarity (red), visualization application uses
system default linear function (blue).

learn about the order in which blocks should be retrieved
from the backend and placed onto the network. The backend
may be a file system, a database engine, a connection pool, or
any service that can process requests and return progressively
encoded blocks. Note that, given a progressive encoder, any
backend can be retrofitted by encoding its results. We retrofit
PostgreSQL for our visualization experiments.

By default, we assume that retrieving blocks from the
backend incurs a predictable delay. In addition, we assume
that the backend is scalable, in that the delay does not in-
crease considerably when more concurrent queries are issued
(e.g., speculatively for prefetching). This is natural for pre-
computed responses or backends such as a file system or key
value store. In cases where the backend can only scale to a
limited number of requests, Khameleon employs a heuristic
to limit the amount of speculation in accordance with the
supported scalability (§5.4).

3.4 Adapting Applications to Khameleon
This subsection describes how a DVE application (image

exploration in this case) can be easily and incrementally
adapted to use Khameleon. Recall that the application
issues an image request when the user’s mouse hovers over a
thumbnail; the server retrieves the full-sized image from the
file system, and sends it back to the client.

To use Khameleon, the application should provide a
progressive encoding of its responses, a utility function, and
a predictor. Since traditional requests and responses are
special cases of Khameleon’s predictor and encoder, we
start with generic defaults for these components. The generic
encoder treats each image as a response with a single block,
and the predictor treats each request as a point distribution.
By specifying this, an immediate benefit is that the scheduler
will use the point distributions to select the full requested
image (as in the existing application), and use the remaining
bandwidth to push random images for the client to cache.

We now show how a developer Jude can improve each
component for her application. A benefit of Khameleon’s
modular design is that the components can be improved
independently.

Improve the Encoder: Finer-grained blocks help improve
the scheduler’s ability to hedge across many requests given
finite bandwidth resources. Since JPEG is a progressive en-
coding, Jude replaces the naive encoder with a JPEG encoder
and configures the system with the block size. Further, she
can adjust the JPEG encoding parameters to create finer-
grained block sizes, or switch to an alternative progressive
encoding altogether [57].

Improve the Utility Function: By default, Khameleon
uses the linear utility function, where each block contributes
the same additional utility to the user. Jude computes

the structural similarity [73] for different prefix sizes over
a sample of images, and uses this to derive a new utility
function (e.g., Figure 3).

Improve the Predictor: Jude now uses her application
expertise to incrementally improve the predictor. One direc-
tion is to weigh the point distribution with a prior based on
historical image access frequency. Alternatively, she could
directly estimate the user’s mouse position using a variety
of existing approaches [56, 76, 77, 29, 4]. She can assess
the benefits of any modifications to the predictor based on
its empirical accuracy over live or historical user traces, or
higher-level metrics such as cache hit rates and number of
blocks available for each request—Khameleon reports both.

In §6.4, we describe how we adapted the state-of-the-art
Falcon DVE application to Khameleon with < 100 LOC.

4. PREDICTOR MANAGER
The application-provided prediction model Pt(q|D, et) uses

interaction events and/or requests et up until the current
time t in order to estimate the probability of request q at D
time steps in the future. Of course, there exist a wide range of
prediction models that satisfy this definition, with the appro-
priate one varying on a per-application basis. For example,
button and click-based interfaces benefit from Markov-based
models [31, 8, 17], whereas continuous interactions such as
mouse- or hover-based applications benefit from continuous
estimation models [4, 74, 56, 76]. Regardless of the predic-
tion model used, a commonality with respect to Khameleon
is that the events et (e.g., mouse movements, list of previ-
ous user actions) are generated on the client, whereas the
predictions are used by the server-side scheduler.

Given these properties, Khameleon provides a generic
API for applications to register their desired predictors;
Khameleon is agnostic to the specific prediction model
being suggested. The API (described below) decomposes a
predictor into client-side and server-side components, and
Khameleon’s Predictor Manager handles the frequency of
communication between the two components. The main
requirement is that the predictor is usable at any time to es-
timate a probability distribution over possible requests at ar-
bitrary time steps. We note that Khameleon does not man-
date a specific prediction accuracy. However, Khameleon
can report prediction accuracies, as well as application-level
performance metrics resulting from those accuracies, based
on live and historical user traces; developers can then use
this feedback to continually improve their predictors.

Predictor decomposition. Applications specify the pre-
dictor Pt as server and client components (correspondingly
colored):

Pt(q|D, et) = Pt
s(q|D, st)P

t
c(st|D, et)

The client component Pt
c collects user interaction events

and requests et and translates this information into a byte
array that represents the predictor state st. st may be the
most recent request(s), model parameters, the most recent
user events, or simply the predicted probabilities themselves.
The server uses st as input to Pt

s in order to return future
request probabilities for the Khameleon scheduler’s joint
optimization between prefetching and response tuning.

Importantly, this decomposition is highly flexible and can
support a variety of different configurations for predictor
components. For example, a pre-trained Markov model [31,
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8, 17] may be instantiated on the server as Pt
s, and the

client may simply send each event to the server (st = et).
Alternatively, the Markov model could be placed on the
client as Pt

c, with the state sent being a list of the top k most
likely requests, and the server component assuming that all
non-top k requests have probability of ≈ 0%.

Devising A Custom Predictor. We now walk through
the design of a custom predictor for interfaces with static
layouts, i.e., the two example DVE applications in Figure 1.
These are the predictors that we use in our experiments in §6.
We note that the purpose here is to elucidate the operation
of an anytime predictor and the process that a developer
may follow in designing a suitable (custom) one for their
application. We do not claim that the following predictor is
the best possible one for a given application.

The two DVE applications in Figure 1 both use a fixed
set of static layouts: one uses a grid of thumbnails, while
the other uses a set of fixed-size charts. Since requests
are only generated when a user’s mouse is positioned atop a
widget, the mouse position (x, y) is a rich signal for predicting
future requests. More specifically, the bounding boxes of
all widgets in the current layout l, denoted Pl, can directly
translate a distribution of mouse locations Pt

s(x, y|D, st) into
a distribution over requests:

Pt(q|D, et) = Pl(q|D, x, y, l)Pt
s(x, y|D, st)P

t
c(st, l|D, et)

We model Pt
s(x, y|D, st) as a gaussian distribution repre-

sented by the centroid and a 2× 2 covariance matrix—this
state is sent to the server. We choose a fixed set of D values
(50, 150, 250, 500ms in our experiments) to predict over, and
linearly interpolate between these times. Thus, the state st
only consists of 6 floating point values for each D, which we
estimate using a naive Kalman Filter [74] on the client, and
decode into a request distribution on the server.

Creating a custom predictor takes careful thought, however
note that any cloud application that uses prefetching needs
to develop or adapt a predictor. Our experiments in §6.3
show that Khameleon is effective even with an imperfect
predictor such as the Kalman Filter, because our novel sched-
uler explicitly and robustly account for predictor uncertainty
in its joint scheduling problem.

5. SCHEDULER
Khameleon’s server-side scheduler takes as input a util-

ity function U and a probability distribution over future
requests, and allocates finite network bandwidth and client
cache resources across progressively encoded data blocks to
maximize the expected user utility. Ultimately, it balances
competing objectives: ensuring high utility for high probabil-
ity requests and hedging for lower probability requests (i.e.,
sending some blocks for a low-quality response).

There are several challenges. First, the scheduler must
track previously sent blocks and ensure they are not evicted
from the client’s circular cache by the time they are needed.
Second, the scheduler needs to be real-time in order to not
block data transmission, but still must adjust its scheduling
decisions quickly when new predictions arrive from the client.
This section presents the formal scheduling problem descrip-
tion, an ILP-based solution, and a greedy approximation.

5.1 Problem Definition
Let time be discretized such that each time interval [t, t+1)

is the time that it takes for the server to add one block of
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Figure 4: Setting for Khameleon’s scheduling problem.

a response onto the network. In this problem definition, we
assume that each response is progressively encoded into Nb
equal-sized blocks.

Let Q = q1, . . . , qn be the set of all possible requests. In
Figure 4, there are n = 16 possible image requests with ids
1 to 16. The gaussian parameters estimated at time t are
the state st. The scheduler has received predictor state st,
which lets it estimate the probability P(qi|D, st) of qi being
issued at D time steps in the future. Let us assume that at
the start of scheduling, t = 0.

The client cache can hold C blocks, and the network band-
width is w blocks per time interval. The cache at time t
contains Bt

i blocks for qi. In the example, 21 refers to the
first block in image 2. The cache holds the first block of
image 11 (Bt

11 = 1), and the first two blocks of 7 (Bt
7 = 2).

Thus, Bt+1 = {Bt+1
1 , . . . , Bt+1

n } is the allocation at the end
of the interval [t, t + 1].

Problem 1 (Server-side Scheduling). Find the best

next allocation Bt+1 that maximizes V(Bt), given the cache
Bt and predictor state st:

V(Bt+D) =

max
Bt+D+1

{∑
i

U(Bt+D+1
i )P(qi|D+ 1, st) + gV(Bt+D+1)

}
(1)

Our objective function V includes two terms (colored in for-
mula and text). The first term is the expected user utility
at the next timestep t + D + 1. It weighs the utility of

Bt+d+1
i blocks (using the utility function) for request i by

its probability. The second term recursively computes the
future benefits. This enforces the dependency between time
intervals—it accounts for the long term and steers the sched-
uler towards a global optimum. g ∈ [0, 1] is a discount on the
future. g = 0 means we only care about the next timestep,
and g = 1 means we care about all timesteps equally.

In Figure 4, the scheduler computes the best allocation for
the next three time steps as the requests 2, 7, 6. The client
cache’s deterministic replacement policy lets the sender push
the appropriate block sequence 21, 73, then 61.

5.2 Approximate ILP Scheduler
Equation 1 is intractable because it contains an infinite

recursion, as well as terms that are unknown at prediction
time t. However, due to the design of the client cache as a
circular buffer, the cache will overwrite itself after every C
blocks. Thus, we approximate the solution by optimizing
over a finite horizon of C blocks:

V(st, B
t) = max

Bt+1,...,Bt+C

C∑
k=1

(
gk–1

n∑
i=1

U(Bt+k
i )P(qi, k)

)
(2)
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This formulation is a Markov Decision Process [59], where
actions (chosen block) in each state (contents of the cache)
receive a reward (user utility). We now describe an ILP-
based scheduler, followed by a fast real-time approximation.
In §8, we discuss the relationship with reinforcement learning
and future extensions.

Objective Function. Equation 2 can be expressed as an
integer linear programming (ILP) problem. ILP problems
require a linear objective, but the utility function U could
be arbitrarily concave. We linearize it by approximating
U with a step function Ũ, defined such that Ũ(0) = 0 and

Ũ(b) =
∑b

i=1 g(i) where:

g(i) = U

(
i

Nb

)
– U

(
i – 1

Nb

)
| i ∈ [1, Nb]

This approximation has no impact on the final result because
U is already discrete due to discrete block sizes.

Let Ut
i,j denote the expected utility gain of the j-th block

for qi sent during time interval [t – 1, t], where t ∈ [1, C].
Because this block is guaranteed to stay in the client cache
until timestep C, it will provide a constant amount of utility
gain through time interval [t, C]. Note that we dropped st
from P since, from the perspective of the scheduler, it is a
fixed prediction.

Ut
i,j =

C∑
k=t

gk–1P(qi|k)g(j)

We denote by fti,j a binary variable that indicates if the j-th

block of qi is sent at time interval [t–1, t]. With this notation,
we can transform the objective into a linear function:

C∑
k=1

(
gk–1

n∑
i=1

U(Bk
i )P(qi|k)

)
=

n∑
i=1

Nb∑
j=1

C∑
k=1

fki,jU
k
i,j (3)

Constraints. Our ILP program must account for three
constraints. The ring buffer’s limited capacity is implicitly
encoded in our choice of maximum time horizon C in the
objective. The ILP hard constraints ensure that (1) the
network bandwidth is not exceeded, and that (2) each block
is only sent once:

∀k
∑
i,j

fki,j ≤ l ∀i, j
∑
k

fki,j ≤ 1

Limitations. The LP scheduler is very slow because the
LP problem size, as well as the cost to compute the utility
gain matrix Ut

i,j, increases with the time horizon (cache size),

the interaction space (number of possible requests), and the
granularity of the progressive encoding (number of blocks).
For instance, if the image application (10k possible requests)
has a cache size of 5k blocks, and 10 blocks per request, the
LP will contain 0.5 billion variables. Simply constructing
the problem in the appropriate format for a solver is too
expensive for a real-time system, and further, this cost is
incurred for every C blocks to be sent. The technical report
[47] details micro-experiments, including comparisons with
the fast, greedy scheduler described next.

5.3 Greedy Scheduler
This subsection describes Khameleon’s fast greedy sched-

uler (Listing 1). The main design consideration is that it
can rapidly make scheduling decisions as the client sends

distributions at unpredictable rates, and without blocking
(or being blocked by) the sender. We first describe the sched-
uler design, and then discuss the interaction between the
scheduler and the sender. The technical report [47] describes
the formal semantics of a correct schedule, given a sequence
of distributions sent from the client.

5.3.1 Greedy Scheduler Design
Our greedy scheduler uses a single-step horizon (first term

in Equation (1)). It computes the expected utility gain for
giving one block to each request (accounting for the number
of blocks that have already been scheduled), and samples a
request qi proportional to its utility gain. The next block is
allocated to qi. It schedules batches of C blocks to fully fill
the client cache, then it resets its state and repeats.

State. The algorithm keeps three primary pieces of state
that vary over time. The first is the number of blocks assigned
to each request B = [b1, . . . , bn]. This is used to estimate
the utility gain for the next scheduled block, and is reset
after a full schedule (C blocks) have been scheduled. The
second state materializes g() as an array. The third state

precomputes the matrix Pi,t =
∫ C–1
k=t P(qi|k) that represents

the probability that the user will request qi over the rest
of the batch. This is estimated as a Reimann sum via the
Trapezoidal Rule (lines 8-11).

Scheduling is now a small number of vectorized opera-
tions. The expected utility gain at timestep t is the dot
product Pt • g[B], where Pt = [P1,t, . . . ,Pn,t] and g[B] =
[g(b1), . . . , g(bn)] are vectorized lookups (line 16).

Scheduler Algorithm. The client is allowed to send new
probability distributions at arbitrary times. If a new distribu-
tion arrives, we wish to use its more accurate estimates, but
also do not wish to waste the resources used for prior schedul-
ing work. Further, the scheduler should progress irrespective
of the rate at which the client sends distributions.

To make progress, each iteration schedules up to a batch
of bs blocks at a time (default of 100). After each batch,
it checks whether a new distribution has arrived, and if so,
recomputes the Pi,t matrix (lines 6-11). Since t blocks may
already have been chosen for the current schedule, we only
need to materialize the time slots for the rest of the schedule
(Pi,t′ where t′ ∈ [t + 1, C – 1]). After sending the scheduled
blocks to the sender, it resets t and B if a full schedule has
been allocated (lines 21-23).

Optimizations. We employ several straightforward opti-
mizations beyond the pseudocode in Listing 1. The main one
avoids materializing the full Pi,t matrix when the number
of requests is very high. Most requests will have the same
probability of ≈ 0 (images 4, 8, 9, 12, 13-16 in Figure 4), and
correspondingly similar utility gains. Thus, we group these
requests into a single “meta-request” whose probability is the
sum of the individual requests. If the scheduler samples this
meta-request in line 17, then it uniformly chooses one of the
individual requests. On a benchmark with 10K requests, 5K
blocks in the cache, and 50 blocks per request, this optimiza-
tion reduces the cost of generating one schedule from 1.9s to
150ms (13× reduction). Using this concept to further stratify
the probability distribution may further reduce runtime, but
we find that this optimization is sufficient in our experiments.
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1 C, g, n // cache size, utility array, # requests
2 bs = min(C,bs) // blocks to schedule per iter
3 B = [0,..,0] // # blocks for each req in cache
4 t = 0 // # blocks scheduled
5 while True:
6 if received_new_distribution ()
7 dist = get_new_distribution ()
8 for i∈[1, n]
9 Pi,C = dist(i, C)

10 for t’∈[C-1, t]

11 Pi,t′ = 1
t′+1

Pi,t′+1 + t
t′+1

dist(i,t’)

12
13 S = [ ] // generated batch of blocks
14 while t < C-1 and |S| < bs
15 t += 1
16 u = Pt • g[B]
17 q = sample requests proportional to u
18 S.append(q)
19 B[q] += 1
20
21 send S to sender
22 if t == C // reset after a full schedule
23 t,B = 0, [0,..,0]

Listing 1: Pseudocode of the greedy scheduler algorithm.

5.3.2 Sender Coordination
Our current prototype assumes that the client and server

clocks are synchronized to ensure that servers can ensure
sufficient confidence in predictions, and that the Sender
thread can be preempted. When a new prediction arrives
at the scheduler, it identifies the position i of the sending
thread in the current batch, and reruns the scheduler from
i to C. The blocks for 0 to i do not change since they have
already been sent. This is analogous to setting t = i.

The scheduler sends this partial schedule to the sending
thread, which in the meantime, may have sent an additional h
blocks. Thus, it simply starts sending using the partial sched-
ule at i + h. Concurrently, the scheduler begins scheduling
the next batch using the updated predictions. Note that the
scheduler may be modified to match a different client-cache
replacement strategy; we leave this to future work.

5.4 Implementation Details
Bandwidth Estimation. The sender thread and scheduler
require knowledge of the available network bandwidth, and
aim to run at a rate that will not cause congestion on the
network. Khameleon is agnostic to the specific end-host
bandwidth estimation (and prediction) technique that is
used to compute this information [82, 81, 35]. Further, note
that Khameleon can alternatively be configured to use a
user-specified bandwidth cap (e.g., to comply with limited
data plans). In our implementation, the Khameleon client
library periodically sends its data receive rate to the server;
the server uses the harmonic mean of the past 5 rates as its
bandwidth estimate for the upcoming timestep, and aims
to saturate the link. This approach capitalizes on recent
observations that bandwidth can be accurately estimated
over short time scales, particularly in backlogged settings
that avoid transport layer inefficiencies (e.g., TCP slow-start-
restart) [44] that mask the true available bandwidth at the
application layer [82].

Backend Scalability. This work assumes that backend
query execution is scalable, i.e., data stores can execute

Image Exp App Vis App (Falcon)

10ms 120ms 3s 10ms 120ms 3s 1m 6m
0.00

0.25

0.50

0.75

1.00

Thinktime (log)

C
D

F

Figure 5: CDF of think times (time between consecutive
requests) over interaction traces for the image and vis appli-
cations (§2).

many concurrent speculative requests without performance
degradation. This is often true for key-value-oriented back-
ends [78] or cloud services, but may not hold for other data
stores. For instance, databases such as PostgreSQL have a
concurrency limit, after which per-query performance suf-
fers. Thus, it is crucial for the scheduler to avoid issuing too
many speculative requests such that the backend becomes a
bottleneck in response latency.

Although formally addressing this interaction challenge
between Khameleon and data processing backends is beyond
the scope of this paper, we use a simple heuristic to avoid
triggering congestion in the backend. We benchmark the
backend offline to measure the number of concurrent requests
C that it can process scalably. Let n be the number of
requests the backend is currently processing; we post-process
schedules to ensure that they do not refer to blocks from more
than C – n distinct requests. In essence, we treat backend
request limits in the same way as network constraints.

6. EXPERIMENTS
We evaluate Khameleon on the DVE applications de-

scribed in §2. Our experiments use real user interaction traces
and a wide range of network and client cache conditions. We
compare against idealized classic prefetching and response
tuning approaches, highlight the benefits provided by each
of Khameleon’s features, and investigate Khameleon’s
sensitivity to environmental and system parameters. The
results comparing Khameleon with the baselines are consis-
tent across the applications. Thus, for space constraints, we
primarily report results for the image application, and use
Falcon to illustrate how Khameleon goes well beyond the
state-of-the-art hand-optimized implementation (§6.4).

6.1 Experimental Setup
Our prototype uses a Typescript client library and a

Rust server library. The client periodically sends predic-
tions to the server every 150ms. Each prediction consists
of a distribution over the possible requests at timesteps
D = {50, 150, 250, 500ms} from the time that the prediction
is made; the 500ms values follow a uniform distribution. The
application backends precompute and progressively encode
results for all possible requests.

We use the image exploration and visualization applica-
tions described in §2. For the image application, we collected
mouse-level interaction traces from 14 graduate students that
freely used a version of the application that was configured
with no response latency. Each trace is 3 minutes long, with
20ms average think time. For Falcon, we used the 70 traces
from [6]. The interface used to collect these traces differs
from the interface in the Falcon paper [49] by one chart (a bar
chart instead of the heat map in [49]). Thus we translated
the interactions over the bar chart to generate semantically
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equivalent requests consistent with [49]. In this way, the per-
formance numbers are comparable with [49]. We find that
increasing the number and length of traces doesn’t affect our
results; Figure 5 reports the think-time distributions.

Performance metrics: Khameleon balances response la-
tency and quality for preemptive interactions. However, due
to the bursty nature of interactions, some requests (and their
response data) may be preempted when later requests re-
ceive responses sooner. Thus, we report the percentage of
preempted requests. For the non-preempted requests, we
measure the cache hit rate as the requests that have blocks
in the cache at the time of the request, the response latency
as the time from when a request is registered with the cache
to the upcall when one or more blocks are cached, and the
response utility at that time. We will also evaluate how
quickly the utility is expected to converge to 1 (all blocks).

We use the utility curves in Figure 3. The image applica-
tion’s utility function is described in §3.3. Falcon implements
progressive encoding by sampling rows of the response in a
round-robin fashion. For instance, for a 1D CDF, we sample
values along the x-axis. We conservatively use the default
linear utility function.

Environment parameters: Our experiments consider a
wide range of network and client-side resource scenarios.
We first use netem [51] to consider fixed bandwidth values

between 1.5–15MB/s 4 (default 5.625MB/s) and request la-
tencies between 20–400ms (default 100ms); note that because
we precompute all responses, request latency is meant to
include both network latency (between 5–100ms) and sim-
ulated backend processing costs (15–300ms). We vary the
client’s cache size between 10–100MB (default 50MB). We
also use the Mahimahi network emulator [54] to emulate real
cellular links; in these experiments, the minimum network
round trip time was set to 100ms [55]. We simulate varying
think time between requests from 10–200ms, which is favor-
able to the baseline approaches described below. Figure 5
shows CDFs of think times in our user traces.

Performance baselines: Baseline is a standard request-
response application with no prefetching. Progressive
mimics Baseline, but only retrieves the first block of any
response—this is intended to reduce network congestion but
does not use prefetching to mask request latency.

Prefetching techniques primarily focus on prediction accu-
racy and the number of parallel requests to make. Modern
predictors exhibit ≤ 70% accuracy [5]. To create strong base-
lines (ACC-<acc>-<hor>), we use a perfect predictor that
knows the next hor requests with acc accuracy per request.
After each user-initiated request, the prefetcher issues up to
hor prefetching requests; to avoid triggering network con-
gestion, it does not prefetch if the number of outstanding
requests will exceed a bandwidth-determined threshold. For
example, after the ith user request, ACC-.8-2 will predict the
i+ 1th and i+ 2th requests, and each will have 80% chance of
being correct (i.e., matching the actual request in the trace).
We use ACC-0.8-1, ACC-1-1, and ACC-1-5 (following [5]). All
baselines use an LRU cache.

We also evaluate an Oracle version of Khameleon where
the predictor knows the exact position of the mouse after D
milliseconds (by examining the trace).

4We report the bandwidth as MB/s instead of Mb/s to use
the same units as block sizes.
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Figure 6: Idealized prefetching baselines and Khameleon for
50MB cache size and varying network bandwidths (x-axis).
Pane headers list the metric for each y axis. Latency charts
in all figures render a black dashed line at 100ms.

6.2 Comparison with Baselines
We first compare Khameleon with the aforementioned

baselines including no prefetching, and ACC-0.8-1, ACC-1-1,
and ACC-1-5. Recall that these are upper bounds for existing
prefetching approaches—typical predictors have accuracies
of < 70%.

Varying Bandwidth and Cache Resources: We faith-
fully replayed the user traces, and varied the cache size
(10–100MB) and bandwidth resources (1.5–15MB/s), while
keeping request latency fixed to 100 ms. For space reasons,
Figure 6 shows results for medium cache size (50MB), since
the findings are the same across cache sizes. The top row
reports the percentage of requests for which one or more
blocks are present in the cache at the time of request (i.e.,
% Cache Hits), and the percentage of preempted requests.
Khameleon increases the cache hit rate by 24.5 – 88× above
Baseline, and by 1.17 – 15.82× above the idealized prefetch-
ing baselines.Khameleon reduces the number of preempted
requests by 3× in low bandwidth settings, and has slightly
higher preemption rate than ACC-*-* at higher bandwidths
because its high cache hit rate causes more out-of-order
responses. The ACC-*-* baselines have lower cache hits be-
cause think times are lower than request latency, thus the
user has moved on by the time the prefetched data arrives.

The bottom row plots the utility and user-perceived re-
sponse latency for requests that are not preempted. We
see that the baselines consistently prioritize full responses—
their utilities are always 1 at the expense of very long re-
sponse latencies (note latencies are log scale). In contrast,
Khameleon gracefully tunes the utility based on resource
availability—all the while maintaining consistently low av-
erage response latencies that do not exceed 14ms across
the bandwidth and cache size configurations. On aver-
age, across different cache resources and bandwidth
limits, Khameleon has up to 16× better cache hit
rates than ACC-*-*, resulting in 16.35–1525.23× lower
response times.

To better illustrate the tradeoff between resources, respon-
siveness, and utility, Figure 7 compares average response
latency (across all requests) and the response utility, for
every condition (shape, color), bandwidth (size), and cache
size; upper left means faster response times and higher utility.
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Figure 8: Khameleon vs prefetch baselines across varying
request latencies; request latency includes both network and
server processing delays.

Across all conditions, increasing the bandwidth improves the
response times. However, the baselines remain at perfect
utility and have high latencies. In contrast, Khameleon
always has < 100ms latency and judiciously uses resources
to improve utility.

Request latency: We now fix network bandwidth (15MB/s)
and cache size (50MB), and vary request latency (20–400ms).
Recall that request latency includes both network and server
processing delays. Figure 8 shows that Khameleon consis-
tently achieves higher cache hit rates than the prefetching
baselines. As request latencies grow, Khameleon degrades
response utility to ensure that response latencies remain low
(on average 11ms). In contrast, the alternatives pursue per-
fect utilities at the detriment of responsiveness. When the
request latency is 400ms, Khameleon performs 79× faster
than Baseline, and 37× than ACC-*-*. The baselines be-
come highly congested as the request latency increases.

Think time: So far, we have faithfully replayed the user
traces. Now we synthetically vary the think times in the
traces between 10–200ms to assess its effect. We fix re-
quest latency to 100ms, and use three resource settings: low
(bandwidth=1.5MB/s, cache=10MB), medium (5.625MB/s,
50MB), and high (15MB/s, 100MB).

Figure 9 indeed shows that high think times improve all
prefetching methods by reducing congestion and giving more
time to prefetch. This is most notable in the high resource
setting, where the Baseline response latency (bottom row)
converges to the cost of the network latency plus the net-
work transmission time. ACC-1-* has high response latency
when the think time is short due to congestion, but the
cache rate increases to 75 – 100% with high think time and
high resources. With low resources and low think times,
Khameleon achieves low latency by hedging, as shown by
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Figure 9: Varying think time between consecutive requests.
Comparing Khameleon vs ACC using perfect and kalman
filter predictors for 1 and 5 request horizons.
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Figure 10: Convergence rate of utility: average utility (y-axis)
over time after the user stops on a request.

the low utility values. Despite this, the next experiment
shows that Khameleon converges to full utility faster than
the baselines. With more resources, Khameleon shifts to
prioritize and improve utility. We find that Khameleon
is close to Oracle, except in high resource settings, where
perfect prediction can better use the extra resources and fur-
ther reduces latency by 2×. Khameleon maintains near-
instant response latencies, and uses the additional
think time to increase the response utility. This
highlights Khameleon’s efficacy for DVE applications with
low think times relative to request latency, i.e., where there
is not enough time to prefetch between requests, even with
perfect prediction.

Convergence: Although trading utility for responsiveness
is important, the response should quickly converge to the full
utility when the user pauses on a request. We now pause a
user trace at a random time, and track the upcalls until the
utility reaches 1. We use the high, medium, and low resource
settings described above. Figure 10 reports the average and
standard deviation of the utility after waiting an elapsed
time after pause.5 Khameleon consistently converges to a
utility of 1 faster than all of the baselines, in expectation.
This is explained by the additional congestion incurred due
to the high rate of requests issued by the two baselines.
We expect that better application-specific predictors [5] can
greatly improve convergence for Khameleon.

6.3 Understanding Khameleon
We now perform an ablation study, and vary system con-

figurations to better understand Khameleon.

Ablation Study. To show the importance of jointly opti-
mizing resource-aware prefetching and progressive response

5Utility baselines are 0 or 1, so we report the average.
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Figure 11: Results of ablation study.
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Figure 12: Varying Khameleon predictors.

encoding, we perform an ablation study. Starting with a
non-prefetching Baseline, we add the kalman filter and joint
scheduler but without progressive encoding (Predictor),
and we add progressive encoding but without prefetching to
show the benefits of cache amplification (Progressive). For
reference, we compare with ACC-1-5. We use a bandwidth
of 15MB/s, cache size of 50MB, and vary request latencies.

In Figure 11, increased request latency lowers the cache
hit rate for all approaches (negligible for Khameleon). Pre-
dictor improves over Baseline because the joint scheduler
pushes predicted requests proactively (thus increasing the
cache hit rate) without increasing network congestion. Pro-
gressive improves over Baseline by reducing the network
transmission time and alleviating congestion, yet its utility
is also the lowest. The combination of the two optimizations
are needed in Khameleon for higher utility, consistently
< 31ms response, and (> 74%) cache hit rate.

Sensitivity to Predictors. Figure 12 assesses the im-
pact of the predictor by comparing the Uniform predictor,
Kalman, and the Oracle predictor as the upper bound.
We fix request latency to 100ms, and include ACC-1-5 and
Baseline as references. At low bandwidth, simply using the
Khameleon framework already improves latency compared
to ACC-1-5; and Kalman further improves on top of Uni-
form and is close to Oracle. As bandwidth increases, a
more accurate predictor better uses the resources to push
more blocks for more likely requests. Thus, Oracle further
reduces response times by 1.7 – 5.7× compared to Kalman.

System Parameters and Bandwidth Overheads. We
find that the client can send prediction distributions every 50–
350m without affecting Khameleon performance, but lower
frequencies degrade performance. Khameleon overpushes
(% of blocks sent but unused) 50 – 75% of the blocks, as
compared to 35 – 45% for ACC-1-5. We believe these rates
are acceptable given the orders of magnitude lower latency
and because the user can limit the bandwidth allocated to
prefetching. Details are in the technical report [47].

Real Network Traces. Using Verizon and AT&T LTE
cellular network traces, with a fixed 100ms request latency
and 50M cache size, Figure 13 shows that Khameleon consid-
erably outperforms ACC-1-5. The cache hit rate is over 10×
higher on AT&T, and the latency is lower by 348.36–430.12×.
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Figure 13: Performance on time-varying cellular networks.

6.4 Falcon Visualization Experiments
We now adopt Falcon [49] to Khameleon, and show that

the ability to easily change the predictor and introduce
progressive encoding lets Khameleon further improve over
the already–optimized Falcon.

Porting Falcon: We modified the Typescript client to
register requests to the Khameleon client library. Originally,
when the user hovers over a chart, Falcon issues 5 separate
SQL queries to the backend database to generate a data
slice for each of the other five charts (we call this group of
queries a single request). We simulate this with a predictor
that assigns a probability of 1 to the currently hovered upon
view, and 0 to all others. Similarly, when the scheduler
allocates one block for a given request, the sender issues 5
queries to the query backend (PostgreSQL database), and
progressively encodes the combined query results into blocks.
In contrast to the image application, the backend only scales
to 15 concurrent queries before query performance degrades
considerably. Thus, prefetching even 3 requests can issue
enough queries to saturate the backend.

Adapting the client required ≈ 50 LOC—mostly decoding
blocks into Falcon’s expected format. The code to encode
query results into blocks on the server required ≈ 60 LOC.

Experiment Setup: We create two databases using sub-
sets of the flights dataset from Falcon [49]; Small has 1M
records with query latencies of ≈ 800ms, and Big has 7M
records with latencies of ≈ 2s. We verified that the ported
version performed the same as the original Falcon, so we
report metrics based on varying the ported version. We
report results on Big, since Small exhibits the same trends.
The full results are presented in the technical report [47].

Predictor and Progressive Encoding: We change the
predictor from Falcon’s “on-hover” (dashed lines) to the
kalman filter (solid lines) used in earlier experiments. The x-
axis varies the number of blocks that each request is encoded
into (each block has fewer result records). The red lines in
Figure 14 (PostgresSQL) show that Kalman improves over
OnHover, delivering 1.4× more cache hits, 4× lower latency
on average, and higher utility, particularly as the number of
blocks increases.

Scalable Backend: We now simulate a scalable database
(blue lines). We first precompute and log each query’s execu-
tion times when running in isolation. The backend answers
queries from a cache and simulates the latency. Compared
to the PostgreSQL backend, Kalman response latencies
improves by 2.6×, and OnHover by 1.3×. Kalman still
outperforms OnHover with higher utility because it hedges
more aggressively without congesting the backend.
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Figure 14: Ported Falcon system varying number of block-
s/request (x-axis), and predictors (line) using Postgres (red
line) and a simulated scalable database backend (blue line).

7. RELATED WORK
DVE application optimizations. Many approaches re-
duce response latencies by addressing server-side data pro-
cessing and client-side rendering costs. Modern Databases
can run queries in tens of milliseconds using precomputation
(of datacubes [28], samples [19], indexes [22]), hardware [45,
27] or vectorized [83] acceleration, and parallelization [78].
Client-side computation and rendering delays can be reduced
via datacubes [40] and GPU acceleration [27, 42, 46].

Khameleon is complementary to the above approaches
and focuses on reducing the network bottlenecks (not client-
or server-side computation delays) in DVE applications. In-
deed, Khameleon could be used as the communication layer
to progressively encode and push optimized data structures
and query results based on anticipated user interactions. Our
current implementation makes the simplifying assumption
that data processing and progressive encoding incur a fixed
cost; leveraging the above query processing and response
encoding optimizations will require incorporating data pro-
cessing costs into the scheduler, a promising future direction.

Caching and Prefetching. Interactive data exploration
has studied caching architectures [69] and prefetching tech-
niques to pre-populate caches [11, 21, 2, 5]. ATLAS [11]
extrapolates scrollbar movements to prefetch subsequent re-
quests; ForeCache [5] extends this to prefetch tiles of array
data by forecasting future queries based on past user actions
and statistical data features; These approaches are crafted
for their specific visualization interface, and leverage restric-
tions of the user’s allowed interactions (often to linear slider
actions or panning to nearby tiles) that help improve the
prediction accuracy. Falcon [49] prefetches when a user
hovers over a chart, and uses the time between hovering and
interacting with the chart to prefetch datacube structures.
Database query prefetching typically relies on Markov mod-
els that update when a new query is issued [62, 66, 36, 10],
which assumes longer think times between queries, while web
page requests [20, 50, 75] use mouse predictors similar to the
Kalman Filter used in the experiments.

Though these techniques are able to perform backend
query computation early, they do not incorporate server
push mechanisms or progressive response encoding, limiting
their impact on alleviating network bottlenecks. Khameleon
borrows similar prediction information, but replaces explicit
requests and responses with probability distributions and a
fine-grained scheduler for push-based streaming that accounts
for request probabilities and response quality.

Progressive Encoding. Progressive encoding ensures that
a small prefix of a response is sufficient to render an approx-
imate result, and additional blocks improves result quality

(ultimately converging to the fully accurate version) [33].
This is applied to a wide range of data, including images [65,
68], layered encodings [34, 67, 26, 15], visualization data [5],
and webpage resources [53, 52, 64]. Khameleon lets appli-
cations provide progressively encoded responses [65, 68, 5]
so the scheduler joint optimization can dynamically balance
response quality for low latency in DVE applications.

Progressive Computation. Online aggregation [32, 1, 39,
3, 61] and progressive visualization [23, 48, 24, 70, 58] quickly
return approximate results whose estimates improve over
time, and could be backends in Khameleon. DICE [37] also
uses speculation to accelerate visualization exploration, but
is limited to faceted data cube navigation. It speculatively
executes approximate queries for neighboring facets using a
sharded database, and allocates sampling rates to the queries
based on the expected accuracy gains.

Progressive computation is fundamentally different than
the progressive encoding used by Khameleon. In the former,
each improvement is a separate result set—it sends more data
and uses more network resources. Each result set can be
progressively encoded and benefit from Khameleon. Thus,
although their effects both progressively enhancing rendered
data, the mechanisms are different and complementary.

8. DISCUSSION AND CONCLUSION
Khameleon is a dynamic prefetching framework for data

visualization and exploration (DVE) applications that are
approximation tolerant. Rather than focusing solely on pre-
dicting requests to prefetch or adapting response quality to
available resources, Khameleon uses a server-side scheduler
to jointly optimize across these techniques. Responses are
progressively encoded into blocks, and proactively streamed
to the client cache based on request likelihoods.

Khameleon consistently achieves sub-30ms response times
even when requests take 400ms, and out-performs existing
prefetching techniques (often by OOM). It gracefully uses
resources to improve quality. To best leverage Khameleon,
each component in the system (the backend scalability, net-
work bandwidth, degree of speculative prefetching) should
be matched to produce and consume data at the same rates.

Learning Improved Policies. This work used naive pre-
dictors and scheduling policies to argue for the effectiveness of
a continuous push framework. As expected, we also found a
considerable gap from an optimal predictor; we expect better
scheduling policies as well. One extension is to adapt a Re-
inforcement Learning framework to improve the scheduler’s
policy. For instance, we could log explicit reward signals
in the client, and use Q-learning to better estimate future
rewards. We could also unroll beyond a single step, and use
policy gradient methods [71] to learn a higher quality policy
function that may account for deployment idiosyncrasies.
The challenge is to balance more sophistication with the
need to schedule the next block in real-time (microseconds).

Acknowledgements: Thanks to Dan Rubensein, Adam
Elmachtoub for advice on the ILP formulation; Thibault
Sellam, Mengyang Liu on early system versions; NSF IIS
1845638, 1564049, 1527765, and CNS-1943621.
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