
Answering Billion-Scale Label-Constrained Reachability
Queries within Microsecond

You Peng
The University of New South

Wales
unswpy@gmail.com

Ying Zhang
The University of Technology

Sydney

ying.zhang@uts.edu.au

Xuemin Lin
The University of New South

Wales
lxue@cse.unsw.edu.au

Lu Qin
The University of Technology

Sydney

lu.qin@uts.edu.au

Wenjie Zhang
The University of New South

Wales
zhangw@cse.unsw.edu.au

ABSTRACT
In this paper, we study the problem of label-constrained
reachability (LCR) query which is fundamental in many ap-
plications with directed edge-label graphs. Although the
classical reachability query (i.e., reachability query without
label constraint) has been extensively studied, LCR query
is much more challenging because the number of possible
label constraint set is exponential to the size of the labels.
We observe that the existing techniques for LCR queries
only construct partial index for better scalability, and their
worst query time is not guaranteed and could be the same
as an online breadth-first search (BFS).

In this paper, we propose novel label-constrained 2-hop in-
dexing techniques with novel pruning rules and order strate-
gies. It is shown that our worst query time could be bounded
by the in-out index entry size. With all these techniques,
comprehensive experiments show that our proposed meth-
ods significantly outperform the state-of-the-art technique in
terms of query response time (up to 5 orders of magnitude
speedup), index size and index construction time. In partic-
ular, our proposed method can answer LCR queries within
microsecond over billion-scale graphs in a single machine.

PVLDB Reference Format:
You Peng, Ying Zhang, Xuemin Lin, Lu Qin, and Wenjie Zhang.
Answering Billion-Scale Label-Constrained Reachability Queries
within Microsecond. PVLDB, 13(6): 812-825, 2020.
DOI: https://doi.org/10.14778/3380750.3380753

1. INTRODUCTION
Graph is a ubiquitous structure representing entities and

their relationships applied in many areas such as social net-
works, web graphs, and biological networks [28, 27, 11, 22,
17, 21, 23, 24, 25]. One of the most fundamental research
problems on graphs is the reachability query, which checks if
one vertex can reach another vertex or not in a graph. This
problem seems simple and fundamental but very challeng-
ing due to the increasing size of graph data. In recent years,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 6
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3380750.3380753

many research efforts have been devoted to efficiently sup-
port reachability queries on large graphs (e.g., [12, 14, 16,
31, 40, 52, 41, 30, 50, 53, 59]). Most of these techniques only
consider the structure information of the graph and all edges
are involved in the reachability queries. However, in many
real-life applications, the graphs are edge-labeled, in which
labels represent relationships between vertices. For instance,
in the social network, we may have different relationships
between two users such as “friendOf”, “colleagueOf” and
“relativeOf”. Therefore, it is rather natural to limit the
edge types (i.e., labels) in the reachability queries. In this
paper, we study the problem of Label-Constrained Reacha-
bility (LCR) query. Given a source vertex s, a target vertex
t and a subset L of the set of all edge labels ζ of the graph
G, the LCR query will check if there is a path from s to t
in G using only edges with labels in L.
Below are several motivating applications for the problem

of the LCR query.

Social Networks. In a social network [20, 18, 19, 49, 47,
48, 35, 56, 39, 57, 38, 10], a vertex represents an entity
(e.g., user, poster, organization) and there is an edge if two
entities are related. Naturally, these relationships could be
different types such as “friendOf”, “supervisedBy”, “par-
entOf”, “Like”, “Follow”. Typical usage of an LCR query
on a social network is to check if two persons are related
by certain types of relationships. For instance, in the social
network analysis (SNA) for counter-terrorism (e.g., [15]), a
common practice is to check if two suspects are connected
by some types of relationships (e.g., relative, friend, like).

Biological Network. As shown in [29], one of the most
fundamental problems in system biology is to understand
how metabolic chain reactions take place in cellular sys-
tems. A widely used network by biologists is the metabolic
network, in which a vertex represents a compound, and an
edge indicates one compound that could be transformed into
another one through a certain chemical reaction. The label
on an edge indicates the type of enzyme which controls the
reaction (i.e., edge). By using LCR query, a metabolic net-
work analyzer can quickly check if there is a pathway (i.e.,
chain of interactions) between two compounds through cer-
tain types of enzymes, as illustrated in Figure 1.

Knowledge Graphs. In Knowledge graphs, regular path
queries are intensively studied (e.g., [4, 5, 6, 51]) and sup-
ported in practical graph query languages such as SPARQL
1.1, PGQL [44] and openCypher. LCR query is one of the

812

most important operators of the language of regular path
queries. Particularly, an LCR query could be described by
the regular expression (l1 ∪ l2 ∪ ... ∪ lk)

∗, for constrained
label set L = {l1, .., lk}, where ∪ is disjunction and ∗ is the
Kleene star.

S u b s t r a t e I S 1

I S 2

I S 3 I S 4

E n d
P r o d u c t

L1

L2

L3

L4

L3

L3

L1

L2

L4

 v 1 v 2

 v 3

 v 4
 v 6

 v 5

Figure 1: An example of a metabolic network where
|V | = 6, |E| = 9, and ζ = {L1, L2, L3, L4}. ISi indicates
the ith intermediate substrate. Li indicates the ith
enzyme.

In the above applications, efficient and scalable solutions
for LCR queries on large scale graphs are critical for large
graph analytics. Although a variety of efficient solutions
have been proposed for the reachability query without the la-
bel constraint, these techniques cannot be trivially extended
to efficiently support LCR queries because we need to build
2|ζ| indices for all possible label constraints.

Challenges. LCR is a well-studied problem and previous
works face a big challenge when dealing with billion scale
graphs. Although there are tons of papers studied 2-hop la-
beling and LCR queries, to the best of our knowledge, this
is the first work to adopt this technique into LCR queries.
When adopting the 2-hop labeling idea to the LCR query,
the key challenges come from the huge number of the pos-
sible combinations of the labels. As a straightforward ex-
tension of 2-hop index to LCR query, we need to construct
2l indices to consider every possible query label constraint
where l is the number of labels. This is infeasible even for a
very small l value due to the huge index size.

Novelty. To significantly reduce the index size while keep-
ing the outstanding query efficiency of 2-hop index, we pro-
pose effective and efficient pruning rules and visiting order
strategies to construct novel label-constrained (LC) 2-hop
indexes, namely P2H and P2H+. In particular, we show
that P2H+ has three nice properties: soundness, correct-
ness and minimal, which make the query processing and
index construction very efficient.

Our Contributions. Our principal contributions in this
paper are summarized as follows:

• We propose three important properties for 2-hop in-
dexing based techniques supporting the LCR queries.
Based on three pruning rules and efficient construction
algorithm, a label-constrained 2-hop index technique,
namely P2H, is developed.

• We further enhance the performance by designing an
advanced BFS search order and index entry construc-
tion order of the vertices. The resulting index is named
P2H+, which satisfies all three good properties for
label-constrained 2-hop index.

• Our comprehensive experiments demonstrate that our
proposed approaches significantly outperforms the
state-of-the-art technique LI+ in terms of query re-
sponse time (up to 5 orders of magnitude speedup),
index size and index construction time. To the best
of our knowledge, this is the first work which can an-
swer LCR queries over billion-scale graphs within a
microsecond on a single machine.

Roadmap. The rest of the paper is organized as fol-
lows. Section 2 surveys important related work. Section 3
formally defines the problem, and describes the baseline so-
lutions. Section 4 designs a pruned 2-hop based indexing.
Two optimization techniques based on BFS search order and
vertex order are proposed in Section 5, followed by the em-
pirical study in Section 6. Section 7 concludes the paper.

2. RELATED WORK
In this section, we review closely related works.

2.1 Reachability Queries
There are some existing works on the problem of reach-

ability queries(without label constraints). Xu and Cheng
et. al give an excellent survey in [54]. An immediate online
solution for reachability queries is BFS and [7] propose mod-
ern variants such as direction optimizing BFS(DBFS), which
take O(n + m) time, and have lower memory requirements
than the full transitive closure(TC) of the graph, which re-
quires O(n2) space. We use n and m to denote the num-
ber of vertices and edges of the graph, respectively. Also,
many indexing methods have been proposed based on the
idea of compressing the TC [42, 45], online search guided
by precomputed indices [41, 30, 50, 53, 59], and labeling
schemes [12, 14, 16, 31, 40, 52]. The 2-hop approach cannot
be directly modified to LCR queries as the classical one does
not consider labels. One straightforward modification of this
approach is to build a separate graph Gsl for each possible
set of labels sl. Gsl will contain only edges of G with la-
bels in sl. However, this modified approach requires O(2|ζ|)
space and time complexities as the number of different sub-
sets of labels is O(2|ζ|), which is not scaled to large graphs.
Besides the 2-hop labeling scheme, there are also a higher-
compression indexing scheme namely, 3-hop proposed by Jin
et. al in [32] .

2.2 Label Constrained Reachability and Path
Queries

We then review the most closely related work on LCR and
the current best-known method for LCR query evaluation.
Jin et. al [29]. This is the first work on LCR. In this

work, two extremes for answering LCR queries are pre-
sented, namely, either BFS/DFS or building a full TC on
the data graph. A tree-based index framework is presented
in this work, which contains a spanning tree T and a par-
tial transitive closure NT of the graph. Using T and NT,
there is enough information to recover the full TC. Such ap-
proaches [33, 60], however, have failed to address the scal-
ability problem, which is shown by follow-up work. Hence,
we do not consider it further in our study.
Zou et. al [60] decomposes the input graph into strongly

connected components (SCC’s) C1, .., Ck. The resulting in-
dex holds full reachability information. However, an obvious
limiting factor is that it is not effective on graphs with a rel-
atively large SCC. Hence, this method could not scale to
large graphs and it is totally beaten by LI+ in [43]. Hence,
we do not consider this method in our study.
Valstar et. al [43] proposes the state-of-the-art algorithm,

namely LI+ for LCR queries. LI+ leverages landmark-based
indexes for large graphs. To further speed up its practical
performance, it also uses the non-landmarks index and prun-
ing for accelerating false-queries. The main disadvantage of
this method is that it is only a trade-off on landmarks. For
FULL-LI, the index cannot be built on most large graphs,
while for LI+, the worst case will be even worse than DBFS

813

Table 1: The summary of notations

Notation Definition
adj[li] adjacency neighbors with only label li

adj[v][li] adjacency neighbors of v with only label li

v
ζ

�u, v
ζ

���u v can(cannot) reach u with label set ζ
Lk the constructed 2-hop index of kth iteration.

Lin[v], Lout[v] the in(out) 2-hop index entries of v
Lin[l], Lout[l] the in(out) 2-hop index entries of for label l
ζ0 ∪ ζ1, ζ0 \ ζ1 the union(difference) of two label sets

for false queries due to the partial index. We aim to con-
struct an index with full LCR information using less index
size and construction time than LI+.

Edge-Disjoint Partitioning(EDP) [26] is recent progress
on evaluating LCR queries where reasoning about path or
distance is important [26, 8, 9, 58]. They mainly focus on
the label-constrained shortest path(LCSP) problem. In [26],
they partition graph by their labels and construct index in
response to the queries received. We note that LCSP is
more general than LCR, and constructing an index for such
a problem is a more challenging and significantly different
task. [55] proposed algorithms to solve the constrained
shortest path queries in a time-dependent graph. In this
paper, we do not consider these strategies further.

Recently Sarisht et. al [46] proposed a random-walk based
sampling algorithm to answer regular simple queries on large
labeled networks called ARRIVAL. Their algorithm could
answer LCR queries. However, the main disadvantage of this
method is that it only provides an approximate result.We do
not consider these strategies in this paper.

3. PRELIMINARY
In this section, we first formally introduce the problem

of LCR query following the definition in [43]. Then we
introduce the-state-of-the-art indexing technique proposed
in [43], namely Landmark Indexing(LI+). In Table 1, we
summarize the important mathematical notations appeared
throughout this paper.

3.1 Problem Definition
A graph G = (V,E, ζ, λ) is an edge-labeled graph in which

V is a set of n vertices, ζ is a finite non-empty set of labels,
and E ⊆ V × V × ζ is a set of directed labeled edges. For
example, e = 〈u, v, l〉 ∈ E is an edge where u is the source
vertex, v is the target vertex and l is the label of the edge.
We denote λ as a mapping function: E → ζ which maps
edge to its corresponding labels, i.e., λ(〈u, v, l〉) = l. When
the context is clear, we use “graph” or “labeled graph” to
represent the “edge-labeled graph” G in this paper.

A path P in graph G is a sequence 〈v0, e0, v1, ...,
vp−1, ek, vk〉, for an integer k > 0, where vi ∈ V and ei ∈ E
for every i. We denote the length of P as |P |. Furthermore,
we say that P is an L-path or a label path if λ(ei) ∈ L for
every i ∈ [p].
In this paper, we say a vertex s can reach another vertex

t through the label set L , denoted by s
L
� t, if there is such

an L-path connecting s to t, namely s-t L-path. Otherwise,
we say s cannot reach t through the label set L, denoted

by s
L

��� t. We say a label set L ⊆ ζ is a minimal label set

connecting s to t if (i)s
L
� t and (ii)s

L′

��� t for any label set
L′ � L.
Based on this, we give the formal definition of label dom-

inance as follows.

Definition 1. Label Dominance: Given a source ver-
tex s and a target vertex t, we say an s-t L1-path with label

set L1 is dominated by another s-t L2-path with label set L2

if L2 � L1.

Then we have the definition of a minimal path as follows.

Definition 2. Minimal Path: Given an s-t L-path P ,
we say P is a minimal path if there is no any s-t path P ′

where P is label dominated by P ′; that is, we cannot find
any s-t path P ′ with label set L′ � L.

We give the formal definition of an LCR query in the
following.

Definition 3. An LCR query is a triple (s, t, L) ∈ V ×
V × 2ζ , where 2ζ denotes the powerset of the label set ζ. If

s
L
� t, then this is a true-query. Otherwise, the query is said

to be a false-query.

Figure 1 is a running example of a metabolic network.
The LCR query (v1, v6, {L1, L2, L4}) is true while the LCR
query (v1, v6, {L1}) returns false. Furthermore, the query
(v1, v6, {L1, L4}) is also true. Thus, the v1-v6 path with
label set {L1, L2, L4} is not minimal due to the existence of
v1-v6 path with label set {L1, L4}.

3.2 The State-of-the-Art
Now we introduce the state-of-the-art technique for LCR-

query.

Landmark Index(LI+) The state-of-the-art index-based
algorithm is proposed in [43]. The key idea is to construct
an index for partial landmarks by BFS from landmark one
by one. When trying to insert a new index entry, it will
compare to the existing index entries and only keep the min-
imal one. When dealing with an LCR-query, it answers the
query with pruned BFS which uses the landmarks index.
They also propose extended index techniques to accelerate
the query e.g. index non-landmarks, pruning for accelerat-
ing false-queries. In this paper, we use their landmark-index
with all techniques as a baseline.

3.3 2-Hop Cover Framework
The 2-hop cover technique has been extensively studied

in the literature (e.g., [1, 13, 16, 3]). Our method follows
the same framework. In particular, for each vertex v, we
pre-compute a set of index entries denoted as L(v) which
includes Lin(v) and Lout(v), denoting in-entries and out-
entries of the vertex v respectively. To answer an LCR-
query from vertex s to vertex t with Label set L, we denote
QUERY(s, t, L) as the answer, which is computed as follows:

QUERY (s, t, L) =

⎧⎨
⎩

true ∃u ∈ Lout(s), u ∈ Lin(t)

s.t. s
L
�u

L
� t

false Otherwise

4. LABEL-CONSTRAINED 2-HOP INDEX-
ING

In this section, we first introduce two naive label-
constrained (LC) 2-hop index methods in Section 4.1 and
one of them will be used as a baseline in the performance
evaluation. Then we highlight several desirable properties
for the LC 2-hop index for LCR queries in Section 4.2. In
Section 4.3, the query algorithm is proposed based on LC
2-hop index with soundness and completeness properties. In
Section 4.4, we introduce our index construction algorithm
for P2H index. In Section 4.5.1, we show the correctness
for our proposed algorithms as well as complexity analysis.

814

4.1 Baseline Solutions
The 2-hop index technique1 has been widely used in the

reachability queries without label constraint. In this subsec-
tion, we introduce two naive solutions for LCR queries based
on simple extensions of the existing 2-hop index techniques.

Given |ζ| labels, a straightforward label-constrained (LC)
2-hop index is to construct 2-hop index for every possible
label set. Hence, we need to construct 2|ζ| indexes in total,
which is infeasible in practice even for a small |ζ| and we do
not consider this solution in our performance evaluation.

To avoid blowing up the index size, one possible way is
to build the 2-hop index for each individual label, namely
one-label index. As shown in Figure 1, graph G has labels
L1, L2, L3, L4. Instead of constructing every possible label
subsets, which is 24 = 16 in total, we only construct four
one-label index {(L1), (L2), (L3), (L4)}. In particular, for
a label Li, we consider all vertices and the edges with label
Li, which is named one-label partition of the graph. Then
the classical 2-hop index can be constructed for each one-
label partition of the graph.

Given vertices s and t with label set ζ0, we can immedi-

ately ensure that s
ζ0
� t if there exists a label Li ∈ ζ0 such

that s
Li
� t based on the one-label index of Li. However, we

cannot claim s
ζ0

��� t even if we have s
Li

��� t for every Li ∈ ζ0
because s may reach t through multiple labels. Similar to
LI+, we have to keep on exploring the neighborhood of s due
to the existence of “false negatives”. In this paper, we call
these methods BFS-oriented approaches since they need to
continue to explore neighborhoods if there is no positive an-
swer. In the BFS-oriented algorithm for LCR query, we can
simply explore out-going edges like BFS when necessary, and
test if each visited vertex can reach t with label constraint.
Nevertheless, to speed up the computation, we propose a
more efficient query processing method as described in Al-
gorithm 1, which can explore the one-label index in BFS
traverse. In particular, the while loop from Line 4 to 12
conducts a BFS traversal through every possible label in ζ0.
By Lout[l], we denote the vertices in the out-edge index Lout

in one-label index with label l. Note that, to accommodate
the above query algorithm, we need to keep a reachability
entry (u, v) of label Li in both u and v.

Remark 1. The main disadvantage of the one-label index
is that we have to resort to a BFS traverse in Algorithm 1
due to the existence of false negatives, which may incur ex-
pensive computing cost as demonstrated in our empirical
study. This motivates us to design a new label-constrained
2-hop index without false negatives such that we can imme-

diately confirm s
ζ0

��� t based on the index entries on s and t
alone.

4.2 Properties of LC 2-Hop Index
We formally define the structure of LC 2-hop index, and

then introduce several important properties that a good LC
2-hop index should have.

Label-Constrained (LC) 2-Hop Index (L). An LC 2-
hop index on a labeled graph G = (V,E, ζ) is a set of index
entries {(u, ζ0)} where u denotes a vertex and ζ0 denotes a
label set. For each vertex v, we use Lin[v] and Lout[v] to
denote the in-going index entries (in-entries for short) and

1To avoid possible ambiguity of “labeling index” and “label-
constrained”, we use “2-hop index technique” to present the
“2-hop labeling index technique” used in the literature.

Algorithm 1 QueryNaive

1: procedure QueryNaive(Lk,src,dst,ζ0)
2: Stack S = {src}
3: Set visited = {src}
4: while S
= ∅ do
5: v = S.pop()
6: for label l ∈ ζ0 do
7: for u ∈ Lout[l] do
8: if u ∈ visited then
9: continue;

10: visited.insert(u)
11: S.push(u)
12: if dst ∈ visited then return True
13: return False

out-going index entries (out-entries for short). An index

entry (u, ζ0) in Lin[v] implies that u
ζ0
� v. Similarly, the

index entry (u, ζ0) in Lout[v] implies that v
ζ0
�u.

Below we show three properties to guide the construction
of a good LC 2-hop index L.

• Soundness. If there are two index entries (v, ζ1) ∈
Lout[s] and (v, ζ2) ∈ Lin[t] with ζ1 ⊆ ζ0 and ζ2 ⊆ ζ0,

we have s
ζ0
� t.

• Completeness. If s
ζ0
� t, there must exist a vertex v

such that (v, ζ1) ∈ Lout[s] and (v, ζ2) ∈ Lin[t] , with
ζ1 ⊆ ζ0 and ζ2 ⊆ ζ0.

• Minimal. For a vertex v, we say an entry I =
(u, ζ0) ∈ Lout[v] (Lin[v]) is minimal if I is not domi-
nated by any other entries in Lout[v] (Lin[v]); that is,
there is no entry I ′ = (u, ζ1) ∈ Lout[v] (Lin[v]) with
ζ1 � ζ0. We say an index entry I = (u, ζ0) ∈ Lout[v]
(Lin[v]) is necessary if there does not exist a ver-
tex w s.t. (w, ζ1) ∈ Lout[v](Lin[v]) and (w, ζ2) ∈
Lin[u](Lout[u]) where ζ1 ⊆ ζ0 and ζ2 ⊆ ζ0. Finally,
we say an LC 2-hop index L is minimal if every index
entry is both minimal and necessary.

According to the definition, if an LC 2-hop index L is not
sound, it may lead to false positives, i.e., LCR query (s, t, ζ0)
is false while the 2-hop index claims there is a s-t ζ0-path.
If L is not complete, there may exist false negatives; that is,

we cannot safely claim s
ζ0

��� t even if we cannot find any s-t
ζ0-path based on existing index entries in Lout[s] and Lin[t].
It is easy to say that the one-label 2-hop index proposed

in Section 4.1 is sound. Therefore, we can immediately con-

clude that s
ζ0
� t if the index claims so. However, the in-

dex does not have the completeness property, and hence we
have to explore the neighborhood of s if it cannot confirm

s
ζ0
� t. Suppose an LC 2-hop index satisfies both soundness

and completeness properties, we can conclude s
ζ0
� t or s

ζ0

��� t
based on the index entries in Lout[s] and Lin[t] alone.
The minimal property implies that the index does not

include the redundant index entries where we say an en-
try is redundant if it can be derived by other index entries.
The minimal property may lead to a small index size and
hereby high query efficiency since the redundant entries are
removed. In this paper, we aim to build an LC 2-hop index
satisfying all these three properties.

4.3 Query Algorithm
Given a sound and complete 2-hop index, we denote

QUERY (s, t, ζ0) as the answer of s-t reachability query

815

r rr
g

b

 6 5

 7 4

 1

 2

 3

b

r

r

g g

(a) First BFS from vertex
1. We visited all the ver-
tices. (forward and back-
ward BFS).

r rr
g

b

 6

 7 4

 1

 2

 3

b

r

r

g g

 5

(b) Second BFS from ver-
tex 2. Vertex 7 is ex-
cluded.

r rr
g

b

 6

 7 4

 1

 2

 3

b

r

r

g g

 5

(c) Third BFS from ver-
tex 3. Only need to add
2-hop index entries to ver-
tex 4.

r rr
g

b

 6

 7 4

 1

 2

 3

b

r

r

g g

 5

(d) Fourth BFS from ver-
tex 4. Only add 2-hop in-
dex entries to vertex 5.

Figure 2: Example of how pruning rule 1, 2, 3 works

with label set ζ0 and compute it as shown in Algorithm 2.
In particular, we can claim QUERY (s, t, ζ0) = true (i.e.,

s
ζ0
� t) if there exist two entries (u, ζ1) ∈ Lout[s] and

(u, ζ2) ∈ Lin[t] with ζ1 ⊆ ζ0 and ζ2 ⊆ ζ0. Otherwise, we
have QUERY (s, t, ζ0) = false. Note that Lout[s] (Lin[t])
consists a set of entries {(vertexID, label)}, and entries are
ordered by vertex IDs. E.g., (1,r) (1,g), (2,r) are three en-
tries in the Lin[t]. In this paper, we use |Lout[s]| (|Lin[t]|)
to denote the number of entries in the index.

Algorithm 2 Query Algorithm

1: procedure LCR Query(s,t,ζ0)
2: for every index entry Ii in Lout[s] do
3: if Ii.labels ⊆ ζ0 then
4: for Ij in Lin[t] which has the same vertex as

Ii.vertex do
5: if Ij .labels ⊆ ζ0 then
6: return True
7: return False

4.4 Index Construction Algorithm
In this subsection, we introduce how to construct an LC 2-

hop index, namely Pruned 2-hop index (P2H index for
short). We conduct pruned BFS from v1, .., vn from both
forward and backward directions as shown in Algorithm 3
at Line 3 and 4, where Lk denote the P2H index constructed
after the k-th round. By Ln, we denote the P2H index after
processing all vertices (rounds).

Algorithm 4 illustrates how to conduct a pruned BFS
starting from the vertex vk. At Line 2, we use a set F
to store current BFS frontiers. Line 4 to 14 is a while loop
that continues the BFS search. The following three pruning
rules are applied at Line 8, 10 and 13 within the while
loop.

• Rule 1. We skip a vertex v if the index entries of v
have been calculated (i.e., already been processed in
Algorithm 3).

• Rule 2. We skip an index entry I if it can be
derived from existing index entries; that is, the
label-constrained reachability (LCR) information rep-
resented by the entry I is already available in the cur-
rent index Lk. For instance, we do not need to keep
an entry (u, ζ0) for Lout(v) if we have LCR(v, u, ζ0) =
true (i.e., Line 10 in Algorithm 4) based on the current
P2H index Lk.

• Rule 3. As shown in Algorithm 5, we can remove the
existing index entries which are dominated by the new
index entry.

Figure 2 illustrates an example of our index construction
algorithm. In this example, we consider the pruning rule

1, 2 and 3. Firstly, we explain the pruning rule 1. In the
first BFS with starting vertex 1, all vertices are explored.
In the second BFS, vertex 7 is skipped since vertex 1 will
not be visited. Then for the third BFS, vertices {5, 6, 7} are
skipped. For the fourth BFS, vertices {1, 6, 7} are skipped.
Secondly, we explain the pruning rule 2. In the figure 2(a),
we start with vertex 1. If 2 is explored, (1, r,) will be inserted
into in label of 2. Then (1, rg) which is the index entry for
1 → 3 → 2 will be pruned. At last, we introduce the pruning
rule 3. Similar to pruning 2, if we explore 1 → 3 → 2
first, and (1, rg) will be inserted into in label of 2. Then we
explore 1 → 2. In this case, the index entry (1, rg) will be
replaced by (1, r) due to the dominance.
Table 2 shows in-entries and out-entries of the vertices in

Figure 2 where all three pruning rules are applied. In the
first forward BFS from vertex 1, vertices {2, 3, 4, 5, 6, 7} are
explored. Hence (1, r), (1, g), {(1, rg), (1, rb)}, (1, rg), (1, r),
and (1, r) are inserted into in-entries of vertices 2, 3, 4, 5, 6
and 7 respectively. For the first backward BFS from vertex
1, vertices 2, 3 are explored and (1, b), (1, rb) are inserted
into out-entries of vertices 2 and 3 respectively. A similar
procedure will be done for the following vertices. Note that
indexed vertices will not be accessed in the following pro-
cedure. For the pruned BFS procedure from vertex 5, only
(5, r) is inserted into out-entries of vertex 6 (i.e., Lout[6]).
We do not insert it into vertex 4’s out-entries. Observe that
for each vertex u, we only need to add (v, ζv) when v is
ranked lower than u. After constructing these index, given
a query LCR(7, 5, rg), that is whether the vertex 7 can reach
5 with label set {r, g}, we can find (1, rg) in 5’s in-entries
and (1, r) in 7’s out-entries. Hence the answer is true for
this query.

Table 2: Index entries fo Figure 2

ID in-entries out-entries
1 - -
2 (1,r) (1,b)
3 (1,g) (1,rb),(2,r)
4 (1,rg),(1,rb),(2,g),(3,b) -
5 (1,rg),(2,g) (4,g)
6 (1,r),(2,rg),(5,r) -
7 (1,r) -

Algorithm 3 Construct 2-hop index by Pruned BFS

1: procedure ConstructIndex(Graph G)
2: for k = 1, 2, ...n do

3: L̂k = PrunedBFS(adj, vk, Lk−1)

4: Lk = PrunedBFS(adjr, vk, L̂k)

5: return Ln

816

Algorithm 4 Pruned BFS from vk to create Lk

1: procedure PrunedBFS(AdjacencyLIst Adj, vertex vk,
indexLk−1)

2: Set F = {(vk, ∅)} � keeps track of the current
frontier.

3: Lk = Lk−1

4: while F
= ∅ do
5: v = F.pop()
6: for every edge e in adj[v.node] do
7: lnew = e.label + v.labels
8: if e.dst in v1, .., vk−1 then
9: Continue; � already indexed

10: if QUERY(vk,e.dst,lnew,Lk) = True then
11: Continue; � already indexed
12: else
13: TryToInsert(Lk,vk,e.dst,lnew); � Swap vk

and e.dst when conduct reverse BFS
14: F .insert({e.dst,e.labels+ v.labels})
15: return Lk

Algorithm 5 TryToInsertIndex

1: procedure TryToInsert(Lk,src,dst,ζ0)
2: if {src, dst, ζ0} is a subset of some index entry li

{src, dst, ζi} ∈ Lk then
3: Repalce li with {src, dst, ζ0} return False
4: else if {src, dst, ζ0} is a superset of some index entry

li {src, dst, ζi} ∈ Lk then return False
5: else
6: Lk.insert({src, dst, ζ0})
7: return True

4.5 Analysis
In this subsection, we analyze the correctness and com-

plexity of P2H.

4.5.1 Proof of Correctness
In the following, we show that P2H index constructed in

Algorithm 3 is correct; that is, QUERY (s, t, ζ0) is correct
for any source vertex s, target vertex t, and label set ζ0 ⊆ ζ.
In this paper, we say an s-t L-path P is stored in Lk if its

corresponding LCR information LCR(s, t, L) = true can be
derived from the index Lk.

Theorem 1. For any 0 ≤ k ≤ n and for any pair of
vertices s and t with label constraint set ζ, every L-path con-
taining vertex vi (i ≤ k) is stored in Lk.

Proof. We prove the theorem by mathematical induc-
tion on k. When k = 0, it is obvious that the theorem is
true. Now we assume it holds for 0, 1, .., k−1,and then prove
it also holds for k.

We prove this by contradiction. We assume there exists
an L-path which contains vj and not stored in Lk with j ≤
k. Firstly, if j < k, then it must be in Lj ⊂ Lk which
contradicts the previous assumption. Hence, j = k.

Since this L-path is not in Lk−1, for any vertex vi in this
L-path, we have k ≤ i. Regarding our three pruning rules
in Algorithm 4, this L-path will be explored. Since it is
not stored in Lk, any vertex in this L-path is not chosen in
the previous stage (since for any vertex vi, we have k ≤ i)
and explored in kth BFS, it will be inserted into Lk. This
contradicts the assumption.

As a corollary, our method is proved to be correct by
instantiating the theorem with k = n.

Corollary 1. Any L-path in Graph G={V,E, ζ} will be
stored in Ln.

The completeness of Ln (i.e., P2H index) is immediately
based on corollary 1. The proof of soundness is trivial since
we insert every LCR information after confirmation. There-
fore, the P2H index constructed is both sound and com-
plete.

4.5.2 Space and Time Complexity
For each vertex, it will store at most n − 1 vertices and

at most 2|ζ| different label sets for each vertex. Hence, the
space complexity is O(n22|ζ|).
For the query (s, t, ζ0), it takes O((|Lin[s]| + |Lout[t]|) ×

|ζ0|) time where |Lin[s]| (|Lout[t]|) denotes the number of
(vertex, label) entries in label of s (out label of t) and |ζ0|
is the size of the query label constraint. Particularly, as
entries are already sorted by vertex IDs, it takes at most
O(|Lin[s]|+ |Lout[t]|) time to find entries {(v, ζi)} such that
v ∈ Lin[s] and v ∈ Lout[t]. Meanwhile, it takes at most
O(|ζ0|) time to check if ζi ⊆ ζ0. Thus, the time complexity
of Algorithm 2 is O((|Lin[s]|+ |Lout[t]|)× |ζ0|).
As for the index construction process, it will take O(m ∗

n2 ∗22∗|ζ|). For each pruned BFS, each edge will be touched

at most O(2|ζ|) since the number of different paths with

different labels that can reach an edge can be 2|ζ|. Also, for
each visited edge, the label checking cost could be O(n∗2|ζ|)
and we need n iterations.

5. BFS SEARCH ORDER AND VERTEX
ORDER STRATEGIES

5.1 Motivation
As shown in Section 4.5.1, the P2H index has both sound-

ness and completeness properties, which enable us to quickly
check the LCR queries based on the index entries from
source and target vertices alone. Nevertheless, P2H in-
dex does not guarantee the minimal property. In this sec-
tion, we further enhance the performance by developing
novel Breadth-First Search order and vertex accessing or-
der strategies. The new CL 2-hop index technique, namely
P2H+, has all three desirable properties. With the mini-
mal property, P2H+ technique may come up with a smaller
index size and hereby faster query response time.

5.2 Breadth-First Search Order
In Figure 3, we show that the BFS search order in Algo-

rithm 4 may affect the size of the resulting index. Suppose
we start BFS from vertex 1 with current frontiers {2, 3, 4, 9}.
If we first visit the edge (9,5,r), then the index entries re-
sulted from following edges {(4, 5, g), (3, 5, b), (2, 5, w)} will
be pruned because of the index entry (1,r) in vertex 5’s in-
entries. However, if we follow another order, say (4,5,g),
(3,5,b), (2,5,w) and (9,5,r). Both entries (1, r), (1, rw), and
(1, rb) will be kept in Lin[5], which is not minimal according
to the definition.

r

 2 r

r

r

g

b
w

g
b

r

 6

 7

 8

 3

 4

 1 5 9
r

Figure 3: Motivation of BFS search order

817

Motivated by this example, we propose a novel BFS
Search Order in Algorithm 4 to ensure that once an index
entry is inserted, it will not be pruned by the following in-
serted index entries. Then, we will show that this advanced
order strategy will ensure the minimal property of the re-
sulting index.

When we conduct a pruned BFS from vertex v, we aim to
only explore the minimal path and then the constructed in-
dex is minimal since any index entry could not be pruned by
any other index entries including the existing ones and the
ones inserted later. In the following, we present an advanced
Pruned BFS to get an LC 2-hop index with the minimal
property. We define a new array adj[v][ζv] to denote the
out-neighbor of vertex v with edge label ζv. Algorithm 6
is similar to Algorithm 3. The difference is that in Algo-
rithm 6, one iteration in a BFS is divided into two parts.
One is at Line 5 which only uses current labels in BFS. As
shown in the example in Figure 3, if we start from vertex 1
and current frontiers are {(4, r), (3, r), (2, r), (9, r)}, then for
(9, r), we will only use BFS with edges in label r in Line 5.
If ζ = {r, g, b}, then in Line 6 will touch edges with label
ζ \ r = {g, b}. That means in this example, Algorithms 7
will only explore labels which are the same as the current
entry e.g. r since (9, r) is the current entry. Algorithms 8
will explore edges with labels ζ \ r = {g, b}. In a word, the
main difference is that Algorithm 7 only uses current labels
at Algorithm 7 Line 5 while Algorithm 8 will include the
remaining available labels at Algorithm 8 Line 4.

Algorithm 6 Pruned BFS from vk to create Lk

1: procedure PrunedBFS(AdjacencyLIst Adj, vertex vk,
index Lk−1)

2: Set F = {(vk, ∅)} � keeps track of current frontier.
3: Lk = Lk−1

4: while F
= ∅ do
5: F ,Lk =BFSWithCurLabels(adj, F, Lk)
6: F ,Lk =BFSPlusOneLabel(adj, F, Lk) � Similar

for reverse BFS.
7: return Lk

Algorithm 7 BFSWithCurrentLabels

1: procedure BFSWithCurLabels(AdjacencyLIst Adj,
Frontier F , indexLk)

2: Set ResultF = F
3: while F
= ∅ do
4: v = F.pop()
5: for every label l0 in v.labels do
6: for every edge u in adj[v.node][l0] do
7: lnew = u.labels ∪ v.labels
8: QR = QUERY {vk, u.dst, lnew, Lk}
9: if u.dst in v0, .., vk−1 or QR then
10: continue; � already indexed
11: else
12: Lk[u.dst]in.insert(vk,lnew)
13: F .insert({u.dst,lnew})
14: ResultF .insert({u.dst,lnew})
15: return ResultF ,Lk

5.3 Minimal Property
In this subsection, we show that the new index con-

structed by the advanced BFS Search Order has theminimal
property. Before prove the minimal property, we introduce
a lemma.

Algorithm 8 BFSPlusOneLabel

1: procedure BFSPlusOneLabel(AdjacencyLIst Adj,
Frontier F , indexLk)

2: Set ResultF = ∅
3: for Every item v in F do
4: for every label l0 in ζ \ v.labels do
5: for every edge u in adj[v.node][l0] do
6: lnew = u.labels ∪ v.labels
7: QR = QUERY {vk, u.dst, lnew, Lk}
8: if u.dst in v0, .., vk−1 or QR then
9: continue; � already indexed
10: else
11: Lk[u.dst]in.insert(vk,lnew)
12: ResultF .insert({u.dst,lnew})
13: return ResultF ,Lk

Lemma 1. For two label paths P1 and P2 with source,
target vertex and label set {s1, t1, ζ1} and {s2, t2, ζ2} respec-
tively, P1 is dominated by P2 if and only if (1) s1 = s2, t1 =
t2; (2) ζ2 � ζ1; and (3) |ζ2| < |ζ1|.
The proof is trivial. For condition 1, it ensures these two
paths have the same source and target vertices. Condition
2 is the definition of dominance and condition 3 could be
derived by condition 2. Condition 3 will be used in our new
BFS Search Order.

Theorem 2. For any index entry (v, u, ζ0) in Ln, the L-
path (v, u, ζ0) is minimal.

Proof. We first prove the correctness of this method.
It is similar to Theorem 1. Then we prove the minimal
property. According to Lemma 1 condition 1, we only need
to discuss the process for some vertex v. For a newly in-
serted index entry with (s, t, ζi), it cannot be dominated by
any existing index entry since our algorithm will check this
domination. Hence, we only need to prove that existing in-
dex entry will not be dominated by newly inserted index
entry and then we will get a minimal index. When a new
index entry (s, li) or (t, li) is inserted into Lin[t] or Lout[s].
According to the BFS search order, all the inserted index
entries with the same starting vertex, we denote as (s, l) or
(v, l) will meet the condition |l| ≤ |li|. This means that in-
serted index entry will not be dominated by newly inserted
index entry due to Lemma 1.

Theorem 3. For any vertex v, and for any index entry
(u, ζ0) ∈ L′n[v], there is an LCR information (s, t, ζ1) such
that, if we remove index entry (u, ζ0) from L′

n[v], we cannot
answer the LCR query (s, t, ζ1) correctly.

Proof. Let vi ∈ V and (vj , ζj) ∈ L′
n[vi]. This implies

j < i due to our pruning rule 1 in the index construction. We
show that if we remove (vj , ζj) from L′

n[vi] then we cannot
answer the LCR query (vi, vj , ζj) correctly. Due to our index
construction process, the result for LCR Query(vi, vj , ζj)
should be true. Due to theorem 2, if we remove (vj , ζj)
from L′

n[vi], there will not exist direct LCR information, e.g.
(vj , ζj1) such that ζj1 � ζj in L′

n[vi]. There does not exist
(vi, ζi) in L′

n[vj] since j < i. Then the following claim could
prove the minimal property of our index: For any k
= j,
either (i) (vk, ζk)
∈ L′

n[vi] or (vk, ζk)
∈ L′
n[vj] holds, or (ii)

there does not exist (vk, ζk1) ∈ L′
out[vi](L

′
in[vi]) or (vk, ζk2)

∈ L′
in[vj](L

′
out[vj]) s.t. ζk1 ⊂ ζj and ζk2 ⊂ ζj .

Suppose k < j and we assume that (ii) does not hold.
Then, (i) must hold otherwise the j-th BFS will prune vertex
vi and (vj , ζj)
∈ L′

n[vi] which contradict the assumption that

818

(vj , ζj) ∈ L′
n[vi]. Then we suppose k > j and assume that

(ii) does not hold. Then vk will be in the vertex set of the
minimal L-path between vi and vj . That implies (vj , ζj)
∈ L′

j [vk], thus the k-th BFS prunes vertex vj , leading to
(vk, ζk)
∈ L′

n[vj].

Theorems 2 and 3 indicate that every index entry in P2H+
index constructed by Algorithm 6 is both necessary and min-
imal. Therefore, P2H+ index has the minimal property by
utilizing the advanced BFS search strategy. It is immediate
that P2H+ index also has the soundness and completeness
property since P2H+ simply enforces the BFS visiting order
compare to P2H.

5.4 Vertex Ordering Strategies

5.4.1 Motivation
In our index construction algorithm, we build up the index

entries for vertices following a particular order. Although
this order does not affect three properties of the resulting
index, it is crucial for the final performance of the index as
shown in the empirical study. Thus, in addition to the vis-
iting order in each BFS search of Algorithm 4, we further
consider the access order of the vertices in Algorithm 3, i.e.,
order of vertices for index entries construction. The key
idea to prioritize the “central” vertices which could cover
more LCR information at an earlier stage. Vertex order is a
crucial problem and widely discussed in the previous 2-hop
labeling index for shortest path distance in [3]. Neverthe-
less, 2-hop labeling for LCR problem is different from the
traditional one. In this problem, we need to find “central”
vertices that can prune LCR information as much as pos-
sible. Different from shortest path distance pruning, LCR
information pruning needs to compare the dominance of the
label set.

5.4.2 Vertex access order strategies
DEGREE: The higher degree a vertex has, the earlier we
build index entries on it. The insight behind this strategy
is that a high degree vertex could have a strong connection
to many other vertices. Then it is more likely to prune
more index entries. When dealing with edge-labeled graph,
one straightforward modification is to give each label type
a weight based on the percentage of this type of edges in all
edges. In our initial experiments, these two strategies have
very similar performance since vertex with a high degree
seems more likely to have high weighted label types. Hence,
in this paper, we only consider the classical degree order
strategy; that is, build index entries for vertices following
the descendant order of their degrees.

SIGNIFICANT PATH: It is well known that the com-
putation of betweenness is very cost expensive. Inspired by
the significant path based node order strategy in [37, 2], we
proposed a similar node order strategy based on minimal la-
bel path. The philosophy of this proposed node order is that
“adaptively accumulate node importance information during
pruned breadth first search”. We choose an important vertex
as the start node v (e.g., the vertex with the highest degree)
and build the minimal label path tree rooted at v. We use a
count array to record the time a vertex being touched dur-
ing the building process2. Note that this array will only be
initialized at the first vertex, that is to say, this information
will be accumulated in the following stage. A vertex v with

2Our index construction process for each vertex will return
a minimal label path tree.

high count[v] is likely to have a high betweenness value. Due
to the power of our proposed pruning rules, we only choose
the first 1250 +

√
n vertices based on the count array. For

ith pick, we will choose one neighbor of vi−1((i− 1)th pick)
which has the highest count value. Otherwise, we pick ver-
tex following the degree order strategy.

5.5 Space and Time Complexity
The difference between P2H and P2H+ is the vertex

search order. Hence, the worst case for construction part is
the same. For the preprocessing part, P2H+ needs a new
adjacent list which only takes O(m) space and time complex-
ity. Based on this analysis, the space and time complexity
of P2H+ index are the same as P2H index, which is shown
in Section 4.5.2.

5.6 Dealing With Large Number of Labels
In some applications such as knowledge graph, the number

of labels |ζ| might be large. We cannot directly apply our
technique in these scenarios because, although we already
significantly reduce the index size compared to existing ex-
act the state-of-the-art solutions, our approach may still be
sensitive to the number of labels due to the rapid growth of
2|ζ|. In this subsection, we investigate how to extend our
solution to handle graphs with a larger number of labels.
It has been widely observed that the frequency of the la-

bels in real-life graphs usually follows the power-law dis-
tribution. This motivates us to consider the high frequent
labels and low frequent labels in a different way, where two
LCR indices are constructed as follows.3

Primary Label Index We build LCR index on the w most
frequent labels, denoted by ζf . If query label set ζ0 is the
subset of ζf , we can immediately answer the query based
on primary label index since all relevant labels are explicitly
or implicitly indexed by the primary label index. Given the
power law distribution of the label frequency, the majority of
the queries will fall in this category. In case the query label
constraint ζ0 is not a subset of ζf (i.e., the most frequent w
labels), if Query(s, t, ζ0 ∩ζf)= True, then the result is also
True for Query(s, t, ζ0).
Secondary Label Index We build LCR index on w labels:
w/2 most frequent labels and w/2 virtual labels. Specifi-
cally, we remove the w/2 most frequent labels and evenly
partition the remaining labels into w/2 groups according
to their frequency, where each group is represented by a
virual label, i.e., the labels with the same virtual label are
regarded as the same in the secondary label index. When
the query result is false on the secondary label index, we
could return a false result immediately. Otherwise, we need
to further explore the neighbors of s in a recursive way where
both primary label index and secondary label index might
be employed, if the current secondary label indices on s and
t return true.

6. EXPERIMENTAL RESULTS
In this section, we evaluate the effectiveness and efficiency

of proposed techniques on comprehensive experiments.

6.1 Experimental Settings
Algorithms We compare proposed algorithms with base-
line solutions.

3Details are in full version paper.
https://github.com/unswpy/AnsweringLCR

819

Table 3: Statistics of Datasets. K indicates 103. M
indicates 106. B indicates 109.

Name Dataset |V | |E| |ζ| Synthetic
Labels

RT robots 1.4K 2.9K 4
ADG advogato 5.4K 51K 4
AX arXiv 34K 421K 8

√
EPIN epinions 131K 840K 8

√
SHS StringHS 16K 1.2M 7
ND NotreDame 325K 1.4M 8

√
BG BioGrid 64K 1.5M 7
CT Citeseer 384K 1.7M 8

√
SFC StringsFC 15K 2.0M 7
WS webStanford 281K 2.3M 8

√
WG webGoogle 875K 5.1M 8

√
YT Youtube 15K 10.7M 5
ZH zhishihudong 2.4M 18.8M 8

√
SP socPokec 1.6M 30M 8

√
WL wikiLinks 3.0M 102M 8

√
WPE WikipediaEng 18M 172M 8

√
WLE WikiLinksEng 12M 378M 8

√
T3W Twitter(3W) 41M 1.5B 8

√
TM Twitter(MPI) 52M 2.0B 8

√
FS Friendster 68M 2.5B 8

√
SPL socPokecL 1.6M 30M 7513

√
FB Freebase 14.4M 106M 772

• LI+.The state-of-the-art landmark index-based algo-
rithm in [43] with all the optimization techniques. Fol-
lowing the same settings in [43], the number of land-
marks k is set to be 1250 +

√
n and the budget b per

non-landmark vertex is set to be 20, where n is the
number of vertices in the input network.

• NP2H. One-label 2-hop index algorithm for LCR
queries proposed in Section 4.1.

• P2H.Our proposed LC 2-hop index algorithm for LCR
queries which is introduced in Section 4.4.

• P2H+.Our proposed LC 2-hop index algorithm with
advanced BFS Search Order for LCR queries which is
introduced in Section 5.2 4. For datasets whose la-
bel size is larger than 10, we will use methods in Sec-
tion 5.6 to address it where w = 12.

Datasets In this part, the datasets settings is similar
to [43] and we also add some large graphs. Table 3 shows
the important statistics of real graphs used in the experi-
ments. Most of these graphs are from either SNAP [36] or
KONECT [34]. Some graphs have natural edge labels. For
those graphs without edge labels, we use the method the
same as synthetic data, while the number of labels |ζ| to 8
and the parameter α to 1.7.

Settings In experiments, all programs are implemented in
standard c++11 and compiled with g++4.8.5. The code of
LI+ algorithm is provided by authors in [43]. Kindly thanks
for authors to provide their code and datasets. All exper-
iments are performed on a machine with 20X Intel Xeon
2.3GHz and 768GB main memory running Linux(Red Hat
Linux 7.3 64 bit).

QueryGeneration. For each dataset, we generate three
query sets, using |L|/4, |L|/2 and |L| − 2 labels or (2, 4, 6)
when |L| is too large. Each query set consists 1,000 true-
queries and 1,000 false-queries. We use the same generation
strategy as [43] and thanks for the authors for providing
code for that.

4P2H+ uses degree order which is the same as LI+ for the
sake of comparison fairness. The effect of node order will be
compared in Table 8

Exp 1: performance on real graphs

Table 4: Indexing time(IT) in seconds, and index
size(IS) in megabytes for real datasets. In this ta-
ble, “-” indicates that the method timed out on this
dataset and “K” indicates 103.

Name LI+ P2H P2H+ NP2H
IT IS IT IS IT IS IT IS

RT 0.15 4 0.01 0.61 0.01 0.59 0.01 0.76
ADG 4 135 0.15 3 0.12 3 0.07 4.47
AX 95 551 350 445 303 404 6.0 106
EPIN 284 2.9K 27 77 9 68 3.98 76.4
SHS 18 556 5 38 4 37 1.2 40.8
ND 398 2.4K 35 263 24 236 8.5 233
BG 56 1.1K 6 48 4 43 1.7 55.9
CT 79 562 312 1.3K 171 1K 46.6 777
SFC 26 515 7 56 7 55 1.8 58.5
WS 1K 7.8K 67 413 50 361 11.3 320
WG 6.1K 34K 547 1.4K 378 1.2K 301 744
YT 4.7K 335 1K 370 1.2K 365 232 380
ZH 4.2K 9.4K 15K 15K 10K 14K 167 2.7K
SP 26K 155K 3.9K 2.3K 1.1K 1.6K 312 1.9K
WL 61K 216K 5.5K 4.5K 1.9K 3.8K 1K 4.3K

WPE4 88K 2.4K 18K 13K 5.5K 10K 2.2K 12K
WLE - - - - 13K 14K 4.3K 16K
T3W - - - - 63K 55K 28K 63K
TM - - - - 79K 71K 38K 71K
FS - - - - 125K 93K 58K 117K
SPL - - - - 6K 4k - -
FB - - - - 54K 94K - -

In our first experiment, we compare our proposed algo-
rithms with NP2H and LI+. First of all, for the indexing
time and index size, P2H and P2H+ beat LI+ in the most
datasets except ZH, CT, AX(indexing time) and YT(index
size). However, in these datasets, our query performance is
about one or two orders faster than LI+. This shows our
algorithms could achieve better scalability than LI+ when
dealing with large graphs. The key reason is LI+ need to
store all LCR information for all chosen landmarks while
our algorithm could pruned most of them by existing in-
dex entries. Also, P2H+ develop novel vertices orders and
BFS search orders which could futher reduce the index size.
When we compare P2H and P2H+, it is shown that the in-
dex time of P2H+ is faster thanP2H except for the dataset
youtube. The index size of P2H+ is always smaller than
P2H due to the minimal property of P2H+. It is reported
that when the input graph gets larger, P2H+ shows that
it is more scalable than P2H e.g. on the datasets socPokec
and wikiLinks(fr), P2H+ only needs one third index con-
struction time of P2H and can save 45% and 20% index
size respectively.
For query time performance, our algorithms could achieve

about two(true-queries) or three(false-queries) orders of
magnitudes than LI+ on average and up to five orders
when answering false-queries. Compared P2H with P2H+,
P2H+ shows a similar performance with P2H. One inter-
esting result is that P2H+ shows better performance on
false query set, since false query needs to traversal all out
labels of source vertex and in labels of target vertex and
P2H+ has a minimal index. P2H beat P2H+ in some
cases since minimal index does no mean the optimal one.
It is also shown in Table 5 that the larger the label size is,
the better P2H+ performances than P2H. As for NP2H,
although its indexing time and index size are similar to our
proposed method, its query time is too time-consuming e.g.
more than half a minute to answer a false query on WPE.

4k=2 and b=0

820

Table 5: Speed-ups of P2H and P2H+ over LI+ for each of the real datasets in true query sets. For LI+,
the average query time is given in microseconds. In this table, “-” indicates that the method timed out on
this dataset.

|ζ/4| or 2 |ζ/2| or 4 |ζ − 2| or 6
Name P2H P2H+ LI+ NP2H P2H P2H+ LI+ NP2H P2H P2H+ LI+ NP2H

(�s) (�s) (�s)
RT 1.25 1.43 0.1 0.2�s 2.38 10.17 0.1 66�s 3.33 10 0.1 20�s
ADG 6.79 5.94 0.24 0.004�s 10.75 8.82 0.23 4.8�s 8.98 8.71 0.23 3.4�s
AX 25.5 20.6 6.4 12ms 25.4 51.4 4.1 19ms 46.6 60.3 2.05 16ms
EPIN 15.15 17.24 1.9 337�s 20.01 19.67 1.13 0.37�s 33.88 32.89 1.34 0.30�s
SHS 73.31 59.51 2.84 0.19�s 268.15 232 4.13 25.4�s 58.96 33.10 0.38 43.3�s
ND 193.53 222.03 25.9 26�s 131.52 154.24 8.39 17�s 27.46 30.36 3.45 1.9ms
BG 280.91 404.38 27.4 0.26�s 183.78 369.34 7.6 204ms 81.28 290.14 4.99 19.4ms
CT 16.9 24.4 4.4 3.4ms 16.8 30 4.2 15.3ms 20 45.8 3.6 23.7ms
SFC 157.21 98.70 4.4 0.14�s 43.73 35.38 0.78 129�s 294.74 199.66 4.95 265�s
WS 23.02 32.34 2.27 29�s 199.07 311.48 9.16 1.1ms 46.79 55.16 2.10 2.9ms
WG 35.86 31.14 7.57 0.6�s 35.11 44.00 9.59 24ms 30.52 30.84 6.42 44ms
YT 100.37 100.14 90.55 2.1�s 109.40 121.74 87.63 59�s 120.89 132.96 62.84 12.5�s
ZH 42.35 38.94 18.07 8.4ms 40.30 43.53 17.60 63.8ms 43.76 51.47 17.45 109ms
SP 315.23 278.83 70.26 35ms 623.82 421.29 87.5 8.5ms 424.36 354.36 75.20 3.9ms
WL 109.6 105.2 26.3 35ms 223.4 184.0 31.3 38ms 310.7 149.5 22.4 61ms
WPE 0.46�s 0.34�s 1.3s 267ms 0.33�s 0.26�s 1.8s 620ms 0.26�s 0.21�s 1.3s 699ms
WLE - 0.44�s - 140ms - 0.36�s - 369ms - 0.25�s - 144ms
T3W - 0.47�s - - - 0.37�s - - - 0.29�s - -
TM - 0.41�s - - - 0.31�s - - - 0.27�s - -
FS - 0.48�s - - - 0.34�s - - - 0.34�s - -
SPL - 112�s - - - 260�s - - - 596�s - -
FB - 241�s - - - 353�s - - - 729�s - -

Exp 2: synthetic graph performance In our second ex-
periment, we compare our algorithms with LI+ on synthetic
datasets. We chose n = 25, 000 and L = 8, and we vary the
node degree from 2 to 5 (e.g., number of edges from 10,000
to 25,000), thereby increasing the density of the graph. Our
aim here is to understand, using two significantly different
synthetic graph models, the impact of graph density on per-
formance, as density is a basic property of graphs. We ex-
pect that building indexes on denser graphs will be more
difficult for all these methods, as the number of possible
paths to explore and index between nodes, and the number
of minimal label sets, increase with density. Table 7 summa-
rizes the results. We show the indexing time, index size and
average query performance. Note that for the average query
performance, we show speed-up of P2H and P2H+ over
LI+ and we show the average query time of LI+ in table 7.

What is shown in this table is that P2H and P2H+
can achieve about one order magnitude faster query time
with one order magnitude less indexing time and indexing
size. Due to the minimal property, indexing size of P2H+
is always smaller than P2H. We can also observe that as
D increases, speed-up on average increases. The reason is
that the average size of connected components in the graphs
increase as D increases and LI+ will perform more work
on false queries while P2H and P2H+ will not since they
construct the full index.

For NP2H, it shows a similar problem in synthetic graphs.
Hence, we do not consider this technique further.

Exp 3: impact of degree and label set size In this
experiment, we show the impact of degree and label set size
by synthetic graphs. We vary the degree from 2 to 5 and
label size from 8,10,12,14 to 16 on ER- and PA-datasets.
Figures 4 and 5 show the indexing time, the index size and
the query times for the PA-datasets and the ER-datasets. If
we are not able to build an index within the 129,600-second
(36 hours) time limit, there will be a missing point in the
figure. We observe that both the indexing time and the
index size grows steadily whenever D is large or small. The

growths of the indexing time and index size are stronger for
ER-datasets than for PA-datasets. A possible explanation
for this might be that ER-datasets have a close to uniform
outdegree distribution. On average there are more paths
connecting any two vertices, which increases the number of
minimal label sets connecting them.

Exp 4: impact of graph structure In our fourth exper-
iment, we analyze the performance of our algorithms with
LI+ on PA- and ER-datasets in which we vary the num-
ber of vertices n from 5, 000 to 625, 000 with fixed degree
D = 5. Our goal here is to understand the scalability of
these algorithms.
Figures 6 and 7 show the indexing time, the index size and

the average query times for PA-datasets and ER-datasets re-
spectively. It is shown that in PA-datasets, the growth of
LI+ become faster and faster when n getting larger while
in ER-dataset it grows steadily. “As the number of ver-
tices increases, we see that average query times increase for
both ER- and PA-datasets, as expected on larger graphs.
The PA-datasets exhibit a stronger increase than the ER-
datasets. This can be understood as follows. As the ER-
datasets have a more uniform out-degree distribution and
each vertex has more neighbors, we might have that search
on PA-datasets has to explore larger parts of the graph and
hence take more time to evaluate a query” since LI+ need to
explore all the graph when meet a false query not included
in their partial index. For our P2H and P2H+, the index-
ing time and index size rise steadily in both PA- and ER-
datasets, which shows the superior scalability of our algo-
rithms. As for average query time, P2H and P2H+ can
always answer the LCR query within 1us when n increasing
due to indexing the full LCR information.

Exp 5: impact of vertex order strategy
In this subsection, we analyze the performance of different

node order strategies proposed in this paper. We compare
DBS (degree-based strategy) and our ABS (adaptive based
strategy). It is shown in Table 8 that query times for these
two strategies are very similar due to the same framework.

821

10-1

100

101

102

103

 8 9 10 11 12 13 14 15 16

In
de

xi
ng

 ti
m

e(
s)

| ζ |

D=2
D=3
D=4
D=5

(a) Indexing time(s)

101

102

103

 8 9 10 11 12 13 14 15 16

In
de

x
si

ze
(M

B
)

| ζ |

D=2
D=3
D=4
D=5

(b) Indexing size(MB)

10-8

10-7

10-6

10-5

 8 9 10 11 12 13 14 15 16

In
de

x
si

ze
(M

B
)

| ζ |

D=2
D=3
D=4
D=5

(c) Query Time(s)

Figure 4: Indexing time, index size and average query times for PA-datasets with n = 25, 000 varying the
number of vertices. The different lines indicate the node degree (either 2, 3, 4 or 5) of the datasets.

10-1

100

101

102

103

104

105

 8 9 10 11 12 13 14 15 16

In
de

xi
ng

 ti
m

e(
s)

| ζ |

D=2
D=3
D=4
D=5

(a) Indexing time(s)

101

102

103

104

 8 9 10 11 12 13 14 15 16

In
de

x
si

ze
(M

B
)

| ζ |

D=2
D=3
D=4
D=5

(b) Indexing size(MB)

10-8

10-7

10-6

10-5

10-4

 8 9 10 11 12 13 14 15 16

In
de

x
si

ze
(M

B
)

| ζ |

D=2
D=3
D=4
D=5

(c) Query Time(s)

Figure 5: Indexing time, index size and average query times for ER-datasets with n = 25, 000 varying the
number of vertices. The different lines indicate the node degree (either 2, 3, 4 or 5) of the datasets.

10-1

100

101

102

103

104

100 101 102 103 104

In
de

xi
ng

 T
im

e(
s)

n/1,000

LI+
P2H
P2H+

(a) Indexing time(s)

100

101

102

103

104

105

100 101 102 103 104

In
de

xi
ng

 S
iz

e(
M

B
)

n/1,000

LI+
P2H
P2H+

(b) Indexing size(MB)

10-8

10-7

10-6

10-5

10-4

10-3

100 101 102 103 104

Q
ue

ry
 T

im
e(

s)

n/1,000

LI+
P2H
P2H+

(c) Query Time(s)

Figure 6: Indexing time, index size and average query times for PA-datasets with n = 25, 000 varying the
number of vertices. The different lines indicate the node degree (either 2, 3, 4 or 5) of the datasets.

100

101

102

103

104

105

100 101 102 103

In
de

xi
ng

 T
im

e(
s)

n/1,000

LI+
P2H
P2H+

(a) Indexing time(s)

101

102

103

104

105

100 101 102 103

In
de

xi
ng

 S
iz

e(
M

B
)

n/1,000

LI+
P2H
P2H+

(b) Indexing size(MB)

10-7

10-6

10-5

10-4

10-3

10-2

100 101 102 103

Q
ue

ry
 T

im
e(

s)

n/1,000

LI+
P2H
P2H+

(c) Query Time(s)

Figure 7: Indexing time, index size and average query times for ER-datasets with n = 25, 000 varying the
number of vertices. The different lines indicate the node degree (either 2, 3, 4 or 5) of the datasets.

822

Table 6: Speed-ups of P2H and P2H+ over LI+ for each of the real datasets in false query sets. For LI+,
the average query time is given in microseconds. In this table, “-” indicates that the method timed out on
this dataset.

|ζ/4| or 2 |ζ/2| or 4 |ζ − 2| or 6
Name P2H P2H+ LI+ NP2H P2H P2H+ LI+ NP2H P2H P2H+ LI+ NP2H

(�s) (�s) (�s)
RT 1.97 2.92 0.134 115�s 1.53 4.68 0.128 287�s 1.67 4.55 0.1 341�s
ADG 7.27 6.59 0.42 1.9ms 5.69 7.66 0.34 2.4ms 6.69 8.51 0.40 2.3ms
AX 65 42.0 32 72ms 49 45 28.0 89ms 184 199 60.1 110ms
EPIN 96.73 83.03 3.41 76ms 136.51 154.89 3.22 88ms 199.73 173.35 3.67 98ms
SHS 71.07 68.34 5.70 8.2ms 130.28 231.37 8.05 8.8ms 217.56 299.52 8.75 11.9ms
ND 82.82 110.92 12.37 21ms 163.40 90.72 12.16 43ms 52.55 42.8 5.07 25ms
BG 172.65 223.84 19.29 30ms 58.48 183.71 9.11 34.8ms 80.31 282.64 11.75 52.7ms
CT 63.6 87.1 20 72ms 154 142 35.4 99ms 338 391 74 128ms
SFC 362.42 309.68 16.60 8.1ms 632 598 26.56 7.8ms 336.58 325.96 12.39 9.5ms
WS 144.70 216.27 20.11 239ms 4,262 6,987 677 204ms 9,649 14,848 1,301 337ms
WG 56.44 53.76 17.02 1.4s 4,336 6,345 2,352 748ms 17,091 21,563 4,153 1.2s
YT 282.21 307.51 326 61ms 194.20 231 212 61.8ms 229.44 246 139 33.5ms
ZH 195.68 248.75 52.1 759ms 1,284 1,777 385 713ms 5,586 6,863 1,520 766ms
SP 478.49 522.74 137.9 4.8s 698 752 178 4.7s 1,769 1,573 347 4.9s
WL 581.2 660.5 63.9 6.1s 1,230 1,605 94.7 6.3s 2,277 2,403 173.5 6.4s
WPE 0.27�s 0.18�s 1.2s 23s 0.22�s 0.18�s 1.8s 37s 0.30�s 0.13�s 2.3s 37s
WLE - 0.26�s - 31s - 0.25�s - 38s - 0.22�s - 41s
T3W - 0.28�s - - - 0.34�s - - - 0.36�s - -
TM - 0.30�s - - - 0.34�s - - - 0.50�s - -
FS - 0.35�s - - - 0.31�s - - - 0.35�s - -
SPL - 91.1�s - - - 102�s - - - 114�s - -
FB - 151�s - - - 196�s - - - 234�s - -

Table 7: Indexing time(IT) in seconds, index size (IS) in megabytes, and average speed-ups for PA- and
ER-datasets with n = 25,000 and L = 8 for which we vary the node degree (from 2 up to 5).

D P2H P2H+ LI+ NP2H AverageSpeed-up
IT IS IT IS IT IS IT IS P2H P2H+ LI+(�s) NP2H(ms)

2 2.3 29.1 0.59 17.7 38.81 624.8 0.32 16.4 176 239 24.2 11.9
3 3.4 43.5 2.2 35.5 29.45 703.4 0.39 16.01 8.04 11.3 1.1 13.1

ER 4 11.4 85.1 10.3 78.1 150.2 1,040 0.48 18.09 155.9 166.7 35.8 13.9
5 24.1 125.8 19.7 114.7 420.2 1,568 0.51 20.42 368.0 441.0 172 12.9
2 0.349 13.6 0.337 12.6 4.18 189 0.28 13.0 21.8 22.9 1.24 7.5
3 1.2 21.4 0.997 19.1 20.46 333.5 0.34 15.5 202.9 242.2 29.8 2.3

PA 4 2.26 26.9 1.58 22.9 98 1,160 0.42 18.0 102.9 130.2 22.4 4.3
5 3.79 31.9 2.16 25.8 64.1 538.5 0.53 20.6 14.7 22.2 3.65 3.0

Table 8: Query time(QT) in microsend for real
datasets. In this table, DBS indicates degree-based
strategy and ABS indicates adaptive based strategy.

Name DBS ABS
IT IS QT IT IS QT

RT 0.007 0.59 0.04 0.009 0.53 0.036
ADG 0.125 3.1 0.04 0.093 3.0 0.018
AX 303 404 0.36 89.4 234 0.29
EPIN 9 68 0.05 7.15 63.1 0.032
SHS 4 37 0.04 3.9 38.0 0.037
ND 24 236 0.11 22.1 247 0.09
BG 4 43 0.05 3.9 45 0.07
CT 171 1.1K 0.19 59.6 572.8 0.2
SFC 7 55 0.04 6.5 56 0.036
WS 50 361 0.07 65.4 382 0.073
WG 378 1.2K 0.26 229 1.1K 0.2
YT 1.2K 365 0.77 809 370 0.65
ZH 10.2K 14K 0.31 7.6K 11K 0.32
SP 1.2K 1.6K 0.23 614 1.5K 0.18
WL 1.9K 3.8K 0.13 2.1K 3.7K 0.21
WPE 5.6K 10K 0.22 3.3K 9.2K 0.21
WLE 12.8K 14K 0.29 11K 13K 0.25
T3W 63.8K 55K 0.35 77,767 54K 0.29
TM 79.7K 71.1K 0.36 77.8K 71K 0.35
FS 125K 92.8K 0.36 109K 92K 0.33

For Indexing time and index size, in the case that degrees
are sufficient to identify the importance of vertices, DBS
and ABS have similar performance and ABS’s performance
is slightly better. Otherwise, ABS performs significantly
better than DBS on graphs AX,CT,WG,ZH and WPE.

7. CONCLUSION
In a directed edge-labeled graph, a fundamental query is

to test whether a source vertex can reach a target vertex
through a set of edges each of which only contains the given
labels. In this paper, we proposed novel label-constrained
2-hop index techniques with some nice properties to effi-
ciently support LCR queries. Our comprehensive experi-
ments showed that our proposed method fully dominated
the state-of-the-art technique by means of query time (with
up to 5 orders of magnitude speedup), index size and index
construction time.

8. ACKNOWLEDGMENTS
Ying Zhang is supported by ARC DP180103096 and

FT170100128. Lu Qin is supported by ARC DP160101513.
Wenjie Zhang is supported by ARC DP180103096 and
DP200101116. Xuemin Lin is supported by NSFC61232006,
2018YFB1003504, ARCDP200101338, ARCDP180103096
and DP170101628.

823

9. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F.

Werneck. Hierarchical hub labelings for shortest paths.
In European Symposium on Algorithms, pages 24–35.
Springer, 2012.

[2] T. Akiba, Y. Iwata, K.-i. Kawarabayashi, and
Y. Kawata. Fast shortest-path distance queries on
road networks by pruned highway labeling. In 2014
Proceedings of the Sixteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pages
147–154. SIAM, 2014.

[3] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact
shortest-path distance queries on large networks by
pruned landmark labeling. In Proceedings of the 2013
ACM SIGMOD International Conference on
Management of Data, pages 349–360. ACM, 2013.

[4] R. Angles, M. Arenas, P. Barceló, A. Hogan,
J. Reutter, and D. Vrgoč. Foundations of modern
query languages for graph databases. ACM Computing
Surveys (CSUR), 50(5):68, 2017.

[5] P. B. Baeza. Querying graph databases. In R. Hull
and W. Fan, editors, Proceedings of the 32nd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2013, New York, NY,
USA - June 22 - 27, 2013, pages 175–188. ACM, 2013.

[6] C. Barrett, R. Jacob, and M. Marathe.
Formal-language-constrained path problems. SIAM
Journal on Computing, 30(3):809–837, 2000.

[7] S. Beamer, K. Asanović, and D. Patterson.
Direction-optimizing breadth-first search. Scientific
Programming, 21(3-4):137–148, 2013.

[8] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen.
Distance oracles in edge-labeled graphs. In EDBT,
pages 547–558, 2014.

[9] M. Chen, Y. Gu, Y. Bao, and G. Yu. Label and
distance-constraint reachability queries in uncertain
graphs. In International Conference on Database
Systems for Advanced Applications, pages 188–202.
Springer, 2014.

[10] X. Chen, L. Lai, L. Qin, and X. Lin. Structsim:
Querying structural node similarity at billion scale. In
2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, 2020.

[11] Y. Chen, Y. Fang, R. Cheng, Y. Li, X. Chen, and
J. Zhang. Exploring communities in large profiled
graphs. IEEE Transactions on Knowledge and Data
Engineering, 2018.

[12] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu.
Tf-label: a topological-folding labeling scheme for
reachability querying in a large graph. In Proceedings
of the 2013 ACM SIGMOD International Conference
on Management of Data, pages 193–204. ACM, 2013.

[13] J. Cheng and J. X. Yu. On-line exact shortest distance
query processing. In Proceedings of the 12th
International Conference on Extending Database
Technology: Advances in Database Technology, pages
481–492. ACM, 2009.

[14] J. Cheng, J. X. Yu, X. Lin, H. Wang, and S. Y. Philip.
Fast computation of reachability labeling for large
graphs. In International Conference on Extending
Database Technology, pages 961–979. Springer, 2006.

[15] P. Choudhary. A survey on social network analysis for
counterterrorism. International Journal of Computer
Applications, 112(09), 2015.

[16] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.

Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338–1355, 2003.

[17] Y. Fang, R. Cheng, Y. Chen, S. Luo, and J. Hu.
Effective and efficient attributed community search.
The VLDB Journal, 26(6):803–828, 2017.

[18] Y. Fang, R. Cheng, X. Li, S. Luo, and J. Hu. Effective
community search over large spatial graphs. PVLDB,
10(6):709–720, 2017.

[19] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective
community search for large attributed graphs.
PVLDB, 9(12):1233–1244, 2016.

[20] Y. Fang, R. Cheng, S. Luo, J. Hu, and K. Huang.
C-explorer: browsing communities in large graphs.
PVLDB, 10(12):1885–1888, 2017.

[21] Y. Fang, X. Huang, L. Qin, Y. Zhang, W. Zhang,
R. Cheng, and X. Lin. A survey of community search
over big graphs. The VLDB Journal, 2019.

[22] Y. Fang, Z. Wang, R. Cheng, X. Li, S. Luo, J. Hu,
and X. Chen. On spatial-aware community search.
TKDE, 31(4):783–798, 2019.

[23] Y. Fang, Z. Wang, R. Cheng, H. Wang, and J. Hu.
Effective and efficient community search over large
directed graphs. TKDE, 31(11):2093–2107, 2019.

[24] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao.
Effective and efficient community search over large
heterogeneous information networks. PVLDB, 13(6),
Feb. 2020.

[25] Y. Fang, K. Yu, R. Cheng, L. V. S. Lakshmanan, and
X. Lin. Efficient algorithms for densest subgraph
discovery. PVLDB, 12(11):1719–1732, July 2019.

[26] M. S. Hassan, W. G. Aref, and A. M. Aly. Graph
indexing for shortest-path finding over dynamic
sub-graphs. In Proceedings of the 2016 International
Conference on Management of Data, pages 1183–1197.
ACM, 2016.

[27] J. Hu, R. Cheng, K. C.-C. Chang, A. Sankar, Y. Fang,
and B. Y. Lam. Discovering maximal motif cliques in
large heterogeneous information networks. In
International Conference on Data Engineering
(ICDE), pages 746–757. IEEE, 2019.

[28] J. Hu, X. Wu, R. Cheng, S. Luo, and Y. Fang. On
minimal steiner maximum-connected subgraph
queries. TKDE, 29(11):2455–2469, 2017.

[29] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang.
Computing label-constraint reachability in graph
databases. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data,
pages 123–134. ACM, 2010.

[30] R. Jin, N. Ruan, S. Dey, and J. Y. Xu. Scarab: scaling
reachability computation on large graphs. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 169–180.
ACM, 2012.

[31] R. Jin and G. Wang. Simple, fast, and scalable
reachability oracle. PVLDB, 6(14):1978–1989, 2013.

[32] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data,
pages 813–826. ACM, 2009.

[33] P. Klodt, G. Weikum, S. Bedathur, and S. Seufert.
Indexing strategies for constrained shortest paths over
large social networks. Universitat des Saarlandes,
2011.

[34] J. Kunegis. Konect: the koblenz network collection. In

824

Proceedings of the 22nd International Conference on
World Wide Web, pages 1343–1350. ACM, 2013.

[35] L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang,
K. Hao, X. Lin, L. Qin, W. Zhang, Y. Zhang, Z. Qian,
and J. Zhou. Distributed subgraph matching on timely
dataflow. PVLDB, 12(10):1099–1112, June 2019.

[36] J. Leskovec. Snap: Stanford large network dataset
collection, 2016.

[37] Y. Li, M. L. Yiu, N. M. Kou, et al. An experimental
study on hub labeling based shortest path algorithms.
PVLDB, 11(4):445–457, 2017.

[38] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and
J. Zhou. Efficient (α, β)-core computation: An
index-based approach. In The World Wide Web
Conference, pages 1130–1141, 2019.

[39] B. Liu, F. Zhang, C. Zhang, W. Zhang, and X. Lin.
Corecube: Core decomposition in multilayer graphs.
In International Conference on Web Information
Systems Engineering, pages 694–710. Springer, 2019.

[40] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An
efficient connection index for complex xml document
collections. In International Conference on Extending
Database Technology, pages 237–255. Springer, 2004.

[41] S. Seufert, A. Anand, S. Bedathur, and G. Weikum.
Ferrari: Flexible and efficient reachability range
assignment for graph indexing. In 2013 IEEE 29th
International Conference on Data Engineering
(ICDE), pages 1009–1020. IEEE, 2013.

[42] K. Simon. An improved algorithm for transitive
closure on acyclic digraphs. Theoretical Computer
Science, 58(1-3):325–346, 1988.

[43] L. D. Valstar, G. H. Fletcher, and Y. Yoshida.
Landmark indexing for evaluation of label-constrained
reachability queries. In Proceedings of the 2017 ACM
International Conference on Management of Data,
pages 345–358. ACM, 2017.

[44] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi.
Pgql: a property graph query language. In Proceedings
of the Fourth International Workshop on Graph Data
Management Experiences and Systems, page 7. ACM,
2016.

[45] S. J. van Schaik and O. de Moor. A memory efficient
reachability data structure through bit vector
compression. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data, pages 913–924. ACM, 2011.

[46] S. Wadhwa, A. Prasad, S. Ranu, A. Bagchi, and
S. Bedathur. Efficiently answering regular simple path
queries on large labeled networks. In Proceedings of
the 2019 International Conference on Management of
Data, pages 1463–1480, 2019.

[47] K. Wang, X. Cao, X. Lin, W. Zhang, and L. Qin.

Efficient computing of radius-bounded k-cores. In
2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 233–244. IEEE, 2018.

[48] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang.
Vertex priority based butterfly counting for large-scale
bipartite networks. PVLDB, 12(10):1139–1152, 2019.

[49] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang.
Efficient bitruss decomposition for large-scale bipartite
graphs. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE). IEEE, 2020.

[50] H. Wei, J. X. Yu, C. Lu, and R. Jin. Reachability
querying: An independent permutation labeling
approach. PVLDB, 7(12):1191–1202, 2014.

[51] P. T. Wood. Query languages for graph databases.
ACM SIGMOD Record, 41(1):50–60, 2012.

[52] Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast
and scalable reachability queries on graphs by pruned
labeling with landmarks and paths. In Proceedings of
the 22nd ACM international conference on
Information & Knowledge Management, pages
1601–1606. ACM, 2013.

[53] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail:
Scalable reachability index for large graphs. PVLDB,
3(1-2):276–284, 2010.

[54] J. X. Yu and J. Cheng. Graph reachability queries: A
survey. In Managing and Mining Graph Data, pages
181–215. Springer, 2010.

[55] Y. Yuan, X. Lian, G. Wang, Y. Ma, and Y. Wang.
Constrained shortest path query in a large
time-dependent graph. PVLDB, 12(10):1058–1070,
2019.

[56] F. Zhang, C. Li, Y. Zhang, L. Qin, and W. Zhang.
Finding critical users in social communities: The
collapsed core and truss problems. IEEE Transactions
on Knowledge and Data Engineering, 32(1):78–91,
2018.

[57] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin.
Efficiently reinforcing social networks over user
engagement and tie strength. In 2018 IEEE 34th
International Conference on Data Engineering
(ICDE), pages 557–568. IEEE, 2018.

[58] X. Zhang and M. T. Özsu. Correlation constraint
shortest path over large multi-relation graphs.
PVLDB, 12(5):488–501, 2019.

[59] Z. Zhang, J. X. Yu, L. Qin, Q. Zhu, and X. Zhou. I/o
cost minimization: reachability queries processing over
massive graphs. In Proceedings of the 15th
International Conference on Extending Database
Technology, pages 468–479. ACM, 2012.

[60] L. Zou, K. Xu, J. X. Yu, L. Chen, Y. Xiao, and
D. Zhao. Efficient processing of label-constraint
reachability queries in large graphs. Information
Systems, 40:47–66, 2014.

825

