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ABSTRACT
With the increasing demand for real-time analytics and decision

making, anomaly detection methods need to operate over streams

of values and handle drifts in data distribution. Unfortunately, ex-

isting approaches have severe limitations: they either require prior

domain knowledge or become cumbersome and expensive to use in

situations with recurrent anomalies of the same type. In addition,

subsequence anomaly detection methods usually require access to

the entire dataset and are not able to learn and detect anomalies in

streaming settings. To address these problems, we propose SAND,

a novel online method suitable for domain-agnostic anomaly de-

tection. SAND aims to detect anomalies based on their distance to

a model that represents normal behavior. SAND relies on a novel

steaming methodology to incrementally update such model, which

adapts to distribution drifts and omits obsolete data. The experimen-

tal results on several real-world datasets demonstrate that SAND

correctly identifies single and recurrent anomalies without prior

knowledge of the characteristics of these anomalies. SAND outper-

forms by a large margin the current state-of-the-art algorithms in

terms of accuracy while achieving orders of magnitude speedups.
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1 INTRODUCTION
Large collections of data series

1
are becoming a reality in a large

variety of scientific domains, and there is an increasing demand for

developing methods to efficiently and accurately analyze them [5,

38, 40, 43]. Moreover, many domains require methods to deal with

streams and adapt to possible drifts in data distribution.

Anomaly Detection: Anomaly, or outlier detection is a well-

studied problem [7, 52, 60] relevant to several scientific do-

mains [39], such as cardiology for detecting abnormal heart-

beats [22], engineering for identifying wear and tear in bearings

of rotating machines [4], manufacturing for product quality assur-

ance [33], data center operation management for hardware and soft-

ware health monitoring [45], aviation for identifying mechanical

failures in helicopter operation monitoring [16], and astrophysics

1
If the dimensions are ordered by time then we refer to data series as time series. We

will use the terms sequence, data series, and time series interchangeably.
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Figure 1: (a) Accelerometer variation positioned on chest (y-
axis) while (b) Nordic walking and (c) rope jumping.

for removing transient noise signals from gravitational wave inter-

ferometer measurements [6]. For the specific case of sequences and

data series, we are interested in identifying anomalous subsequences,
where outliers are not single values, but rather a sequence of values.

This distinction is important, because even when all values in a

subsequence are normal when examined independently from one

another (e.g., they all fall inside the normal operation thresholds),

the sequence of these same values may be anomalous (e.g., the shape

of the subsequence may not be normal). Therefore, subsequence

anomaly detection enables the early identification of potentially

abnormal events that would have been otherwise undetected [4].

Moreover, data measurements arriving continuously in several

real-world cases, require anomaly detection to take place in real-

time. Because drifts in data distribution are common, the detection

needs to be independent of these changes. To illustrate this point,

Figure 1(a) depicts acceleration on the x-axis of a device positioned

on the chest of a human performing different actions [54]. We ob-

serve that the data characteristics corresponding to subsequences

are different for Nordic walking (Figure 1(b)) and rope jumping (Fig-

ure 1(c)). As changes of actions happen in real-time, the detection of

abnormal subsequences (such as the red subsequence in Figure 1(c))

needs to be able to adapt to changes in the data generation process.

Limitations of Previous Approaches: In the non-streaming

case, in order to solve the aforementioned task, existing techniques

either explicitly search for pre-determined types of anomalies [2,

22], or identify as anomalies the subsequences with the largest

distances to their nearest neighbors (termed discords) [50, 60]. We

observe that these approaches pose limitations to the subsequence

anomaly identification task, for several reasons. It has been shown

that the State-Of-the-Art (SOTA) algorithms (e.g., [50, 60]) are very

successful for datasets that contain a single anomaly, or multiple

but different (from one another) anomalies [60]. The reason is that

these algorithms base their anomaly detection procedure on the dis-

tance of a subsequence to its Nearest Neighbor (NN) in the dataset

(by selecting as anomalies the subsequences with the farthest NN).

For the case of multiple similar anomalies, the𝑚𝑡ℎ discord ap-

proach has been proposed [59]. This approach takes into account
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the multiplicity𝑚 of the anomalous subsequences that are similar

to one another, and computes the𝑚𝑡ℎ
NN of every subsequence.

The subsequences with the furthest𝑚𝑡ℎ
NN are then selected as

anomalies. Nevertheless, this approach assumes that we know the

multiplicity 𝑚 (or a close estimation of it), which is not true in

practice. To avoid this situation, approaches that either estimate the

isolation of subsequences as multidimensional vectors [28], or esti-

mate and summarize the normal subsequences [10, 11] have been

proposed. These methods aim to embed (in trees [28], set [10] or

directed graph [11]) the different behaviors of the data series such

that anomalies (i.e., rare events) are easy to discriminate. The set-

based and the directed graph-based approaches have been shown

to outperform the previous discord methods for datasets containing

similar anomalies [10, 11]. Nevertheless, in the case of streaming

data series, among all previous methods for subsequence anomaly

detection, only discords methods (such as Matrix Profile incremen-

tal implementation [60]) and tree-based methods [31] can be used.

The remaining methods cannot adapt to changes and learn new

data characteristics, both of which are required when dealing with

data streams, due to their design. In such cases, the methods need

to learn and modify their parameters as new data arrive.

Our Approach: To address the aforementioned problems we pro-

pose SAND, a novel approach suitable for subsequence anomaly

detection in data streams. SAND builds a data set of subsequences

representing the different behaviors of the data series. These subse-

quences are weighted using statistical characteristics such as their

cardinality (i.e., how many times the subsequence occurred) and

their temporality (i.e., the time difference this subsequence has been

detected for the last time). SAND enables this data structure to be

updated from one batch to another, while being able to compute

an anomaly score at every timestamp. Thus, SAND proposes a so-

lution to the subsequences anomaly detection task on streaming

data. SAND benefits from 𝑘-Shape [41], a SOTA data-series clus-

tering method, which we extend to enable the clustering result

to be updated without storing any of the previous subsequences.

We demonstrate experimentally that our method outperforms the

current (static and streaming) SOTA approaches.

Contributions: Our contributions are as follows.

• We describe the concepts and ideas used by the SOTA methods

on subsequence anomaly detection (static and streaming) and

discuss their practical shortcomings.

• We extend 𝑘-Shape for streaming scenarios by enabling batch

updates of the clustering partition. Our approach avoids entirely

the storage of the previous subsequences, a critical step for

operating over unbounded data series.

• We present SAND, our subsequence anomaly detection method

specifically designed for operation over streaming sequence

data. SAND exploits our streaming 𝑘-Shape to scale in memory

and in execution time for unbounded streams.We propose a new

weighting scheme for clusters and an automatic cluster creation

procedure to handle distribution drifts. We finally propose a

novel anomaly score computation that adapts dynamically to

the current batch and gives less importance to old subsequences.

• We perform an experimental analysis using a large data corpus

of real datasets (that include a ground truth of annotated anom-

alies). from different domains. We evaluate both subtle changes

in data characteristics (by concatenating datasets from the same

domain) and drastic changes (by concatenating datasets from

different domains). We empirically evaluate the influence of

SAND’s parameters on accuracy and execution time. Finally,

we compare SAND with several SOTA approaches and show

that our method outperforms the strongest competitor up to

27% while executing one order of magnitude faster.

2 PRELIMINARIES
Data Series and Streaming Data: We focus on the analysis of

ordered sequences of measurements. We distinguish between se-

quences with fixed size (data series) and unbounded evolving se-

quences (data streams). We formally defined them as follow: a

data series 𝑇 ∈ R𝑛 is a sequence of real-valued numbers 𝑡𝑖 ∈ R
[𝑇0,𝑇1, ...,𝑇𝑛 − 1]; |𝑇 | is defined as the length of 𝑇 . We are inter-

ested in local section of the data series, called subsequences. A

subsequence 𝑇𝑖,ℓ ∈ Rℓ of a data series 𝑇 is a subset of contiguous

values from 𝑇 of length ℓ (usually ℓ ≪ |𝑇 |) starting at position 𝑖:

𝑇𝑖,ℓ = [𝑇𝑖 ,𝑇𝑖+1, ...,𝑇𝑖+ℓ−1]. We define the set of all subsequences of

length ℓ in a given data series 𝑇 : Tℓ = {𝑇𝑖,ℓ |∀𝑖 .0 ≤ 𝑖 ≤ |𝑇 | − ℓ + 1}.
In the specific case of data streams, the total size of the data

series is not known and potentially infinite. Data points arrive

incrementally. Moreover, one can wait for a given number of points

before analyzing them. In this case, we define this quantity as a

batch. For a given timestamp of arrival 𝑡 , we note a batch T𝑡
ℓ
=

{𝑇𝑡,ℓ , ...,𝑇𝑡+𝑏𝑠𝑖𝑧𝑒−ℓ,ℓ } a ordered set of subsequences of length ℓ of

size |T𝑡
ℓ
| = 𝑏𝑠𝑖𝑧𝑒 . T

0

ℓ
is thus the initial batch.

2.1 Data-Series Clustering
Despite the proliferation of anomaly detection methods, a set of

effective methods are those that either determine anomalies by com-

paring subsequences to previous subsequences or with an estimated

normal behavior (as discussed in Section 2.2). Clustering can sum-

marize the underlying patterns in data and, therefore, can be used

to extract the recurring behavior in datasets for anomaly detection

purposes. Formally, given a set of observations (or subsequences

which are the topic of this paper), clustering methods partition

this set into 𝑘 distinct clusters, such that the within-cluster sum of

squared distances is minimized. For a given set of subsequences Tℓ ,
we note C = {C0, ..., C𝑘 } the optimal partition of 𝑘 cluster C𝑖 with
∀C𝑖 , C𝑗 ∈ C, C𝑖 ∩ C𝑗 = ∅. We note

¯C𝑖 the centroid of cluster C𝑖 .
𝑘-means and EuclideanDistance: The𝑘-means algorithm solves

this partitioning problem using the 𝑧-normalized Euclidean Dis-

tance, 𝐸𝐷 . Formally, given two sequences, 𝐴 and 𝐵, of the same

length, ℓ , we can calculate their 𝐸𝐷 , as follows [15, 35, 55, 57, 58]:

𝐸𝐷 (𝐴, 𝐵) =
√∑𝑙

𝑖 (
𝐴𝑖,1−𝜇𝐴

𝜎𝐴
− 𝐵𝑖,1−𝜇𝐵

𝜎𝐵
)2, where 𝜇 and 𝜎 represent the

mean and standard deviation of the sequences. 𝑘-means centroids

correspond to the arithmetic mean of the subsequences in their

corresponding clusters. Other algorithms based on ED have been

proposed (such as hierarchical clustering). Nevertheless, only 𝑘-

means scales linearly with the size of the dataset. Moreover, it

is easy to extend 𝑘-means to a streaming context [21], since the

centroids can be incrementally updated as new points arrive.

𝑘-Shape and Shape-based Distance: ED-based algorithms can-

not capture the necessary property of alignment in data series

1718



(i.e., ED is not a competitive distance measure in terms of accu-

racy [44]). Recently, 𝑘-Shape (clustering algorithm based on 𝑆ℎ𝑎𝑝𝑒-

𝐵𝑎𝑠𝑒𝑑-𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝐵𝐷)) has shown SOTA performance in data series

clustering [41, 42]. SBD uses cross-correlation to find the appropri-

ate alignment between two sequences. Formally, given 𝐴, 𝐵, two

sequences of length ℓ , the 𝑆𝐵𝐷 distance is defined as follows:

𝑆𝐵𝐷 (𝐴, 𝐵) = 1 −𝑚𝑎𝑥𝑤

(
𝑅𝑤−ℓ (𝐴, 𝐵)√

𝑅0 (𝐴,𝐴) .𝑅0 (𝐵, 𝐵)

)
with: 𝑅𝑘 (𝐴, 𝐵) =

{∑ℓ−𝑘
𝑖=1

𝐴𝑖+𝑘 .𝐵𝑖 , 𝑘 ≥ 0

𝑅−𝑘 (𝐵,𝐴), 𝑘 < 0

The 𝑘-Shape centroid computation corresponds to an optimization

problem in which we are computing the minimizer (i.e., sequence)

of the sum of squared distances to all other sequences using the

𝑆𝐵𝐷 distance. Formally, as described in Equation 15 in [41], the

centroid
¯C𝑗 is computed as follows:

¯C𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥
¯C𝑗

( ¯C𝑗 )𝑇 .𝑀. ¯C𝑗
( ¯C𝑗 )𝑇 . ¯C𝑗

with:𝑀 = 𝑄𝑇 .𝑆 𝑗 .𝑄 , 𝑄 = 𝐼 − 1

| ¯C𝑗 |
𝑂, and 𝑆 𝑗 =

∑
𝐴∈C𝑗

𝐴.𝐴𝑇
(1)

Note that
¯C𝑗 is considered as a vector (( ¯C𝑗 )𝑇 is its transpose) in

the above equation. The dot operator is the dot product between

two matrices/vectors. Moreover, 𝐼 is the identity matrix, and 𝑂 is

a matrix with all ones. In practice, the centroid that maximizes

Equation 1 corresponds to the eigenvector that corresponds to the

largest eigenvalue of the real symmetric matrix 𝑀 . Moreover, as

depicted in Equation 1, the centroid computation requires all the

sequences 𝐴 ∈ C𝑗 for every cluster C𝑗 in memory and can be

used for non-streaming data series only. To alleviate this issue, we

propose an extension of 𝑘-Shape for data stream applications. This

extension stores and incrementally updates only the covariance

matrices𝑀 for each cluster while new batches of data series arrive.

As we are not storing each data series, this implies constant memory

usage over time and suits well data stream application. We describe

in details the proposed extension in Section 3.3.2.

2.2 Subsequence Anomaly Detection
For the scope of this paper, we are interested in detecting abnormal

subsequences within data streams in an unsupervised manner (i.e.,

no labels for neither normal nor abnormal subsequences). Even

though there exists no formal and clear definition of what is an

anomaly, we consider abnormal subsequences that are rare (i.e.,

significantly less frequent than other groups of subsequences). Next,

we describe general families of methods and their principles that

can be used to detect abnormal subsequences.

Discord-based methods: In the analysis of subsequences and

for the purpose of abnormal subsequences detection, previous

works [14, 20, 24, 27, 29, 50, 60] focused on the analysis of nearest

neighbors distance among subsequences of the data series. Formally,

given a subsequence𝑇𝑖,ℓ in𝑇 , we say that its𝑚
𝑡ℎ

Nearest Neighbor

(𝑚𝑡ℎ
NN) is 𝑇𝑗,ℓ , if 𝑇𝑗,ℓ has the𝑚

𝑡ℎ
shortest distance to 𝑇𝑖,ℓ , among

all the subsequences of length ℓ in 𝑇 . For accuracy and efficiency

reasons, subsequences that highly overlap (i.e., trivial matches [19])

are excluded in the search for nearest neighbors. We define trivial

matches of 𝑇𝑖,ℓ as subsequences 𝑇𝑎,ℓ , with |𝑖 − 𝑎 | < ℓ/4.
In the case of data series analysis, the state-of-the-art solutions

for subsequence anomaly detection use the following definition:

Definition 1 (discord [14, 20, 24, 27, 29, 30, 50, 60]). Among
all subsequences of length ℓ of series 𝑇 , the subsequence 𝑇𝑖,ℓ that has
the largest distance to its NN is called a (data series) discord.

This is an intuitive definition: a subsequence is a discord if its

NN is very far away. However, this definition fails when we have

two neighboring discords, with a small distance to each other, and

a very large distance to all the rest of the subsequences. Thus, to

capture these situations the𝑚𝑡ℎ
-discord has been proposed:

Definition 2 (𝑚𝑡ℎ
-discord [27, 59]). Among all subsequences of

length ℓ of series 𝑇 , the subsequence 𝑇𝑖,ℓ that has the largest distance
to its𝑚𝑡ℎ NN is called an𝑚𝑡ℎ-discord.

This definition skips the nearest neighbors up to the𝑚𝑡ℎ
one and

captures groups of similar discords (i.e., anomalies). Even though

discords have been extensively studied in the literature, wemake the

following observations. First, the presence of similar anomalies may

in some situations cause the discord definition to fail in identifying

them. Moreover, their multiplicity being difficult to estimate, the

𝑚𝑡ℎ
-discord definition may in some cases not be straight-forward

to use in practice.

Proximity based Methods: Instead of measuring the neighbor

distance, previous works focused on identifying globally the nor-

mal behaviors or the isolation zones inside the subsequence space.

Following this idea, general methods for multi-dimensional points

outlier detection has been proposed [13, 28, 31]. Nevertheless, meth-

ods such as Isolation forest [28] seems to perform well for the spe-

cific case of subsequence anomaly detection [11]. The latter aim to

model the isolation section of the multidimensional space in which

the data series subsequences are. In practice, it builds trees that

split randomly the multidimensional space. The depth of these trees

is then used to estimate the isolation of a given subsequence (the

shorter the depth is, the more isolated the subsequence is).

Moreover, recently proposed methods model the normal be-

haviors of the data series and has been shown to outperform

the previous SOTA approaches. Specifically, NormA [8–10] pro-

posed to model the normal behaviors as a set 𝑁𝑀 (named af-

ter 𝑁𝑜𝑟𝑚𝑎𝑙 𝑀𝑜𝑑𝑒𝑙) defined as follows: 𝑁𝑀 is a set of sequences,

𝑁𝑀 = {(𝑁 0

𝑀
,𝑤0), (𝑁 1

𝑀
,𝑤1), ..., (𝑁𝑛

𝑀
,𝑤𝑛)}, where 𝑁 𝑖

𝑀
is the cen-

troid (subsequence) of length ℓ𝑁𝑀
(the same for all 𝑁 𝑖

𝑀
) that cor-

responds to a recurring behavior in the data series 𝑇 , and𝑤𝑖 is its

normality score (as we explain later, the highest this score is, the

more usual the behavior represented by 𝑁 𝑖
𝑀

is). In other words,

this model averages (with proper weights) the different recurrent

behaviors observed in the data, such that all the normal behaviors

of the data series will be represented in the normal model, while

unusual behaviors will not (or will have a very low weight). In the

NormA method ℓ𝑁𝑀
> ℓ is chosen to make sure that useful subse-

quences are not missed, i.e., subsequences with a large overlap with

an anomalous subsequence. For instance, for a given subsequence

of length ℓ , a normal model of length ℓ𝑁𝑀
= 2ℓ will also contain the

subsequences overlapping with the first and last half of the anoma-

lous subsequence. Then, abnormal subsequences are identified by
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computing their distance to 𝑁𝑀 (specifically defined as in [10]).

Subsequences with a large distance to 𝑁𝑀 will be considered ab-

normal. Overall the only essential input parameter of NormA is

the length ℓ of the anomaly (which is also one of the inputs in all

relevant algorithms in the literature [14, 27, 30, 50, 60]).

Finally, there are alternatives to represent the normal subse-

quence behavior of a data series. The previous normal model was a

set of subsequences that aimed to store both normal and abnormal

subsequences into the same set, associated with weights that rank

them based on their normality. One can argue that ordering informa-

tion is missing from this data representation. Series2Graph [11, 12]

is an approach for subsequence anomaly detection based on a graph

representation in which edges encode the ordering.

Other Related Works: Alternative methods exist for anomaly

detection but they are not specifically designed for subsequence

anomaly detection [25, 52, 53]. There is also work on point anomaly

detection in data streams of wireless sensor networks [37], where

the focus is on efficient processing for maximizing the lifespan

of the network. Finally, deep learning approaches, e.g., based on

recurrent [32] or convolutional [36] neural networks, have been

proposed. However, these approaches are supervised, requiring

a large amount of labeled data for training, which is usually not

available in practice. Previous studies [10, 11] indicate that these

methods are not yet competitive to approaches we consider here.

Limitation for Online Operation: Some of the methods dis-

cussed above (such as NormA and Series2Graph) suffer from a

significant drawback, which is problematic in the context of stream-

ing data: they have not been designed to adapt to and learn from

changes in data characteristics (i.e., distribution drifts). In a stream-

ing context, the models need to learn and modify their parameters

as new data arrive. In the experimental evaluation, we demonstrate

that these methods are not able to adapt to changes of normality

(i.e., a person starting to run, walk, or sleep, or a change of state in

a machine).

Despite the previously enumerated limitations, discord-based

approaches can adapt their operation to data streams. Variants

like STAMPI [60] can update the distance profile (which is used to

identify discords) incrementally. Other methods, such as Isolation

Forest, cannot be used in an online manner but variants such as

Isolation Mondrian Forest [31] can be updated incrementally.

2.3 Problem Formulation
The problem we solve in this paper is defined as follows.

Problem 1 (Streaming Subseq. Anom. Detection). Given a
data stream 𝑇 , arriving in batches T𝑡

ℓ
(with 𝑏𝑠𝑖𝑧𝑒 the size of the

batches) and a targeted anomaly subsequence length ℓ , return S𝐴 , a
set containing the 𝜂 most abnormal subsequences of length ℓ .

In this work, we focus on the 𝑇𝑜𝑝-𝑘 anomalies; using instead

a threshold 𝜖 to detect anomalies is a straightforward extension.

Table 1 summarizes the symbols we use in this paper.

3 PROPOSED APPROACH: SAND
In this section, we present SAND, our solution for unsupervised

subsequence anomaly detection in data streams.

3.1 Overview

Symbol Description
𝑇 a data series

|𝑇 | cardinality of 𝑇

ℓ input subsequence length

𝑇𝑖,ℓ Subsequence of 𝑇 of length ℓ , starting at index 𝑖

T0

ℓ
Initial batch of 𝑇 of length 𝑏𝑠𝑖𝑧𝑒

T𝑡
ℓ

batch starting at timestamp 𝑡 of 𝑇 of length 𝑏𝑠𝑖𝑧𝑒
C partitioning of a clustering algorithm

C𝑖 Cluster in C
¯C𝑖 Centroid of C𝑖
𝑘 number of clusters

𝜂 number of anomalies

Table 1: Table of symbols

Overall, we compute and update a weighted set of subsequences

over time. The summary of the computation steps are as follows:

• We start by computing our initial model on the initial batch.

We first select subsequence candidates and then perform the

𝑘-Shape clustering algorithm. These clusters are then scored

and stored in memory (Section 3.2).

• After each new batch, we compute a new clustering on the

newest batch. We then match the new cluster with the similar

one in the current model stored in memory. The matching

procedure is based on a distance threshold that corresponds to

the intra-cluster average distance for each existing cluster. If the

distance between an existing cluster and a new cluster is smaller

than the threshold, we merge the two clusters. Otherwise, we

create a new cluster. This procedure is described in Section 3.3.1.

• We then propose a mechanism to compute the centroid of two

merged clusters without keeping in memory the raw subse-

quences of these two clusters. This mechanism is a novel tech-

nical extension of 𝑘-Shape for streaming scenarios. The match-

ing system and the centroid computation is summarized in

Algorithm 2 and in Section 3.3.2.

• We finally update the weights for each cluster (new, merged,

or unchanged) based on their previous score. The update pro-

cedures is summarized in Algorithm 3 and in Section 3.3.3.

• At any time, one can compute the anomaly score on the current

batch using the current model stored in memory. We incremen-

tally learn the mean and the standard deviation to compute the

anomaly score such that the anomaly detection is adapted to

the current batch subsequences/behaviors (Section 3.4).

Figure 2 depicts the general framework of the model. We now

describe in detail the different steps of our approach. Algorithm 1

summarizes the parameters, as well as the update procedures of

the set Θ. Next, we describe in detail the procedures.

3.2 Preprocessing Step
We first start by describing the initialization step of the SAND. The

initialization step consists on building a set of clusters paired with

weights, noted as Θ = {( ¯C0,𝑤0), ( ¯C1,𝑤1) ..., ( ¯C𝑘 ,𝑤𝑘 )} similarly as

described in [10] (note that, from a higher perspective, the previ-

ously discussed 𝑁𝑀 has the same data structure than Θ). In the

latter,
¯C𝑘 is the centroid of the cluster C𝑘 . The latter is a sequence

of length ℓΘ. Note that this Θ set will be our main data structure

that will evolve through time. For simplicity purposes, in the rest

of this paper we say that
¯C𝑖 is in Θ if there exists the tuple ( ¯C𝑖 ,𝑤𝑖 )

in Θ. We first describe the initialization of this set below.
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Figure 2: SAND computation framework.

Algorithm 1: SAND
input :
A data stream𝑇 :𝑇 should be composed of numerical values, evolving on a

single dimension.

A subsequence length ℓΘ : (with the condition ℓΘ > ℓ). As empirically

shown [10], for a given ℓ , ℓΘ = 3 ∗ ℓ can be used as the default setting.

An initial number of cluster 𝑘 : It will be used as the number of clusters

for the 𝑘-Shape algorithm for the initial clustering, and at each new batch. In

practice, there is no restriction to use a different 𝑘 for the initialization and

the rest. For the sake of simplicity, we use the same 𝑘 .

An initial batch T0

ℓΘ
(and a batch size 𝑏𝑠𝑖𝑧𝑒 < |𝑇 |): 𝑏𝑠𝑖𝑧𝑒 is also used to

set the size of every new batch T𝑡ℓΘ
. In practice, one can use a different batch

size for the initial batch and the others. For the sake of simplicity, we use the

same batch size.

A real number 𝛼 ∈ [0, 1]: a parameter conditioning the rate of change of

the centroids, the weights, the estimated mean, and standard deviation of the

anomaly score.

output :A set Θ, a data series 𝑠𝑐𝑜𝑟𝑒

// Initialization

1 Θ,C0 ← {}, 𝑘𝑆ℎ𝑎𝑝𝑒 (T0

ℓΘ
, 𝑘) ;

2 Θ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (Θ,C0, 𝑖𝑛𝑖𝑡 = 𝑇𝑟𝑢𝑒) ;
3 Θ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚 (Θ, 𝛼) ;
4 𝜇, 𝜎 ← 0, 0;

// Online Update

5 foreach in coming batch T𝑡ℓΘ do
6 C𝑡 ← 𝑘𝑆ℎ𝑎𝑝𝑒 (T𝑡ℓΘ , 𝑘) ;
7 Θ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (Θ,C𝑡 , 𝑖𝑛𝑖𝑡 = 𝐹𝑎𝑙𝑠𝑒)// see Alg. 2

8 Θ← 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑟𝑎𝑚 (Θ, 𝛼)// see Alg. 3

9 𝑠𝑐𝑜𝑟𝑒, 𝜇, 𝜎 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑐𝑜𝑟𝑒 (Θ,T𝑡ℓΘ , 𝛼, 𝜇, 𝜎) // see Alg. 4

We first select the subsequences in an initial batch before clus-

tering them. Formally, for a given data series 𝑇 , for a batch of

length 𝑏𝑠𝑖𝑧𝑒 we define T
0

ℓΘ
= {𝑇0,ℓΘ , ...,𝑇𝑏𝑠𝑖𝑧𝑒−ℓΘ,ℓΘ } as the set of all

overlapping subsequences in the first initial batch. For efficiency

and accuracy matters, one can argue that only a subset of non-

overlapping subsequences might be selected. However, using an

appropriate clustering algorithm (such as 𝑘-Shape clustering algo-

rithm), one can cluster highly overlapping subsequences. We then

apply the 𝑘-Shape clustering algorithm. For the sake of simplic-

ity, we define 𝑘-Shape: TℓΘ , 𝑘 → C, with 𝑘 being the number of

cluster and C = {C0, ..., C𝑘 } being the set of clusters. The number

of cluster 𝑘 is a user defined parameter. We evaluate its influence

in Section 4.4. Note that the number of cluster 𝑘 will imply the

initial size of the set Θ. A cluster C𝑖 is defined as C𝑖 ⊂ T0

ℓΘ
and

∀C𝑖 , C𝑗 ∈ C, C𝑖∩C𝑗 = ∅. The initialization step is defined as follows:

{C0, ..., C𝑘 } = 𝑘𝑆ℎ𝑎𝑝𝑒 (T0

ℓΘ
, 𝑘)

∀( ¯C𝑖 ,𝑤𝑖 ) ∈ Θ,


𝑤 ′
𝑖

=
|C𝑖 |2∑

¯C𝑗 ∈Θ 𝑠𝑏𝑑 ( ¯C𝑖 , ¯C𝑗 )
.

𝑤𝑖 =
𝑤′𝑖∑
𝑤′
𝑗
𝑤′

𝑗

(2)

As described in the previous equation, we normalize the weight

𝑤𝑖 to have their sum equal to 1. In Θ computation, 𝑘-Shape al-

gorithm handles internally the realignment of the sequences and

thus permits to use a high number of subsequences of 𝑇 without

realigning them beforehand. To be consistent with the 𝑆𝐵𝐷 dis-

tance used in the 𝑘-Shape algorithm, we use the 𝑆𝐵𝐷 distance in

the scoring step to measure the isolation of a given cluster to the

rest of the clusters. Theoretically, to be able to update sequences

(i.e., centroids) in Θ, we have to store in memory the subsequences

that were used to compute them. As mentioned earlier, we denote

C𝑖 the subsequences set, and ¯C𝑖 its centroid. Nevertheless, storing
C𝑖 implies an infinite storage need for unlimited streams. Thus, in

practice, we do not store C𝑖 , and we describe in Sections 3.3.2 how

we update the sequences in Θ without storing their corresponding

set C𝑖 . For the sake of simplicity, we still use C𝑖 notation as virtual

sets corresponding to
¯C𝑖 in Θ.

3.3 Continuous Model Update
Once the initialization is done, the model is ready to receive new

subsequences. Let T𝑡
ℓΘ

the set of subsequences (of size |T𝑡
ℓΘ
| = 𝑏𝑠𝑖𝑧𝑒 )

from the current batch arriving at time 𝑡 . The length of this batch

is a user parameter. We evaluate the influence of this parameter in

Section 4.4. For every new batch, we perform a 𝑘-Shape clustering

operation with 𝑘 clusters (same value of 𝑘 used in the initialization

step), and we note the clustering result C𝑡 .

3.3.1 Matching Strategy. We then match C𝑡 with the sequence

in Θ. In practice, we define a threshold 𝜏𝑐,𝑗 for each sequence
¯C𝑗 in

Θ. We then verify if the distance between a centroid of a new cluster

inC𝑡 and an existing sequence ¯C𝑗 ∈ Θ is smaller than 𝜏𝑐,𝑗 . Formally,

given a cluster C𝑡
𝑖
in the clustering result C𝑡 = {C𝑡

0
, ..., C𝑡

𝑘
} on the

current batch T𝑡
ℓΘ
, Θ, and a threshold 𝜏𝑐,𝑗 for each sequence

¯C𝑗 , the
matching process is operated as follows:
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Algorithm 2: Θ Centroids Update: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑

input :A set Θ, a clustering partition C𝑡 on the batch T𝑡ℓΘ
, a Boolean 𝑖𝑛𝑖𝑡 .

output :A set Θ

1 foreach C𝑡
𝑖
∈ C𝑡 do

2 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← {};
3 if (∃( ¯C𝑗 , 𝑆 𝑗 , 𝜏𝑐,𝑗 , 𝑤𝑗 , 𝑠 𝑗 ) ∈ Θ, 𝑠𝑏𝑑

(
¯C𝑗 , ¯C𝑡

𝑖

)
< 𝜏𝑐,𝑗 ) ∧ (𝑖𝑛𝑖𝑡 = 𝐹𝑎𝑙𝑠𝑒)

then
// The new cluster C𝑡

𝑖
can be merged with the existing

cluster C𝑗
4 𝑆 𝑗 ← 𝑆 𝑗 +

∑
𝑇𝑗′,ℓΘ ∈C

𝑡
𝑖

𝑇𝑗′,ℓΘ .𝑇
𝑇
𝑗′,ℓΘ

;

5 ¯C𝑗 ← 𝑎𝑟𝑔𝑚𝑎𝑥
¯C𝑗

( ¯C𝑗 )𝑇 .𝑄𝑇 .𝑆𝑗 .𝑄. ¯C𝑗
( ¯C𝑗 )𝑇 . ¯C𝑗

;

6 else
// The new cluster C𝑡

𝑖
cannot be merged with any

existing cluster

7 𝑆𝑖 ←
∑

𝑇𝑗,ℓΘ
∈C𝑖

𝑇𝑗,ℓΘ .𝑇
𝑇
𝑗,ℓΘ

;

8 ¯C𝑖 ← 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (C𝑖 ) ;
9 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ∪ ( ¯C𝑖 , 𝑆𝑖 , 𝑁𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒, 𝑁𝑜𝑛𝑒) ;

10 𝑟𝑒𝑡𝑢𝑟𝑛 Θ ∪ 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ;

• if ∃( ¯C𝑗 ,𝑤 𝑗 ) ∈ Θ, 𝑆𝐵𝐷
(

¯C𝑗 , ¯C𝑡
𝑖

)
< 𝜏𝑐,𝑗 : We consider that cluster

C𝑡
𝑖
found in the current batch is similar to an existing sequence

¯C𝑗 in Θ. We thus update the sequence
¯C𝑗 , and its corresponding

weight𝑤 𝑗 using the new cluster C𝑡
𝑖
.

• if ∀( ¯C𝑗 ,𝑤 𝑗 ) ∈ Θ, 𝑆𝐵𝐷
(

¯C𝑗 , ¯C𝑡
𝑖

)
> 𝜏𝑐,𝑗 : We consider that cluster

C𝑡
𝑖
is not similar enough with any of the existing sequences in Θ.

Therefore, we include it as a new sequence in the set Θ. We then

compute its corresponding score and centroid, and insert it in Θ.
We assume that the cluster quality is a significant property to

guarantee an accurate detection of anomalies and the number of

clusters has a direct impact on the execution time. As underlined

in the previous paragraph, the threshold 𝜏𝑐,𝑗 has a direct impact on

the number of new clusters that will be created at each batch and

on the cluster quality. On one hand, a high 𝜏𝑐,𝑗 will make the cluster

creation rare but might harm the cluster quality. On the other hand,

a low 𝜏𝑐,𝑗 will imply a large number of clusters created at each

batch. Therefore, an optimal threshold that preserves the quality

of the clusters without creating too many clusters is difficult to set

for a user. Moreover, one threshold cannot be the same for every

cluster. Therefore, to set automatically a threshold that adapts to

clusters, we use the intra-cluster distance. For a given subsequence

¯C𝑗 in Θ, we compute the intra-cluster distance as follows:

𝜏𝑐,𝑗 =
∑

𝑇𝑖,ℓ ∈C𝑗
𝑆𝐵𝐷 (𝑇𝑖,ℓ , ¯C𝑗 )

We then use 𝜏𝑐,𝑗 to decide if a new cluster should be created or

not. In practice, we do not store the set C𝑗 . If one cluster changes,
we need to update the threshold dynamically. We thus store the

size of Θ clusters only. Formally, for a sequence
¯C𝑗 in Θ and a given

cluster C𝑡
𝑖
to be merged, we update the threshold 𝜏∗

𝑐,𝑗
as follows:

𝜏∗𝑐,𝑗 ←
|C𝑗 | ∗ 𝜏𝑐,𝑗
|C𝑗 | + |C𝑡𝑖 |

+
|C𝑡

𝑖
| ∗∑𝑇𝑚,ℓ ∈C𝑡𝑖 𝑆𝐵𝐷 (𝑇𝑚,ℓ ,

¯C𝑡
𝑖
)

|C𝑗 | + |C𝑡𝑖 |

Finally, the matching procedure is executed in Algorithm 2 and the

threshold update is executed in Algorithm 3.

Algorithm 3: Θ parameters update: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑎𝑟𝑎𝑚

input :A set Θ, a float 𝛼 .
output :A set Θ

1 foreach ( ¯C𝑖 , 𝑆𝑖 , 𝜏𝑐,𝑖 , 𝑤𝑖 , 𝑠𝑖 ) ∈ Θ do

2 𝑤𝑡
𝑖
← |C𝑖 |2∑

¯C𝑗 ∈Θ
𝑠𝑏𝑑 ( ¯C𝑗 , ¯C𝑖 )

;

3 if ( ¯C𝑖 , 𝑆𝑖 , 𝜏𝑐,𝑖 , 𝑤𝑖 , 𝑠𝑖 ) is a new cluster then
// Initialize the parameters for the new cluster C𝑖

4 𝑤𝑖 , 𝑠𝑖 ← 𝑤𝑡
𝑖
, |C𝑖 | ;

5 𝜏𝑐,𝑖 ←
∑
𝑇𝑚,ℓ ∈C𝑡𝑖

𝑠𝑏𝑑 (𝑇𝑚,ℓ ,
¯C𝑡
𝑖
) ;

6 else
// update the parameters for the merged cluster C𝑖

7 𝑤𝑖 ← (1 − 𝛼) ∗ 𝑤𝑖 +
𝛼∗𝑤𝑡

𝑖
𝑚𝑎𝑥 (1,A𝑖−𝑏𝑠𝑖𝑧𝑒 )

;

8 𝜏𝑐,𝑖 ←
𝑠𝑖 ∗𝜏𝑐,𝑖
|C𝑖 |

+
( |C𝑖 |−𝑠𝑖 )∗

∑
𝑇𝑚,ℓ ∈C𝑖 𝑠𝑏𝑑 (𝑇𝑚,ℓ ,

¯C𝑡
𝑖
)

|C𝑖 |
;

9 𝑠𝑖 ← |C𝑖 |;
10 𝑟𝑒𝑡𝑢𝑟𝑛 Θ;

3.3.2 Centroids Update. At this point we matched the arrival

subsequences (in the current batch) with existing sequences in

Θ. Let’s consider that the cluster C𝑡
𝑖
has been matched with the

sequence
¯C𝑗 ∈ Θ. We update the sequence

¯C𝑗 as described in

Equation 1. We note
¯C𝑗 ∗ the updated sequence

¯C𝑗 . As mentioned

earlier, we do not store the set C𝑗 in memory. We thus need to

compute the shape update process dynamically. As described in

Equation 1, the shape update process is computed using the matrix

𝑆 𝑗 (of size ℓ
2

Θ). 𝑆 𝑗 is built by computing the dot product between all

subsequences in the merged cluster C𝑗 ∪ C𝑡𝑖 . Nevertheless, we can
split the computation as follows:

𝑆 𝑗 =
∑

𝑇𝑚,ℓΘ ∈C𝑗
𝑇𝑚,ℓΘ .𝑇

𝑇
𝑚,ℓΘ
+

∑
𝑇𝑚,ℓΘ ∈C

𝑡
𝑖

𝑇𝑚,ℓΘ .𝑇
𝑇
𝑚,ℓΘ

The left part of the above sum is already computed from the

previous batch. The only new computation to be performed is the

right part. Therefore, we just need to update the matrix 𝑆 𝑗 by adding

the sum of the dot product of the subsequences of the cluster C𝑡
𝑖
to

be merged with
¯C𝑗 . By doing so, updating the cluster shape does

not require storing all the subsequences in memory, but just the

matrix 𝑆 𝑗 . This results in a gain in memory space for large data

series and execution time. Formally, the matrix 𝑆 𝑗 (and therefore

¯C𝑗 ) is updated as follows:

𝑆∗𝑗 ← 𝑆 𝑗 +
∑

𝑇𝑚,ℓΘ ∈C
𝑡
𝑖

𝑇𝑚,ℓΘ .𝑇
𝑇
𝑚,ℓΘ

(3)

Note that we just need to compute the initial 𝑆 𝑗 for all initial

clusters and store them inmemory.We then compute the update
¯C𝑗 ∗

using the updated 𝑆∗
𝑗
at every new batch. The centroids computation

and update are executed in Algorithm 2.

3.3.3 Weights Update. Once the sequences ¯C𝑗 are updated, we
can update their corresponding weights 𝑤 𝑗 . One could decide to

update the weights like in Equation 2 using their current statistics

(cardinality and distance to other sequences in Θ). On the specific

case of data series without any changes of normal behaviors, this

would be the good decision. However, if a new behavior is detected,

one should be able to forget the previous behaviors (or reduce its

importance). For that purpose, we dynamically update the weight

using its previous value. We introduce a user parameter 𝛼 with
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values between [0, 1], such that it represents the rate of change. We

note𝑤∗
𝑖
the updated weight𝑤𝑖 , and is computed as follows:

𝑤𝑡
𝑖 ←

|C𝑖 |2∑
(C𝑗 ,𝑤𝑗 ) ∈Θ 𝑠𝑏𝑑 ( ¯C𝑗 , ¯C𝑖 )

𝑤∗𝑖 ← (1 − 𝛼) ∗𝑤𝑖 +
𝛼 ∗𝑤𝑡

𝑖

𝑚𝑎𝑥 (1,A𝑖 − 𝑏𝑠𝑖𝑧𝑒 )
with: A𝑖 = 𝑡 − 𝑡𝑙𝑎𝑠𝑡,𝑖

(4)

In the above definition, 𝑡 is the time index of the current batch,

and 𝑡𝑙𝑎𝑠𝑡,𝑖 is defined as the temporal index of the latest (as regards

to the time index) subsequence in cluster C𝑖 . Note that as previously
expressed C𝑖 is not stored. However, it is trivial to count the number

of subsequences (|C𝑖 |), and to compute 𝑡𝑙𝑎𝑠𝑡,𝑖 without storing C𝑖 .
Moreover, note that, at each iteration, we normalize the weight

to have their sum equal to 1. As one can see, the new weight 𝑤∗
𝑖

will be a weighted mean (by alpha) between their old values 𝑤𝑖

and their values at the current time 𝑤𝑡
𝑖
. If no new subsequences

has been added to a cluster, then 𝑤𝑡
𝑖
= 𝑤

𝑡−𝑏𝑠𝑖𝑧𝑒
𝑖

. However it also

means that this cluster might correspond to an old (and potentially

irrelevant now) behavior. This has to be taken into account and

we include a time decay component in the weight computation (as

described in Equation 4). We have two different cases:

• A𝑖 ≤ 𝑏𝑠𝑖𝑧𝑒 : The cluster C𝑖 contains at least one subsequence
in the current batch. This means that the cluster is still active.

Thus𝑚𝑎𝑥 (1,A𝑖 − 𝑏𝑠𝑖𝑧𝑒 ) = 1, and no time decay is applied.

• A𝑖 > 𝑏𝑠𝑖𝑧𝑒 : The cluster C𝑖 does not contain any subsequence

from the current batch. This mean that the cluster might not

be active anymore. We can thus start to apply some decay by

dividing the current weight𝑤𝑡
𝑖
by A𝑖 − 𝑏𝑠𝑖𝑧𝑒 .

Depending on the value of𝛼 , the score of the clusters without any

new subsequences will converge to zero, giving more importance

to the currently activated clusters. In the specific case when an

old behavior starts again to happen, its corresponding weight will

increase faster (knowing that the cardinality of this cluster is already

big). If one does not expect any old behavior to happen, one can

decide to remove clusters with scores approximately equal to zero.

In practice, this is more efficient in memory. Nevertheless, for the

rest of this paper, we do not remove any cluster. The weight update

is performed in Algorithm 3.

3.4 Anomaly Scoring
At this point, we can update the set Θ at every new batch. We now

describe how we compute the score for all the subsequences inside

a given batch. For a given subsequence 𝑇𝑗,ℓ ∈ Tℓ in the current

batch (of length ℓ < ℓΘ), we compute the following score:

𝑑 𝑗 =
∑̄
C𝑖

𝑤𝑖 ∗𝑚𝑖𝑛𝑥 ∈[0,ℓΘ−ℓ ]
{
𝑑𝑖𝑠𝑡 (𝑇𝑗,ℓ , ( ¯C𝑖 )𝑥,ℓ )

}
(5)

Even though the weights𝑤𝑖
are adjusted depending on the activity

of their related clusters, a certain noise could be observed on the

score. Based on
¯C𝑖 shape and its possible evolution, the score values

distribution might evolve as well. We thus normalize the score at

each batch. For a subsequence 𝑇𝑗,ℓ ∈ Tℓ in the current batch T𝑡
ℓΘ
,

we compute the normalization as 𝑑∗
𝑗
=

𝑑 𝑗−𝜇∗𝑡
𝜎∗𝑡

, where 𝜇𝑡 and 𝜎𝑡 are

the mean and the standard deviation of 𝑑 𝑗 over the batch T
𝑡
ℓΘ
. We

Algorithm 4: Score computation: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑐𝑜𝑟𝑒

input :A set Θ, a subsequence T𝑡ℓΘ
, a float 𝛼 . two floats 𝜇, 𝜎

output :A data series 𝑠𝑐𝑜𝑟𝑒 , two floats 𝜇∗, 𝜎∗

1 𝑠𝑐𝑜𝑟𝑒 ← [] foreach𝑇𝑗,ℓ ∈ T𝑡ℓΘ do
// For each subsequence in the batch

2 𝑠𝑐𝑜𝑟𝑒 [ 𝑗 ] ← ∑
¯C𝑖 𝑤

𝑖 ∗𝑚𝑖𝑛𝑥∈[0,ℓΘ−ℓ ]
{
𝑑𝑖𝑠𝑡 (𝑇𝑗,ℓ , ( ¯C𝑖 )𝑥,ℓ )

}
;

3 𝑠𝑐𝑜𝑟𝑒 [ 𝑗 ] ← 𝑠𝑐𝑜𝑟𝑒 [ 𝑗 ]−𝜇
𝜎

;

// Update mean and variance

4 𝜇∗ ← 𝛼 ∗ 𝜇 (𝑠𝑐𝑜𝑟𝑒) + (1 − 𝛼) ∗ 𝜇;
5 𝜎∗ ← 𝛼 ∗ 𝜎 (𝑠𝑐𝑜𝑟𝑒) + (1 − 𝛼) ∗ 𝜎 ;
6 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑐𝑜𝑟𝑒, 𝜇∗, 𝜎∗ ;

compute the estimated mean and standard deviation 𝜇∗𝑡 and 𝜎∗𝑡 as:

𝜇∗𝑡 ← 𝛼 ∗ 𝜇𝑡 + (1 − 𝛼) ∗ 𝜇𝑡−𝑏𝑠𝑖𝑧𝑒
𝜎∗𝑡 ← 𝛼 ∗ 𝜎𝑡 + (1 − 𝛼) ∗ 𝜎𝑡−𝑏𝑠𝑖𝑧𝑒

(6)

At each batch, we use the previously updated mean and stan-

dard deviation to adapt the distance to the set Θ. Otherwise, in
the unusual case when a batch contains a higher rate of anomalies

than the previous (and future) batches, the normalization (with-

out using the previous batch mean and standard deviation) may

result in missing the anomalies in the batch. The score computation

procedure is performed in Algorithm 4.

3.5 Execution Time Complexity Analysis
In this section, we analyze the execution time complexity of the var-

ious steps of the SAND framework. Note that the time complexity

of the 𝑘-Shape algorithm is 𝑂 (𝑚𝑎𝑥 ( |T𝑡
ℓΘ
| ∗ 𝑘 ∗ ℓΘ ∗ 𝑙𝑜𝑔(ℓΘ), |T0

ℓΘ
| ∗

ℓ2

Θ, 𝑘 ∗ ℓ
3

Θ)) per iteration, with |T
𝑡
ℓΘ
| = 𝑏𝑠𝑖𝑧𝑒 .

Initialisation Step: We now analyze the time complexity of the

different steps separately. We first analyze the theoretical execution

time needed to perform the initialization. The latter is composed

of small computations related to the weights that is using the 𝑠𝑏𝑑

distance between sequence of length ℓΘ with complexity 𝑂 (𝑘2 ∗
ℓΘ𝑙𝑜𝑔(ℓΘ)). Thus, the complexity of the initialization step has the

𝑘-Shape algorithm as a bottleneck.

Batch Execution Time Complexity Analysis: At each batch,

one need to compute the 𝑘-Shape algorithm. Then at each step we

need to compute 𝑠𝑏𝑑 distance between every new cluster and every

sequence in Θ. The 𝑆𝐵𝐷 computation complexity is 𝑂 (ℓΘ𝑙𝑜𝑔(ℓΘ)).
Thus, the complexity of the first step is 𝑂 ( |Θ| ∗ 𝑘 ∗ ℓΘ𝑙𝑜𝑔(ℓΘ)).
As explained in the initialization section, the weight computation

complexity is 𝑂 (𝑘2 ∗ ℓΘ𝑙𝑜𝑔(ℓΘ)). Nevertheless, we always have

𝑘 ≤ |Θ|, thus the weights computation step is negligible.

Then for a given cluster C𝑖 , the shape update process require the
computation of the matrices 𝑆𝑖 and an eigendecomposition. Thus,

the shape update operation has complexity 𝑂 (𝑚𝑎𝑥 ( |C𝑖 | ∗ ℓ2

Θ, ℓ
3

Θ))
with |C𝑖 | being the number of subsequences in the cluster we

want to extract the shape. We are storing previously computed

matrices 𝑆𝑖 in memory and we are computing the matrices 𝑆𝑖
corresponding to the new clusters C𝑡

𝑖
. For a given time index 𝑡 ,∑

C𝑖 ∈C |C𝑖 | = |T
𝑡
ℓΘ
| = 𝑏𝑠𝑖𝑧𝑒 . Moreover, knowing that only 𝑘 new

clusters need to be merged, the shape update operation cannot be

done more than 𝑘 time. Thus the overall complexity of the shape

update is𝑂 (𝑚𝑎𝑥 (𝑏𝑠𝑖𝑧𝑒 ∗ℓ2

Θ, 𝑘 ∗ℓ
3

Θ)). Therefore, this complexity does
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not depend on the time evolution, and the execution time needed

remains constant for the entire stream.

Scoring Execution Time Complexity Analysis: The anomaly

distance between subsequences of length ℓ and the set Θ computa-

tion is defined by the computation of the equation in Equation 5,

which is bounded by 𝑂 ((𝑏𝑠𝑖𝑧𝑒 − ℓ + 1) ∗ ℓΘ ∗ |Θ|) using the Fourier

transform to compute efficiently the correlation and distances over

overlapping subsequences.

Overall complexity: We now analyze the overall complexity of

the batch operation. Note that some operations share the same

complexity, so can be grouped. Overall, the time complexity of the

batch update operation is defined as follows:

𝑆𝐴𝑁𝐷 =𝑚𝑎𝑥



𝑏𝑠𝑖𝑧𝑒 ∗ 𝑘 ∗ ℓΘ ∗ 𝑙𝑜𝑔 (ℓΘ)
2 ∗ 𝑏𝑠𝑖𝑧𝑒 ∗ ℓ2

Θ

2 ∗ 𝑘 ∗ ℓ3

Θ

|Θ | ∗ 𝑘 ∗ ℓΘ ∗ 𝑙𝑜𝑔 (ℓΘ)
(𝑏𝑠𝑖𝑧𝑒 − ℓ + 1) ∗ ℓΘ ∗ |Θ |


(7)

One should note that the only parameter that varies while time

evolves is the size of the set Θ (involved in the two last lines of

Equation 7). Nevertheless, this evolution is most likely to be slow.

Thus, the overall complexity does not depend on the time evolu-

tion and remains constant regardless of the increasing number of

batches. The important parameters on the execution time are the

batch size 𝑏𝑠𝑖𝑧𝑒 , the number cluster 𝑘 and the length ℓΘ. Moreover,

we note that the complexity is linear to the size of the batch, which

implies that SAND scales gracefully to large batches.

4 EXPERIMENTAL EVALUATION
In this section, we compare the performance of SAND against the

SOTA subsequence anomaly detectionmethods in terms of accuracy

and efficiency. We measure the ability of SAND to detect abnormal

subsequences in a benchmark of real datasets. We confirm that

SAND, despite operating in a streaming setting, performs similarly

to SOTA (non-streaming) subsequence anomaly detection meth-

ods that operate over the entire dataset. We then demonstrate the

shortcomings of the non-streaming methods, as well as the ability

of SAND to adapt to changes of normality. Overall SAND outper-

forms existing streaming and non-streaming methods. We compare

the scalability of SAND to SOTA streaming methods for anomaly

detection when we vary different parameters, and show that SAND

is an order of magnitude faster.Finally, we evaluate the influence of

SAND’s parameters on accuracy and execution time.

4.1 Experimental Settings
We implemented our algorithms Python 3.5, and used a server

with Intel Xeon CPU E5-2650 2.20GHz with 250GB RAM. For re-

producibility purposes, our code is available on this webpage [1].

Measures: We use the Precision@𝑘 as the accuracy measure. The

latter is the ratio of correctly identified anomalies in the 𝜂 subse-

quences corresponding to the 𝜂 highest anomaly score. We set 𝜂

as the number of anomalies in the datasets (as depicted in Table 2).

Note that this parameter 𝜂 is only used for evaluation purposes,

and is not required for practical usage. We then use the throughput

metric and the execution time in seconds to evaluate the scalability.

The throughput is defined as the number of subsequences that can

be handled in one second and corresponds to an upper-bound of the

data acquisition speed of the method. The higher the throughput,

the better the model will handle high-frequency data streams.

Datasets: We benchmark our system using real and synthetic

datasets, for all of which a ground truth of annotated anomalies is

available. We simulate streams by selecting static data series. We

carefully select two specific types of data series. We first select

several real data series. The first data series is a Simulated Engine

Disks data (SED) from the NASA Rotary Dynamics Laboratory [3]

representing disk revolutions recorded over several runs (3K rpm

speed). We also included MIT-BIH Supraventricular Arrhythmia

Database (MBA) [18, 34], which are electrocardiogram recordings

from 4 patients, containing multiple instances of two different kinds

of anomalies (either supraventricular contractions or premature

heartbeats). All the previously enumerated dataset and their char-

acteristics are grouped in Table 2.

To evaluate the capacity of our method to adapt to changes over

time, we create synthetic datasets that contain more than one spe-

cific normality. We note them 𝐷𝑜𝑢𝑏𝑙𝑒-Normality,𝑇𝑟𝑖𝑝𝑙𝑒-Normality,

and so on. We build them by concatenating our real single nor-

mality datasets. We thus perform two kinds of concatenation. We

first concatenate different datasets from the same domain (i.e. two

Electro-Cardiogram from two different patients), to evaluate meth-

ods to adapt to subtle changes. We then concatenate datasets from

different domains (i.e. Electro-Cardiogram with SED) to evaluate

methods to adapt to drastic changes.

Baselines: We first compare with four SOTA static methods (i.e.,

methods that take as input the entire data series): Isolation Forest

(IF) [28], NormA [10], Series2Graph (S2G) [11], and STOMP [60];

as detailed below, we use the parameters suggested in the original

papers. IF is a density/isolation-based method that aims to ran-

domly isolate multi-dimensional points (subsequences in our case)

by using a collection of random split trees: a point is considered

abnormal if the distance to the root of these trees is short. We use

100 trees as explained in [28]. NormA is a distance-based method

that aims to first build a set of subsequences that summarize typical

subsequences in the dataset. It then computes distances to this set,

and considers abnormal the subsequences with large distances. As

described in [10], we use the default parameters for sampling rate,

𝑟 = 0.4, and subsequence length, ℓ𝑁𝑀
= 4 ∗ ℓ . S2G detects unusual

behavior by embedding a series in a directed graph, and evaluating

the trajectories of subsequences on this graph. It uses as parame-

ters local convolution 𝜆 = 1/3 ∗ ℓ , bandwidth ℎ (set using Scott’s

rule [49]), and number of angles 𝑟 = 50 [11]. STOMP is computing

the nearest neighbor distance for every subsequence and use it to

identify anomalies [60]. We finally compare SAND to NormA-mn,

a variation of NormA, where we adapted the computation of the

anomaly score based on the average anomaly score in a given win-

dow length: we compute the anomaly score of a subsequence 𝑇𝑖,ℓ ,

and we subtract the average anomaly score of all subsequences

within the interval [𝑖 − 2 ∗ ℓΘ, 𝑖 + 2 ∗ ℓΘ]. This adaptation of the

scoring step enables NormA to operate on multi-normality datasets.

We then compare SAND to dynamic methods (i.e., methods that

receive subsequences of the data series incrementally). We first

build baselines from the SOTA static methods called NormA-batch

and S2G-batch, which operate locally (and independently) on each

new arriving batch. We also compare SAND to two SOTA dynamic

methods: IMondrian Forest [31] and STAMPI [60]. The first method
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Datasets Length ℓA 𝜂 Domain

SED 100K 75 50 Electronic

MBA (803) 100K 75 62 Cardiology

MBA (804) 100K 75 30 Cardiology

MBA (805) 100K 75 133 Cardiology

MBA (806) 100K 75 27 Cardiology

MBA (820) 100K 75 76 Cardiology

Table 2: Dataset characteristics: length, anomaly length (ℓ𝐴),
number of annotated anomalies (𝜂) and domain.

is an alternative to Isolation Forest that is using a tree structure

(called Mondrian tree, originally proposed for classification pur-

pose [26]) with the characteristic to be incrementally modified

while new points (subsequences in our case) arrives. Similarly to

Isolation Forest, we use 100 different trees. Similar to STOMP, the

second approach is using the nearest neighbor distance to iden-

tify abnormal points. On the contrary to STOMP, this method has

the specificity of being updatable incrementally. One can either

keep track of all the previous points and update the distance profile

until the end of the stream or can keep track of the distance pro-

file over a fixed window length (called batch size in our case). We

consider using a fixed window length equal to the batch size for

the following reason: (i) keeping track of the entire distance pro-

file requires a large amount of computation and make the latency

increase quadratically. (ii) STAMPI (that is using the discord defini-

tion) can suffer from the fact that similar anomalies can happen in

a stream. Therefore, keeping the old distance profile might lead to

a higher rate of false-negative than keeping only a fixed window

length. The second point is confirmed by Table 3. For SAND, we set

the additional parameters as follows: 𝛼 = 0.5, ℓΘ = 4 ∗ ℓ and 𝑘 = 6.

4.2 Accuracy Evaluation
4.2.1 Clustering accuracy evaluation. In this section, we eval-

uate the clustering accuracy of our extension of the 𝑘-Shape al-

gorithm. For that purpose, we use all the UCR datasets [17]. We

run the original 𝑘-Shape on the entire dataset, and we run incre-

mentally our extended 𝑘-Shape on 1/10th of the dataset at each

new batch. Figure 3(a) depicts the rand score [41] accuracy com-

parison between the original and our extended 𝑘-Shape algorithm.

We observe that our extended 𝑘-Shape has a similar rand score

on average as the usual 𝑘-Shape. Thus our extended version of

𝑘-Shape algorithm provides a way to use the original 𝑘-Shape for

streaming scenarios with the same accuracy. Moreover, Figure 3(b)

depicts the average execution time (in seconds) for a simple so-

lution for incremental 𝑘-Shape (i.e., storing all subsequences to

compute the centroids from scratch at every new batch), and our

proposed solution for incremental 𝑘-Shape (i.e., without storing all

the subsequences). The results confirm the benefits of our proposed

solution for an incremental 𝑘-Shape algorithm.

4.2.2 SAND accuracy evaluation. We now compare the

Precision@𝑘 of our method with several other methods, both static

(without any update mechanism at every new batch or point) and

dynamic (that includes an update mechanism at every new batch or

point). All methods share the subsequence length ℓ as the main pa-

rameter. For each dataset, we set the subsequence length ℓ = ℓ𝐴 as

shown in Table 2. We use a batch size of 5000 points for IMondrian
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Figure 3: Comparison between the original and our ex-
tended 𝑘-Shape on rand score (a), and execution time (b).

Forest, STAMPI, and our approach. Table 3 depicts the Precision@𝑘

accuracy of the aforementioned methods for our datasets corpus.

One can notice that for single normality datasets, static methods

NormA, Isolation Forest, and Series2Graph (that are using the entire

series to build their model), have good performances. Neverthe-

less, online methods IMondrian Forest and SAND are still perform-

ing well by being slightly less significant than the static method.

STAMPI has a medium Precision@𝑘 due to the limitations caused

by similar anomalies in the single normality datasets. Nevertheless,

STAMPI has better performance than STOMP, which confirms that

using a fixed sliding window limits the number of similar anomalies

and provides better accuracy. Finally, we note that SAND outper-

forms both STAMPI and IMondrian Forest, and performs equal or

very close to Series2Graph and NormA. Moreover, one can notice

that the online adaptation of NormA and S2G (NormA-batch and

S2G-batch) are not performing as well as their respective static

version for the single normality datasets.

Regarding double normality datasets, observe that the static

methods suffer from a significant drop in accuracy, while the online

methods have on average similar Precision@𝑘 accuracy to the single

normality datasets. However, we note that both NormA-batch and

S2G-batch are performing better than NormA and S2G for double

normality datasets from different domains, but not for datasets from

the same domain. Only NormA-mn is robust to multiple normality

datasets, but SAND is still more accurate. Moreover, SAND outper-

forms both IMondrian Forest and STAMPI. More precisely, SAND

significantly outperforms the competitors (both static and online)

for double normality datasets created by concatenated datasets

of different domains. This underlines the superior adaptability of

SAND, regardless of the dataset composition.

The same observation can bemade for triple, quadruple, and quin-

tuple normality datasets, for which the Precision@𝑘 contrast be-

tween SAND and the other state-of-the-art methods is even stronger.

More generally, one should underline that static methods (Isolation

Forest, Series2Graph, and NormA) see their Precision@𝑘 dropping

while the number of different normality increase, in opposite to

online methods (IMondrian Forest, STAMPI, and SAND) that seems

to be more stable. Only STOMP seems to have a stable accuracy

while the number of normality sections increases.

A careful look can be addressed to Series2Graph performance

on multiple normality datasets. Similar to NormA and Isolation

Forest, one can notice an accuracy drop. Nevertheless, this drop
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Static Streaming
Data Series NormA IF STOMP S2G NormA-mn NormA-batch S2G-batch IMondrian F STAMPI SAND

Single Normality (100,000 points)
MBA(803) 0.99(0.01) 1.00(0.00) 0.72 1.00 0.97(0.01) 0.70(0.07) 0.97 0.99(0.01) 0.46 0.97(0.02)

MBA(805) 0.99(0.00) 0.99(0.01) 0.10 0.99 0.99(0.00) 0.82(0.05) 0.90 0.96(0.02) 0.35 0.98(0.01)

MBA(806) 0.86(0.02) 0.75(0.06) 0.59 1.00 0.88(0.02) 0.74(0.07) 0.70 0.85(0.03) 0.66 0.80(0.03)

MBA(820) 0.98(0.01) 0.92(0.03) 0.90 0.91 0.97(0.00) 0.74(0.08) 0.71 0.95(0.02) 0.84 0.96(0.01)

SED 0.92(0.05) 0.65(0.02) 0.57 1.00 0.98(0.01) 0.80(0.06) 0.90 0.31(0.05) 0.87 0.96(0.00)

Average 0.95 0.86 0.58 0.98 0.96 0.76 0.84 0.81 0.64 0.93

Double Normality (200,000 points)
Same Domain
MBA(803 + 805) 0.91(0.10) 0.53(0.03) 0.32 0.99 0.95(0.02) 0.76(0.03) 0.94 0.97(0.01) 0.40 0.94(0.01)

MBA(803 + 806) 0.70(0.01) 0.75(0.00) 0.58 0.75 0.89(0.03) 0.68(0.02) 0.84 0.87(0.02) 0.52 0.96(0.02)
MBA(803 + 820) 0.83(0.27) 0.75(0.05) 0.78 0.76 0.92(0.01) 0.66(0.04) 0.81 0.93(0.01) 0.67 0.88(0.00)

MBA(805 + 806) 0.74(0.00) 0.68(0.04) 0.20 0.73 0.85(0.01) 0.76(0.06) 0.41 0.81(0.04) 0.44 0.95(0.01)
MBA(805 + 820) 0.76(0.03) 0.49(0.04) 0.51 0.51 0.97(0.01) 0.71(0.02) 0.71 0.94(0.01) 0.61 0.90(0.02)

MBA(806 + 820) 0.77(0.02) 0.78(0.00) 0.83 0.81 0.92(0.01) 0.75(0.02) 0.20 0.51(0.04) 0.79 0.93(0.01)
Average 0.78 0.66 0.54 0.76 0.92 0.72 0.65 0.84 0.57 0.93

Different Domains
MBA(803) + SED 0.56(0.19) 0.45(0.00) 0.67 0.06 0.60(0.14) 0.72(0.02) 0.84 0.65(0.08) 0.64 0.96(0.01)
MBA(805) + SED 0.69(0.20) 0.37(0.01) 0.30 0.11 0.87(0.05) 0.84(0.03) 0.41 0.68(0.09) 0.57 0.95(0.02)
MBA(806) + SED 0.74(0.05) 0.57(0.01) 0.62 0.07 0.84(0.01) 0.79(0.02) 0.72 0.46(0.04) 0.79 0.80(0.03)

MBA(820 + SED 0.91(0.03) 0.38(0.01) 0.82 0.10 0.92(0.02) 0.72(0.06) 0.40 0.52(0.01) 0.85 0.88(0.00)

Average 0.72 0.44 0.60 0.09 0.81 0.77 0.59 0.58 0.71 0.90
Triple Normality (300,000 points)

Same Domain
MBA(803 + 805 + 806) 0.84(0.00) 0.43(0.02) 0.37 0.82 0.84(0.01) 0.71(0.04) 0.59 0.82(0.01) 0.44 0.92(0.03)
MBA(803 + 805 + 820) 0.60(0.23) 0.37(0.02) 0.54 0.63 0.86(0.06) 0.66(0.02) 0.79 0.95(0.00) 0.56 0.88(0.02)

MBA(803 + 806 + 820) 0.83(0.00) 0.68(0.05) 0.74 0.67 0.82(0.04) 0.67(0.06) 0.47 0.69(0.06) 0.66 0.91(0.01)
MBA(805 + 806 + 820) 0.60(0.12) 0.41(0.02) 0.53 0.44 0.85(0.02) 0.65(0.05) 0.25 0.70(0.02) 0.61 0.94(0.00)

Average 0.72 0.47 0.54 0.64 0.84 0.69 0.52 0.79 0.57 0.91
Different Domains

MBA(803 + 805) + SED 0.60(0.13) 0.26(0.00) 0.41 0.10 0.60(0.12) 0.77(0.03) 0.52 0.75(0.02) 0.53 0.95(0.00)
MBA(803 + 806) + SED 0.67(0.14) 0.34(0.01) 0.62 0.06 0.67(0.04) 0.70(0.03) 0.73 0.67(0.05) 0.64 0.88(0.00)
MBA(803 + 820) + SED 0.60(0.12) 0.26(0.00) 0.75 0.10 0.64(0.02) 0.64(0.06) 0.52 0.66(0.01) 0.72 0.87(0.01)
MBA(805 + 806) + SED 0.75(0.11) 0.31(0.00) 0.35 0.09 0.79(0.02) 0.78(0.02) 0.40 0.66(0.05) 0.59 0.76(0.01)

MBA(805 + 820) + SED 0.62(0.06) 0.24(0.00) 0.54 0.09 0.94(0.01) 0.71(0.03) 0.26 0.73(0.01) 0.67 0.91(0.02)

MBA(806 + 820) + SED 0.37(0.11) 0.31(0.00) 0.78 0.10 0.82(0.02) 0.74(0.05) 0.39 0.40(0.08) 0.81 0.86(0.00)
Average 0.60 0.28 0.58 0.09 0.74 0.72 0.47 0.65 0.66 0.87

Quadruple Normality (400,000 points)
Same Domain

MBA(803 + 805 + 806 + 820) 0.86(0.01) 0.32(0.02) 0.53 0.57 0.86(0.03) 0.67(0.05) 0.42 0.70(0.01) 0.57 0.95(0.00)
Different Domains

MBA(803 + 805 + 806) + SED 0.47(0.03) 0.23(0.00) 0.44 0.10 0.74(0.06) 0.74(0.01) 0.50 0.72(0.01) 0.55 0.91(0.01)
MBA(803 + 806 + 820) + SED 0.30(0.10) 0.23(0.00) 0.71 0.09 0.60(0.27) 0.67(0.04) 0.50 0.58(0.02) 0.71 0.85(0.04)
MBA(805 + 806 + 820) + SED 0.54(0.01) 0.21(0.00) 0.55 0.09 0.55(0.30) 0.66(0.03) 0.28 0.60(0.01) 0.67 0.90(0.02)

Average 0.43 0.22 0.57 0.09 0.63 0.69 0.43 0.63 0.64 0.89
Quintuple Normality (500,000 points)

Different Domains
MBA(803 + 805 + 806 + 820) + SED 0.40(0.01) 0.16(0.05) 0.55 0.08 0.81(0.05) 0.67(0.04) 0.38 0.69(0.02) 0.62 0.90(0.00)

Table 3: Precision@𝑘 accuracy for NormA (and NormA-batch), Isolation Forest (IF), STOMP, S2G (and S2G-batch), IMondrian
Forest, STAMPI, and SAND applied to our datasets corpus (including concatenations of different datasets from same and dif-
ferent domains). The standard deviation of 10 runs is reported in parentheses.

is significantly bigger for datasets concatenated from different do-

mains. This underlines a limitation of Series2Graph to data series

that have a strong heterogeneous range of values through time.

The embedding space needs to be changed to adapt to this specific

case.

To conclude, SAND has equivalent accuracy for single normal-

ity datasets with state-of-the-art static methods and significantly

outperforms both static and online state-of-the-art methods for

datasets containing changes of normality. To assess the signifi-

cance of these differences, Figure 4 depicts a critical difference

diagram computed using a Wilcoxon pair-wised signed-rank test

(with 𝛼 = 0.05) on single and multiple normality datasets. Over-

all, Figure 4(a) underlines that SAND achieves the highest rank of

all methods and statistically outperforms all previous static state-

of-the-art methods (i.e., thick lines connect methods performing

similarly; SAND outperforms methods with statistically significant

differences). Similarly, Figure 4(b) confirms that SAND outperforms

online state-of-the-art methods as well.

4.3 Time Performance Evaluation
In this section, we evaluate the scalability of our methods and

the streaming state-of-the-art methods analyzed in the previous

section. For that purpose, we first evaluate the global execution

time (in seconds) needed to perform the update operation of the

model, and the subsequences scoring (in batch). We then measure

the throughput when we vary different parameters.
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(a) Critical Diagram for SAND versus static methods

(b) Critical Diagram for SAND versus streaming methods

Figure 4: Critical difference diagrams using aWilkoxon pair-
wised signed rank test (with 𝛼 = 0.05) on both single and
multiple normality datasets.

We first measure the execution time needed for the model update

and batch scoring. Figure 5 presents results on the double normal-

ity datasets (results with single normality datasets exhibit similar

trends; we omit them for brevity). Figure 5(d) depicts the global ex-

ecution time for the model update and the batch scoring for SAND

(in blue), IMondrian Forest (in red), and STAMPI (in green). One

should note that STAMPI performs both the model update and the

batch scoring at the same time. We thus report zero as the model up-

date execution time of STAMPI. Nevertheless, SAND is significantly

faster than IMondrian Forest for the model update operation, up to

three orders of magnitude faster for the batch scoring operation.

Overall, the total execution time (represented by the dotted lines)

of SAND is significantly lower than the two other methods.

We now measure the influence of the batch size on throughput

(using a fixed subsequence length of 75). Figure 5(a) illustrates with

the dotted lines the standard deviation envelope over all the double

normality datasets. SAND throughput remains stable as the batch

size increase. This confirms our expectation (cf. Section 3.5). On the

contrary, STAMPI and IMondrian forest throughput is decreasing.

Thus, SAND has a significantly higher throughput for large batches

(>5000 subsequences).

We then measure the influence of the subsequence length on the

throughput (while keeping an almost constant batch size of approx-

imately 20,000 subsequences). The latter is illustrated in Figure 5(b).

We notice that the throughput of SAND and IMondrian is reducing

when the subsequence length is increasing. This has been predicted

by the high importance of the length in Equation 7. On the con-

trary, STAMPI throughput is constant whatever the value of the

subsequence length. We notice that the throughput of IMondrian

Forest is equivalent to the throughput of STAMPI for subsequence

length of 1000 points for double normality datasets. Overall, SAND

throughput is significantly higher for small subsequence length (up

to 200 points) and remains higher for subsequence length up to

1000 points. We observe that most of the subsequence anomalies

are of moderate size (e.g., for cardiology datasets [18, 34], abnormal

heartbeats are usually shorter than 200 points), and rarely measure

up to 1000 points (e.g., electrical consumption datasets, patient

respiration, and Space Shuttle Marotta Valve [23, 51]).

We finally investigate the evolution of throughput as the stream

evolves (we use 10,000 as batch size, and 75 as subsequence length).

Figure 5(c) shows the throughput of SAND, IMondrian Forest, and

STAMPI at each batch (represented with its index in time on the x-

axis). We note that, despite the variability between different datasets

(represented by the dotted line envelope), SAND’s throughput is

relatively constant (this is true for both multi-normality and single

normality datasets). This confirms the statementmade in Section 3.5,

and proves that the size evolution of |Θ| does not affect execution
time. Similarly, STAMPI throughput is constant over time. On the

contrary, IMondrian Forest’s throughput is reducing over time.

We observe a perturbation on its throughput for double normality

datasets, taking placewhen the normality changes (at index 100,000).

At that point, the insertion of elements in the Mondrian trees is

faster, because these elements are significantly different (larger

distances) than current elements and, therefore, the IMondrian

Forest throughput is increasing. Nevertheless, it starts rapidly to

decrease on average. Overall, SAND throughput is constantly one

order of magnitude larger than IMondrian Forest and STAMPI.

4.4 Parameter Tuning
Recall that there are only four main parameters (ℓΘ,𝑘 , 𝑏𝑠𝑖𝑧𝑒 , and 𝛼)

that may affect the anomaly detection accuracy. In this section, we

evaluate and analyze their behavior. Note that two parameters can

jointly influence the accuracy and, therefore, we vary two parame-

ters simultaneously. We first start by analyzing parameters influ-

ences independently. Figure 7 depicts the Precision@𝑘 (Fig. 7(1)),

the execution time in seconds to compute a batch (Fig. 7(2)) and the

final number of clusters created (Fig. 7(3)) with a color range be-

tween black and yellow (with black the lowest and yellow the high-

est) for the double-normality datasets (results for single-normality

are omitted for brevity).

Influence of the centroids length, ℓΘ: We first evaluate the

parameter ℓΘ as regards to the parameter ℓ . We define ℓΘ = 𝑎 ∗ ℓ .
Figure 6 depicts the Precision@𝑘 and the execution time when 𝑎

varies between 1 and 10 for double normality datasets (results for

single-normality datasets follow similar trends and are omitted

for brevity). For accuracy purposes, ℓΘ should be greater than two

times ℓ . Above 𝑎 > 2, the Precision@𝑘 is reaching its maximum

value and stays constant. Thus, for a value of 𝑎 above a given value,

the length of the centroids does not have a significant impact on

the accuracy. Moreover, as explained in Section 3.5, the centroids

length does have an impact on the execution time. Thus, one needs

to choose a large enough length to maximize the accuracy without

increasing too much the execution time. We pick ℓΘ = 4 ∗ ℓ .
Influence of Initial Number of Clusters, 𝑘: We analyze the

influence of the SAND initial number of cluster𝑘 (independently) on

the detection accuracy and the execution time per batch. The y-axis

of Figure 7(b) depicts the evolution of the accuracy and execution

time per batch when we vary the initial number of clusters 𝑘 . Note

that the other parameter is set to its default value (𝑏𝑠𝑖𝑧𝑒 = 5000).

We notice that the parameter 𝑘 does not have any impact on the

detection accuracy. Nevertheless, increasing 𝑘 leads to a higher

number of clusters after the final batch and a higher execution time

per batch (as theoretically explained in Section 3.5). Therefore, a

low initial number of clusters seems to be an optimal choice. In our

experiments, we pick 𝑘 = 6.

Influence of Batch Size: We then measure the influence of the

batch size on accuracy and execution time. The y-axis of Figure 7(c)

depicts the accuracy and execution time when we vary the batch

size from 2000 points (i.e., subsequences) to 40,000. We note that a

bigger batch requires more execution time. Nevertheless, we show
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SAND Total

IMondrian Total

STAMPI Total

SAND iMondrian Forest STAMPI
(a) Throughput versus batch size (b) Throughput versus subsequence length (c) Throughput versus batch last index (d) Execution time

Figure 5: Throughput vs batch size (with fixed subsequence length ℓ = 75), subsequence length (with fixed batch size 𝑏𝑠𝑖𝑧𝑒 =

20000), and position in the stream (with ℓ = 75 and 𝑏𝑠𝑖𝑧𝑒 = 10000).
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Figure 7: Influence of batch size 𝑏𝑠𝑖𝑧𝑒 , rate of change 𝛼 , and
initial number of clusters 𝑘 on accuracy (1st line), execu-
tion time (2nd line) and final number of clusters created (3rd
line), over all double normality datasets.

in Section 4.3 that throughput remains constant to this parameter.

We observe a drop in accuracy for small batches, but we also notice

a slow reduction of accuracy while the batches increase. In this

case, there is a change of normality in the middle of the data series,

thus small batches are more able to adapt to this change. We select

the nearly optimal choice of 𝑏𝑠𝑖𝑧𝑒 = 5000 for our experiments.

Influence of 𝛼 : We measure the impact of 𝛼 on accuracy and

execution time (see Figure 7(b)). As expected, 𝛼 does not have an

impact, neither on the number of clusters created, nor on execution

time. However, when normality changes, the model needs to adapt

fast enough. Thus, a high 𝛼 leads to a more accurate result (for the

single normality datasets, the impact on accuracy slowly decrease

as 𝛼 increases, since no adaptation is needed for these datasets).In

our experiments, we use 𝛼 = 0.5, which provides good accuracy in

both single and double normality datasets.

Influence of Batch Size and 𝛼 : We now evaluate the influence of

the batch size joinedwith𝛼 . As previously underlined, the execution

time and the number of clusters created are independent to 𝛼 , but

only dependent on the batch size. We note that a high values of

batch size joined with low values of 𝛼 implies low accuracy for

double normality datasets (Fig. 7(a.1)). On the contrary, we observe

that a high value of alpha joined with a low value of batch size

implies a lower accuracy for single normality datasets. Overall,

parameters that are on the diagonal (such as 𝑏𝑠𝑖𝑧𝑒 = 5000 and

𝛼 = 0.5) are optimal.

Influence of Initial Number of Clusters 𝑘 and 𝛼 : We then

evaluate the initial number of clusters 𝑘 joined with 𝛼 (Figure 7(b)).

As mentioned earlier, the execution time and the number of clusters

created are independent of 𝛼 . Moreover, for the double normality

datasets, the initial number of clusters 𝑘 does not have any impact

on accuracy, while 𝛼 does.

Influence of Batch Size and Initial Number of Clusters 𝑘: Fi-
nally, we measure the batch size joined with the initial number of

cluster 𝑘 influence (see Figure 7(c)). One can see that the combina-

tion of small-batch size and a high 𝑘 leads to a significant number of

clusters, and large batch sizes combined with a high initial number

of clusters leads to a high execution time per batch. With regards

to accuracy, only the batch size has an impact.

5 CONCLUSIONS
We described SAND, a novel unsupervised approach for subse-

quence anomaly detection in streaming sequences. SAND is based

on a set representation of the subsequences in a data stream, and

can detect both single and recurrent anomalies. Experiments with

several synthetic and real datasets demonstrate the benefits of our

approach in terms of efficiency and accuracy.

In future work, we plan to investigate techniques that can im-

prove the scalability of our approaches, such as employing paral-

lel [46–48], or deep-learned [56] solutions.
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