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ABSTRACT
The latest generations of Link Prediction (LP) models rely on em-
beddings to tackle incompleteness in Knowledge Graphs, achieving
great performance at the cost of interpretability. Their opaqueness
limits the trust that users can place in them, hindering their adop-
tion in real-world applications. We have recently introduced Kelpie,
an explainability framework tailored specifically for embedding-
based LP models. Kelpie can be applied to any embedding-based
LP model, and supports two explanation scenarios that we have
called necessary and sufficient. In this demonstration we showcase
Kelpie’s capability to explain the predictions of models based on
vastly different architectures on the 5 major datasets in literature.
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1 INTRODUCTION
Knowledge Graphs (KGs) are structured stores of real-world in-
formation. In a KG nodes represent entities and edges are labeled
with semantic relations; two entities ℎ and 𝑡 linked by an edge with
relation r form a fact ⟨ℎ, 𝑟, 𝑡⟩, where h is the head and t is the tail.
Nowadays, web-scale KGs are widely used both in academia (e.g.,
WikiData, YAGO) and in industry (e.g., Google, Facebook); further-
more, KGs are strikingly good for representing historical data. Even
the largest KGs, though, suffer from incompleteness, as they only
encompass a fraction of the knowledge they should contain.

Researchers have designed several approaches to KGCompletion;
among them, Link Prediction (LP) leverages the known facts to infer
the missing ones. For example, knowing ⟨Dante Alighieri, born in,
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Florence⟩ and ⟨Dante Alighieri, Prior of, Florence⟩, we may infer
⟨Dante Alighieri, citizenship, Florence⟩ (if it was previously missing).

With the rise of Machine Learning (ML), the dominant approach
to LP has become to map the graph elements to vectorized represen-
tations calledKG embeddings. Since the seminal TransEmodel [3] an
impressive variety of embedding-learning LP systems have been cre-
ated, often paralleling or even surpassing traditional methods [10].
Furthermore, KG embeddings can be applied to downstream tasks
such as fact checking [6] and KG Alignment [14].

A major shortcoming of embedding-based LP models lies in their
opaqueness: as it often happens with ML methodologies, these
systems do not provide any insights on the reasons behind their
outcomes. This undermines the trust that users can place in these
systems, and it hinders their adoption in fields where explainability
may be an inherently requirement. For example, while LP models
have shown great potential in biomedical tasks such as Drug Dis-
covery and Repurposing, human users need to trust and understand
these models in order to make such contributions possible [2].

To overcome these issues we have developed Kelpie [12], an
explainability framework tailored specifically for embedding-based
LP models. Kelpie explains any prediction by identifying the min-
imum subset of training facts that have led the model to yield it.
Kelpie explanations can be precious when assessing the semantic
coherence of a model: for instance, if the explanation to the predic-
tion ⟨Dante Alighieri, citizenship, Florence⟩ does not match human
intuition, e.g., ⟨Dante Alighieri, profession, poet⟩, this can indicate
that the model leverages spurious correlations, or that the training
data are biased. Our approach takes actively into account the inner
mechanisms of LP models, and it can be theoretically applied to any
embedding-based architecture: this can be invaluable in a sparkling
field like LP, where dozens of novel methods are proposed each
year. The key contributions in this demonstration are the following:
• Section 2 describes the technical background of Kelpie, along

with the main challenges of explaining LP systems;
• Section 3 presents Kelpie with its explanation scenarios, its

methodologies and its implementation, highlighting its novelty;
• Section 4 describes our demonstration for Kelpie: our presenta-

tion will cover several settings, allowing our audience to choose
among multiple scenarios, datasets and models.

We finally provide conclusive remarks in Section 5.
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2 TECHNICAL BACKGROUND
In this section we fist define the core ideas behind embedding-based
LP models; we then provide key concepts on their explainability.

2.1 Embedding-Based Link Prediction
AKnowledgeGraph (KG) is a labeled directed graph𝐾𝐺 = (E,R,G)
where E is the set of entities, R is the set of relations and G ⊆
E × R × E is the set of facts. LP datasets are usually sampled from
real-world KGs, and their sets of facts G are further split into a
training set G𝑡𝑟𝑎𝑖𝑛 , a validation set G𝑣𝑎𝑙𝑖𝑑 , and a test set G𝑡𝑒𝑠𝑡 .

Embedding-based LP models usually work by defining a scoring
function 𝜙 that, for any fact ⟨ℎ, 𝑟, 𝑡⟩, uses the embeddings of ℎ, 𝑟
and 𝑡 to estimate the plausibility of that fact. In our formulations
we assume that high 𝜙 values convey high plausibility; analogous
formulations can be derived for the opposite case. The embeddings
of all the KG elements are initialized randomly and then trained
to optimize the scores of the training facts, deemed true a priori.
LP models may also include shared parameters not referring to
any entity or relation (e.g., the weights of neural layers); shared
parameters are generally trained jointly with the KG embeddings.

When the training is over we expect the model to yield high
plausibility values for unseen true facts as well; in practice, new
plausible facts are identified via either tail prediction or head predic-
tion. In tail prediction, given a head entity ℎ and a relation 𝑟 , we find
the entity that, if used as a tail for ⟨ℎ, 𝑟, ?⟩, results in the best 𝜙
score; head predictions are defined analogously. In our formulations,
for the sake of simplicity we mostly refer to tail predictions.

In evaluation, head and tail predictions are run on each test fact
ranking the target entity, i.e., the entity actually featured in the fact,
against all the others in E. Ideally, the target entity should obtain
rank 1, conveying a correct prediction: e.g, when predicting the
tail for head Dante Alighieri and relation citizenship, we expect the
target entity Florence to obtain the best score and, thus, tail rank 1. In
literature, the ranks obtained across all test facts are combined into
global metrics, e.g., Hits@K or Mean Reciprocal Rank. Such metrics
convey the overall performance of models without providing any
insights on their specific strengths and weaknesses. Finer-grained
interpretability methods are thus sorely needed in LP research [10].

2.2 Explainability of Link Prediction Models
Embedding-based LP models tend to be opaque, as they do not
keep memory of the effect of the various training facts, and they do
not provide any insights on the predictions they yield; even worse,
these models tend to defy all the major explainability approaches.

Saliency-based frameworks such as LIME, Anchor, or SHAP [1],
have recently gained popularity due to their effectiveness and ver-
satility. These systems explain predictions by identifying which fea-
tures of the input samples have affected the outcomes the most. This
idea implicitly requires the input features to be human-interpretable.
In our LP models, though, the input samples are just triplets of
embeddings, i.e., non-human-interpretable vectors: saliency-based
systems would just identify their most relevant elements, which
would not be truly informative for human users.

A different approach interprets predictions by identifying which
training samples have influenced them the most: this is ideal for the
LP task, where the training samples provide the logical backbone for

all the embeddings we learn. The framework by Koh and Liang [7]
follows this direction; unfortunately, their computational times
have been proven unfeasible in the LP field [9]. A fewworks propose
other ways to estimate the effect of fact additions or removals,
mostly in the scope of assessing the robustness of KG embeddings,
but they are limited to single-fact perturbations [9, 16]. All in all, the
challenge of creating a truly expressive LP explainability framework
has remained mostly unaddressed so far.

3 KELPIE OVERVIEW
In this section we discuss the Kelpie framework. We first define its
explanation scenarios, and then describe its main methodologies.

3.1 Kelpie Explanations
Kelpie is a local post-hoc framework [5], so it explains specific
predictions by solely analyzing the model samples. Furthermore,
Kelpie can work in either a necessary or a sufficient setting: given a
tail prediction 〈ℎ, 𝑟 , 𝑡〉, we define:
• Necessary Explanation: it is the smallest set of training facts

mentioning ℎ that, if removed, would disable the prediction, i.e.
would switch the top ranking tail from 𝑡 to another entity.

• Sufficient Explanation: given a set 𝐶 of random entities 𝑐 for
which the model does not predict ⟨𝑐, 𝑟, 𝑡⟩, it is the smallest set
of training facts mentioning ℎ that, if added to any 𝑐 ∈ 𝐶 , enable
the model to predict ⟨𝑐, 𝑟, 𝑡⟩.
In other words, a necessary explanation consists in all the pieces

of evidence mentioning ℎ that allowed us to infer the target tail 𝑡 .
For instance, in the example of the tail prediction ⟨Dante Alighieri,
citizenship, Florence⟩, this would encompass all the Dante Alighieri
facts that allow us to infer his citizenship: e.g., ⟨Dante Alighieri,
born in, Florence⟩, and ⟨Dante Alighieri, Prior of, Florence⟩.

Conversely, a sufficient explanation features the ℎ training facts
that, if added to any entity 𝑐 (replacing ℎ with 𝑐), switch the top-
ranking predicted tail to for 𝑐 to the same 𝑡 that is predicted for
ℎ. We call such a switch in the predicted tail a conversion. In the
⟨Dante Alighieri, citizenship, Florence⟩ example we may find that
transferring the ⟨Dante Alighieri, born in, Florence⟩ fact to any non-
Florentine entities is sufficient to have the model convert their
predicted citizenship to Florence.

Necessary and sufficient explanations are complementary to each
other, so users can choose which one suits their goals best: on the
one hand, necessary explanations encompass all the reasons why
a specific entity has been predicted in a certain way; on the other
hand, sufficient explanations provide general rules that describe
which parts of a specific entity "lock" the prediction to explain, and
could even extend it to other entities.

3.2 Kelpie Framework
The Kelpie framework supports by design any LP models based
on embeddings, and it can be used to extract either necessary or
sufficient explanations. As already pointed out Kelpie explanations
can have length greater than 1; while adding to their expressiveness,
this makes the space of candidate explanations unfeasible to visit
in a brute force approach. Hence, as depicted in Figure 1, Kelpie
relies on a three-module architecture:
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• a Pre-Filter identifies the most promising training facts featuring
h, and discards the others;

• an Explanation Builder visits the space of the resulting fact com-
binations, enacting early termination policies;

• a Relevance Engine actually computes how relevant any selected
combination of facts is to the prediction to explain.
We describe these modules in the following sections, with partic-

ular focus on the Relevance Engine and its Post-Training technique.
We report in our online repository extensive experiments for all
the main tweakable parameters of our framework.

3.3 Pre-Filter
Given any ⟨ℎ, 𝑟, 𝑡⟩ tail prediction, the role of the Pre-Filter is to
discard the presumably least relevant training facts mentioning ℎ
in order to prevent combinatorial explosion when their number is
too large. The Pre-Filter does this by computing, for each of them,
a promisingness value conveying its likelihood to be relevant.

Our implementation of promisingness relies on the basic graph
topology. Intuitively, the closer two entities are in the graph, the
stronger their semantic affinity. Therefore, for any ⟨ℎ, 𝑠, 𝑞⟩ or
⟨𝑞, 𝑠, ℎ⟩ training fact featuring ℎ, we find the shortest non oriented
path to 𝑡 : the shorter the path, the better the fact promisingness.
We describe in our online repository experiments with different
implementations of promisingness.

The Pre-Filter outputs the set Fℎ
𝑡𝑟𝑎𝑖𝑛

of the top-𝑘 most promising
facts; the 𝑘 parameter can be tweaked to balance the search space
size with the certainty of not discarding any relevant facts.

3.4 Explanation Builder
Given any ⟨ℎ, 𝑟, 𝑡⟩ tail prediction to explain, the Explanation Builder
has the role of combining the pre-filtered facts Fℎ

𝑡𝑟𝑎𝑖𝑛
into a space

of candidate explanations, and of guiding the search in it. In the
following we refer to the generic candidate explanation as 𝑋 , and
to the explanation to find, i.e., the minimal effective one, as 𝑋 ∗.

The Explanation Builder first visits all the single-fact candidate
explanations, having the Relevance Engine assess their relevance 𝜉 .
Then, it progressively increases the size of the visited candidates
until one matches our acceptance criteria by exceeding thresholds
on 𝜉 ; in this case we return it as 𝑋 ∗. In the necessary scenario, this
ensures that removing the facts of𝑋 ∗ from the𝐺𝑡𝑟𝑎𝑖𝑛 would disable
the prediction to explain; in the sufficient scenario, it ensures that
adding the facts of 𝑋 ∗ to any 𝑐 ∈ C would convert them.

We make the search for 𝑋 ∗ more efficient by enacting early
termination policies. Among same-sized candidates, we prioritize
those that feature the individually most relevant facts; if we gather
evidence that no current-sized candidates are viable explanations,
we move to larger sizes. The progressive increase in candidate
size ensures the minimality of the 𝑋 ∗ we eventually find. If the
exploration ends with no 𝑋 being identified as 𝑋 ∗, we return the
most relevant 𝑋 met so far, adopting a best-effort approach.

3.5 Relevance Engine
Given any ⟨ℎ, 𝑟, 𝑡⟩ tail prediction to explain, the Relevance Engine
has the role of measuring the relevance for the candidates visited by
the Explanation Builder. This corresponds in the necessary scenario

𝒢!"#$%& ℱ!"#$%&

𝑋

𝑋∗

Pre-Filter Explanation Builder

Relevance Engine

𝜉

Figure 1: Kelpie framework architecture.

to the effect of removing their facts from ℎ, and in the sufficient
scenario to the effect of adding those facts to any 𝑐 ∈ C.

Since retraining the whole model for each visited candidate ex-
planation 𝑋 would be unfeasible, we employ a novel ML technique
that we call Post-Training. To assess the relevance of any 𝑋 we do
not operate directly on the entity ℎ (or the entities 𝑐 ∈ 𝐶); rather, we
create a mimic, an alternate versions that we initialize by cloning
the training facts of ℎ (or 𝑐), and that we perturb by removing (or
adding) the facts in 𝑋 . We then compute an embedding for our
mimic: (i) we initialize it randomly, as for any other entity; (ii) we
freeze all the other elements in the model (KG embeddings and
shared parameters); and (iii) we train the mimic embedding alone
to optimize the plausibility its training facts. The resulting embed-
ding will behave similarly to how the original entity would, had
injected perturbations been present since the beginning. The Post-
Training process is remarkably lightweight: it only optimizes one
embedding, instead of those of all entities and relations, and only
on relatively few facts, instead of the whole training set. In greater
detail, given a candidate explanation 𝑋 we proceed as follows:
• In the necessary scenario we post-train a mimic of ℎ without the

facts in 𝑋 . The necessary relevance is formulated in terms of
how using the mimic instead of the original ℎ worsens the the
tail rank of the ⟨ℎ, 𝑟, 𝑡⟩ tail prediction.

• In the sufficient scenario for each entity to convert 𝑐 ∈ C we post-
train a mimic adding the facts in 𝑋 to 𝑐 . The sufficient relevance
is formulated in terms of how using the mimics instead of the
original 𝑐 improves the tail ranks of the ⟨𝑐, 𝑟, 𝑡⟩ tail predictions.

4 DEMONSTRATION SCENARIOS
For our demonstration we use the intuitive UI in Figure 2, which
allows us to select predictions by different models on different
datasets, and to visualize the corresponding Kelpie explanations.

4.1 Demonstration Settings
In our demonstration we provide examples of both necessary and
sufficient explanations. We explain the predictions of 3 models, rep-
resenting each of the 3 main LP families in literature [10]:
• ComplEx [15] is a matrix factorization model that combines the

embeddings via bilinear products in the complex space. We use
the state-of-the-art implementation by Lacroix et al. [8], that
relies on a Multiclass Negative Log-Likelihood Loss.

• ConvE [4] is a Deep Learning model that combines KG embed-
dingswith a convolutional architecture.We adhere to the original
implementation, that relies on a Binary Cross-Entropy Loss.

• TransE [3] is a pioneering geometric model that interprets re-
lations as translations in the embedding space. We follow the
original model implementation, using a Pairwise Ranking Loss.
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Figure 2: Kelpie demonstration UI.

For each model, we explain predictions performed on all the 5
major datasets in LP literature: FB15k, WN18, FB15k-237, WN18RR
and YAGO3-10. FB15k and WN18 have been extracted from by
Bordes et al. [3] selecting the facts featuring the richest entities in
Freebase and WordNet respectively. It has later been observed that
both datasets suffer from test leakage due to the presence of inverse
relations; therefore, Toutanova and Chen [13] and Dettmers et
al. [4] have proceeded to further subsample them, creating the
more challenging FB15k-237 and WN18RR. The poor predictive
performance displayed by all models on these datasets suggest that
only a fraction of their test facts may actually be predictable, given
the information provided in training [11]. Finally, YAGO3-10 has
been sampled from the YAGO3 KG by Dettmers et al. [4] selecting
entities that appear in facts with at least 10 different relations.

In our demonstration, we will allow participants to play around
with our interactive UI, letting them choose which predictions
yielded by which models, and on which datasets, they would like to
interpret. We will actively discuss the returned explanations in the
context of the model capabilities and the dataset characteristics.

In most cases our explanations match human intuition: for ex-
ample the ComplEx YAGO3-10 historical prediction ⟨Republic of
Genoa, participated in, Battle of Crécy⟩ has a sufficient explanation
in the training fact ⟨Battle of Crécy, happened in, Republic of Genoa⟩.
In other cases explanations can be less intuitive: this often reveals
the presence of bias in our datasets. For example, in YAGO3-10,
the prediction of a person working at a University is generally ex-
plained with that person having graduated at the same University.
While in the real world graduating at a University does not imply
ending up working there, in YAGO3-10 this happens for a large
number of entities: our models incorporate such a fictitious pattern,
making the resulting predictions questionable, albeit correct.

4.2 Demonstration Goals
Our demonstration has four main purposes:
• showcasing the ability of Kelpie to identify explanations in di-

verse settings. In our demonstration, we will achieve this by
asking the audience to select themselves the models, datasets
and predictions to show the explanations for.

• displaying the effectiveness of the extracted explanations: as a
way to demonstrate explanation effectiveness, we will report
how removing or adding the obtained explanation facts and
re-training the whole model would affect the original prediction.

• illustrating how explanations can unveil the presence of bias or
of obscure correlations in the original datasets. This can provide
useful insights on how to intervene on our datasets to re-balance
them and make them adhere to real-world semantics.

• showing how broad, dataset-level correlations are matched from
the obtained explanations: for instance we will show how expla-
nations for FB15k and WN18 predictions reflect the prominent
presence of inverse relations in these datasets, incentivizing
models to just leverage trivial information for their predictions.

5 CONCLUSIONS
Wedemonstrate the Kelpie explainability framework for embedding-
based Link Prediction models. Kelpie explains predictions by iden-
tifying which combinations of training facts have enabled them;
it supports two complementary scenarios based on the concepts
of necessity and sufficiency. In our demonstration we show how
our approach can be applied to any embedding-learning architec-
ture for LP - a sorely needed quality in such a dynamic research
field. Kelpie can highlight which pieces of information our models
actually leverage, unveiling the inner reasonings, strengths and
weaknesses of current state-of-the-art models.
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