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ABSTRACT

Any system at play in a data-driven project has a fundamental
requirement: the ability to load data. The de-facto standard for-
mat to distribute and consume raw data is csv. Yet, the plain text
and flexible nature of this format make such files often difficult
to parse and correctly load their content, requiring cumbersome
data preparation steps. We propose a benchmark to assess the ro-
bustness of systems in loading data from non-standard csv formats
and with structural inconsistencies. First, we formalize a model to
describe the issues that affect real-world files and use it to derive a
systematic łpollutionž process to generate dialects for any given
grammar. Our benchmark leverages the pollution framework for
the csv format. To guide pollution, we have surveyed thousands of
real-world, publicly available csv files, recording the problems we
encountered. We demonstrate the applicability of our benchmark
by testing and scoring 16 different systems: popular csv parsing
frameworks, relational database tools, spreadsheet systems, and a
data visualization tool.

PVLDB Reference Format:

Gerardo Vitagliano, Mazhar Hameed, Lan Jiang, Lucas Reisener, Eugene

Wu, and Felix Naumann. Pollock: A Data Loading Benchmark. PVLDB, 16(8):

1870 - 1882, 2023. doi:10.14778/3594512.3594518

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/HPI-Information-Systems/Pollock.

1 INGESTING RAW DATA

The ability to load the content of files is paramount for the success
of any data-driven project. Typically, data files come in a variety
of formats. To gain insights into the most common file formats
used to share data, we analyzed 17 repositories of governmental
data portals across six continents. The results of our survey are
summarized in Table 1, reporting on the format of files contained
in a total of 784 062 available datasets1.
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1The full results and the code to reproduce our analysis can be found on the
project repository at https://github.com/HPI-Information-Systems/Pollock

Table 1: Number of datasets by format in 17 governmental

portals. One dataset can contain files with multiple formats.

Format # datasets % of total

html 326 446 41.63%
csv 245 594 31.32%
pdf 151 053 19.26%

Format # datasets % of total

xml 128 452 16.38%
zip 67 024 8.54%

json 65 008 8.29%

Excluding formatting-oriented documents such as html and pdf,
a vast majority of structured data is found in csv files. This format is
a common choice due to the relational nature of most data, the ease
of reading/writing plain-text files, and its support by many systems.
Such a wide spread is also a curse, as the flexibility of the csv format
is often coupled with non-standard files and a lack of appropriate
metadata ś a common scenario in real-world datasets. These issues
are not foreign to academia: a survey by Mitlöhner et al. on 200k
different open data csv files identified a wide range of dialects, files
with multiple tables, the presence of comment lines, and multi-row
headers [24]. Van den Burg et al. [35], in proposing a csv wrangler,
observed that the Python csv parser failed to detect the correct
dialect in 36% of non-standard csv from 8k files. Christodoulakis
et al. [6], in applying their csv table detection algorithm on a set
of more than 23k files collected from the Canada open data portal,
identified 14 different encodings, five different delimiters, and up to
226 tables in a single file. Although research has addressed the tasks
of CSV dialect parsing [9, 13, 35], csv line and cell classification [14,
20], or table extraction [6], it is unclear to which degree these results
have been transferred into real-world systems, and howmuch of the
data preparation burden is left to end-users. Our goal is therefore
to benchmark the robustness of data loading in the presence of
real-world errors and non-standard files. One of the fundamental
obstacles to automated testing and benchmarking is the lack of
a formal model to describe the structural issues of csv files and
decouple them from semantic errors. A further challenge is the
lack of annotated datasets of unprepared files with a clean ground
truth. Creating such a dataset is an expensive task that requires a
large amount of data, time, and domain expertise. To address these
challenges, we contribute Pollock, a formal framework to classify
file issues with respect to serialization grammars, and its application
to generate systematically large-scale datasets of unprepared files
with the corresponding clean ground truth.

Our framework formally defines the concepts of content, struc-
ture, and format of file grammars, and their dialects. We introduce
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the concept of łfile pollutionž, a systematic transformation of a
file that modifies its parsing grammar into a structurally different

version of it. Based on this framework, we manually analyzed 3 712
real-world csv files and identified and classified a broad set of non-
standard features. We use our framework along with the survey
results to systematically create polluted versions of an otherwise
standard file. We then implemented the Pollock benchmark for csv
data loading, to assess the maturity of a system in handling polluted
csv data files2. This benchmark is designed for systems that operate
at all stages of a data preparation pipeline, e.g., early parsing, data
wrangling/cleaning, data visualization, or data storage. The specific
contributions of our paper are:

(1) A general framework that identifies format, content, and
structure, which is applicable to all data file grammars and
can be used to systematically pollute them.

(2) A sample of 3 712 real-world csv files annotated with re-
spect to their pollutions, analyzed in a survey.

(3) A benchmark composed of an input standard csv file and a
set of 2 290 pollutions, based on the results of the survey.

(4) A set of weights based on the survey results to aggregate
several metrics into a benchmark score.

(5) Experimental measurements to assess the loading capability
of 16 different systems using our benchmark.

In Section 2, we describe our framework to characterize data pars-
ing grammars and introduce the concepts of pollution and structural
difference of grammars. Section 3 describes our data loading bench-
mark, derived from our survey results. Section 4 reports the results
obtained by 16 different systems on our benchmark and discusses
their shortcomings. In Section 5, we discuss the challenges of csv
files and related research efforts to address those issues. Section 6
concludes with a summary and directions for future work.

2 THE POLLUTION FRAMEWORK

In the scope of our work, data files are actual textual files, collec-
tions of files, or strings in memory encoded with given grammars.
Regardless of their differences, all grammars used for file serial-
ization have similar characteristics: they specify what content is
allowed, what rules are used to parse content from the file, and how
to format the content in a given representation.

We introduce a formal framework based on context-free gram-
mars, which we use to serialize content into files and parse content
out of files. We note that our framework is not only applicable to
all possible dialects of the csv grammar, but also to any other data
serialization grammars that are context-free, e.g., json or xml.

2.1 Content, Structure, Format

A łdata filež is a sequence of characters that expresses content in a
given context-free grammar [4].

Definition 1 (Context-Free Grammar). A context-free grammar 𝐺
is a set of terminal symbols T , a set of non-terminal symbols V , a
start symbol 𝑉𝑠 ∈ V , and a set of rules R : V × (V ∪ T).

Since data files may also contain metadata, depending on the
application, we use the more general term file and refer to the
payload of a file as content. We refer to serialization as the act of

2Pollock, inspired by the abstract painter, stands for Polluted CSV benchmarK.

producing a file that encodes a content𝐶 using the rules of a specific
grammar 𝐺 : 𝑓 = 𝐺 (𝐶), and parsing as the act of extracting content
from a file: 𝐶 = 𝐺−1 (𝑓 ).

Consider the sample csv file 𝑓0 of Figure 1 and its grammar
𝐺0 to describe it. 𝐺0 is a simplified version of the standard one
defined in the RFC4180 document [29]. The content of the file is
a set of records containing the values (ł1,2,3ž, ł4,5,6ž, . . . ) for
the attributes with the headers łA,B,Cž. Other characters found
in the file, e.g., commas and newlines, constitute the structure of
the file: they serve parsing but do not belong to file content. Based
on this intuition, we classify three types of symbols, and their
corresponding rules: content, structural, and format.

Definition 2 (Content). In a grammar 𝐺 , given a rule 𝑅 ∈ R and
terminal symbols𝑇𝑖 ,𝑇𝑗 ∈ T , the set of content symbols is C = {𝐶 ∈

V | ∃ 𝑅 : 𝐶 → 𝑇𝑖 | 𝑇𝑗 , 𝑇𝑖 ≠ 𝑇𝑗 }. We call 𝑅 a content rule.

Content rules are rules that may resolve to multiple terminal
symbols3. Because of this, they describe the objects of serialization,
or łwhatž is allowed in a given file. In the example of Figure 1, 𝑅4
and 𝑅5 are content rules.

Definition 3 (Structure). In a grammar 𝐺 , given a rule 𝑅 ∈ R and a
terminal symbol 𝑇 ∈ T , the set of structural symbols is S = {𝑆 ∈

V | ∃! 𝑅 : 𝑆 → 𝑇 }. We call 𝑅 a structural rule.

Structural rules are rules that resolve to a unique terminal symbol
(or sequence). In simple words, they pose as markers to identify
łwherež to find content in a given file. In the example of Figure 1,
𝑅6 and 𝑅7 are structural rules.

Definition 4 (Format). In a grammar 𝐺 , given a rule 𝑅 ∈ R and
non-terminal symbols 𝑉0, . . . ,𝑉𝑛 ∈ V , the set of format symbols is
F = {𝐹 ∈ V | ∃𝑅 :→ 𝑉0 . . .𝑉𝑛}. We call 𝑅 a format rule.

All rules that do not directly resolve in a terminal symbol (or
sequence) are format rules: they express łhowž to combine content
with structure in a given format. In the example of Figure 1, 𝑅1, 𝑅2,
and 𝑅3 are format rules. We annotate format rules with grouping
information. During parsing, this information is used to build the
parse tree, specifying for every rule whether its right-hand side
symbols are to be considered as an ordered list or as an unordered
set. To express format rules with conciseness, we also introduce
łsymbol cardinalityž, a notation to specify the repetition of symbols.

Definition 5 (Symbol cardinality). In a grammar𝐺 , given a rule 𝑅 ∈

R containing a symbol𝑉 ∈ V , symbol cardinality is the number of
times𝑉 has to be repeated when applying rule𝑅. Symbol cardinality
is expressed by postfixing 𝑉 with {𝑚,𝑛}, where𝑚,𝑛 ∈ N ∪ {∞},
signifying a repetition of a minimum of 𝑚 to a maximum of 𝑛
times. Brackets with a single number define a required cardinality
of𝑚 = 𝑛. Lack of notation implies a cardinality of𝑚 = 𝑛 = 1.

This notation can be used to express any grammar in Chomsky
Normal Form (CNF) [5] (and therefore any CFG grammar) with
more conciseness. As proof, suppose a format rule expressed as
𝑅 : 𝐹 → 𝑉0𝑉1{1,𝑚}𝑉2 with a given maximum cardinality 𝑚 ≠

∞. In normal form, non-terminal rules need to be in the form
𝐴 → 𝐵𝐶: the rule 𝑅 has to be expanded with 𝑚 + 1 additional

3For notational simplicity, we excluded sequences of symbols. Conceptually, se-
quences of terminal symbols are equivalent to individual terminal symbols.
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rules: 𝑅0 : 𝐹 → 𝐹𝑚𝑉2, 𝑅1 : 𝐹𝑚 → 𝐹𝑚−1𝑉1,. . . , 𝑅𝑚 : 𝐹1 → 𝐹0𝑉1,
𝑅𝑚+1 : 𝐹0 → 𝑉0𝑉1. Formulating rules with symbols having an
infinite cardinality in CNF is possible with the addition of an extra
rule: for example, 𝑅 : 𝐹 → 𝑅0𝑅1{0,∞} has to be expressed with the
two rules 𝑅0 : 𝐹 → 𝑅0𝐹1, 𝑅1 : 𝐹1 → 𝑅1 |𝐹1𝑅1.

Being equivalent to grammars in CNF format, our framework
can be applied to any grammar used for serialization and parsing
data from files.

2.2 Grammar dialects

Data serialization grammars are often regulated by standard spec-
ifications [3, 29]. However, real-world files often do not comply
with standards. For example, one of four csv files out of the 3 712
files we sampled in a real-world survey (Cf. Section 3.3) uses a
field delimiter different from comma (as prescribed by the RFC4180
standard). Consider the four exemplary files shown in Figure 2:
they are all obtained by serializing the same content 𝐶 , a header
row followed by two data rows. The content of the first file can be
parsed with the RFC4180-compliant grammar 𝐺0 of Figure 1. All
other files require slightly different grammars 𝐺1,𝐺2,𝐺3 to be cor-
rectly parsed. Referring to the framework introduced in Section 2.1,
all three grammars have the same content and format of 𝐺0, but:

(1) 𝐺1 uses a different separator rule: 𝑅6 : 𝐷𝐸𝐿 →ł;ž
(2) 𝐺2 allows rowswith an extra delimiter:𝑅3 : 𝑟𝑜𝑤 → 𝑟𝑜𝑤 𝐷𝐸𝐿

(3) 𝐺3 allows rows with different separators: 𝑅7 : 𝐷𝐸𝐿 → ’;’

Two context-free grammars are equivalent if they can serialize or
parse the same sequences of tokens [25]. The grammars to parse the
different files in Figure 2 are not strictly equivalent, because they
differ in structural tokens or cardinalities. Still, they parse the same
content from the four files. Regardless of their grammars, we define

two files 𝑓 , 𝑓 as content equivalent if the content obtained parsing
them with their respective grammars 𝐺,𝐺 is the same. Formally:

Definition 6 (Content equivalence). Two files 𝑓 and 𝑓 parsed with
the grammars𝐺 and𝐺 , respectively, are content equivalent if 𝐶 =

𝐺−1 (𝑓 ) = 𝐺−1 (𝑓 ) = 𝐶 .

In other words, given the parse trees 𝐶 = 𝐺−1 (𝑓 ) and 𝐶 =

𝐺−1 (𝑓 ), 𝑓 and 𝑓 are content equivalent if there exists a homomor-
phism between format and content symbols, and for ordered format
rules, all right hand side symbols are found in the same order.

Definition 7 (Structurally different grammars). A grammar 𝐺 is
structurally different from a grammar 𝐺 if, given two content-

equivalent files 𝑓 , 𝑓 with content 𝐶 , the following hold: (1) 𝐺 ≠ 𝐺 ,

(2) 𝑓 = 𝐺 (𝐶) = 𝐺 (𝐺−1𝐺 (𝐶)), and (3) 𝑓 = 𝐺 (𝐶) = 𝐺 (𝐺−1𝐺 (𝐶)).

Two grammars are (only) structurally different if they parse the
same content from two different, yet content equivalent files.

Definition 8 (Grammar dialects). Given a grammar 𝐺 , its dialects
are all grammars 𝐺 structurally different from 𝐺 .

In the example of Figure 2, grammars 𝐺1, 𝐺2, and 𝐺3 are all di-
alects of𝐺0 (which is in turn a dialect of the RFC4180 csv grammar).

2.3 File pollution

For a given standard grammar 𝐺 , our goal is to benchmark how
real-world systems load files serialized with different dialects of 𝐺 .

However, the set of dialects of a grammar𝐺 is infinite; and even for
a single grammar 𝐺 there are infinite possible files with different

contents. Consider the three reasons why a file 𝑓 can differ from

𝑓 : (1) 𝑓 is expressed in the same grammar as 𝑓 , but serializes a

different content, i.e., 𝑓 = 𝐺 (𝐶); (2) 𝑓 serializes the same content

as 𝑓 . but with a different grammar, i.e., 𝑓 = 𝐺 (𝐶); (3) 𝑓 serializes a

different content with a different grammar, i.e., 𝑓 = 𝐺 (𝐶).
To design a data loading benchmark, we are primarily interested

in files that belong to (2), i.e., different files serializing the same
content with different dialects of a grammar. However, to account
for common issues in the wild (Cf. Section 3), we also consider
restricted cases of (3), where the content 𝐶 of a file 𝑓 is a strict

subset of the content 𝐶 of a file 𝑓 (whose grammar may also be
structurally different). We call file pollution the transformation of

a file 𝑓 = 𝐺 (𝐶) into a content equivalent file 𝑓 = 𝐺 (𝐶), where 𝐺
is a dialect of 𝐺 . We describe a simple procedure to construct file
pollutions. Given a file 𝑓 , rather than modifying its grammar 𝐺

and then serializing a new file 𝑓 = 𝐺 (𝐶), we directly modify the
parse tree 𝐺−

1(𝑓 ) in two ways: by changing structural symbols
and the cardinalities of symbols in format rules. These changes

guarantee that the content of the file 𝑓 has been serialized with a
structurally different grammar𝐺 , without the need to construct𝐺
explicitly. Given a file 𝑓 and its parse tree 𝐶 = 𝐺−1 (𝑓 ), we can
systematically enumerate all the possible file pollutions. A pollution
can: (1) change any of the structural symbols 𝑆 with a different
symbol 𝑆 , or (2) increase or decrease the cardinality of a symbol 𝑉
in a format rule.

Our formalization of pollution offers several advantages. First,
structural differences that characterize a resulting dialect are well-
defined; second, they can be chosen at design time as a parameter;
third, as the pollution is a controlled transformation, a ground
truth content is available to evaluate the results of loading. Of
course, the space of pollutions is still large, so it is unclear how
to sample relevant pollutions to concretely instantiate in a data
loading benchmark. Given our framework, the problem of designing
a relevant data loading benchmark can be formalized with the
following problem statement:

Given a source file 𝑓 that serializes content 𝐶 with a grammar

𝐺 , find pollutions that generate a set of files 𝑓0, ..., 𝑓𝑘 , such that the
content𝐶𝑖 of every file 𝑓𝑖 is equivalent to𝐶 (or a strict superset) and
is serialized with a grammar 𝐺𝑖 , dialect of the original grammar 𝐺 .
To address this problem, the next section describes our survey of
3 712 real-world csv files and their pollutions.

3 THE POLLOCK BENCHMARK

In this section, we describe Pollock, a benchmark for csv data load-
ing that results from the application of grammar-based pollution
as introduced in Section 2. To formally define a benchmark using
the pollution framework, we need to specify:

(1) A reference grammar 𝐺 .
(2) A source file 𝑓 that serializes a content𝐶 using the grammar

𝐺 , serving as the basis for the pollution operations.
(3) For each of the format rules and structural rules in 𝐺 , a set

of pollutions to obtain different dialects 𝐺 .
(4) Metrics to measure how well a system loads polluted files.
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Figure 1: A sample csv file 𝑓0 and a grammar𝐺0 to parse it. Each node in the parse

tree corresponds to a grammar rule.

Figure 2: Four different files with equiva-

lent content.

The core idea of Pollock is to systematically replicate real-world
dialects, isolating one pollution at a time. To do so, we synthetically
generate different polluted versions of a single input file 𝑓 , denoted

𝑓1, 𝑓2, ...𝑓𝑛 , each serialized with a different dialect of the standard
grammar 𝐺 . We ground the design of pollutions on a survey of
3 712 publicly available real-world files. With the results of the
survey, we sample the space of possible pollutions and design a
representative input file 𝑓 to be polluted. We deliberately isolate
pollutions to precisely benchmark their effect on data loading. We
acknowledge that in practice, real-world files may deviate from the
standard csv grammar with several pollutions interacting at once.
Moreover, we also observed loading issues in files serialized with
the standard RFC4180 grammar due to system-specific assumptions
(e.g., a maximum length for cell values). To gain insights on loading
real-world files, in Section 4 we also benchmark different systems
with a random sample of the survey files, guaranteed to contain all
pollutions at least once.

3.1 Survey setup

We aim to benchmark csv data loading, therefore the Pollock refer-
ence grammar𝐺 is the standard RFC4180 grammar for csv files [29].
Figure 3 presents a formulation of this grammar according to our
framework. Cardinalities should be treated as constants for a given
file: for example, rules F3 and F4 specify that the header and record
rows all have the same number N of cells.

We surveyed a sample of 3 712 real-world files marked as csv:
2 274 csv files randomly sampled from the Mendeley Data por-
tal [22] and 1 438 randomly sampled files from the open data portal
of the United Kingdom government [8]. The first is a public repos-
itory of scientific projects, where researchers can share research
artifacts, such as code, data, and experimental results. We crawled
all 2 214 projects that, at the time of our survey, contained at least
one file whose MIME type was łtext/*ž. Out of more than 34 000
files contained in these projects, we retained all 2 274 files with a
ł.csvž extension. The files selected from the UK government open
data have been crawled from all datasets stored in the portal at the
time of the experiments, retrieving a total of 17 851 files marked
with the łtext/csvž MIME type, out of which we randomly sampled
1 438 files. For all 3 712 survey files, we manually annotated whether
their grammars follow the RFC standard and, if not, which rules
differ in their dialect. The collected files with their annotations can
be found online, together with all other benchmark artifacts4.

4https://github.com/HPI-Information-Systems/Pollock

Format rules: F0: file = table CRLF {0,1}
F1: table = (header CRLF) {0,1} data
F2: data = record (CRLF record ){0,∞}
F3: header = cell (COMMA cell){N,N}
F4: record = cell (COMMA cell){N,N}
F5: cell = QUOTE (escaped ){0,∞} QUOTE
F6: cell = text text{0,∞}
F7: escaped = COMMA|ESCAPE QUOTE|CRLF|text

Content rules: C0: text = 0x20 -21|0x23 -2B|0x2D -7E| 𝜖
Structural rules: S0: CRLF = 0x0D 0x0A

S1: COMMA = 0x2C
S2: QUOTE = 0x22
S3: ESCAPE = 0x22

Figure 3: RFC4180 standard grammar for csv files.

3.2 Input file design

To design the input file for our pollutions, we analyzed the 3 712
survey files regarding their general characteristics. Out of all files,
15 are empty, i.e., they have no content and a dimension of 0 bytes:
in the following analysis, we exclude these files. The remaining
files contain a total of 46 474 823 rows and 296 602 columns. The
minimum number of rows per file is 1, with the maximum being
9 505 531 rows. The distribution of rows per file is highly skewed,
with an average of 11 981.14 rows per file but a mode of 2 and a
median of 84. Regarding columns, the minimum number of columns
is also 1, with the maximum being 34 804. As for columns, the
average is 76.46 columns per file, but the mode and median are both
at 9 columns per file. To gain further insights into the data types of
the columns, we automatically detected a data type for each one.
We use the regular expression-based type detection proposed in
the CleverCSV project [35], which classifies cells into one of twelve
data types. To classify columns, we detect the type of each of the
column cells and record the most frequently occurring type for each
column. We further divide the string column type into three types:
łshort stringž if all values in a column are under 100 characters,
łlong stringž if any of the cells is longer than 100 characters, and
łfixed lengthž if all values in a column have the same number of
characters, e.g., code identifiers. Table 2 reports the statistics for
each of the column data types. The table reports the number of
columns for which CleverCSV was unable to detect a data type,
roughly 2% of the total. We note the high number of empty columns
in the surveyed files: overall, a total of 1 244 files contain at least
one empty column. However, the high number of empty columns
is caused by a tiny fraction of files that have an unusually large
amount of trailing empty columns. For example, one of the files
contains 19 non-empty columns, and 16 383 empty columns after
the last non-empty one. We note that 119 044 columns, 97.58% of all
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Table 2: Column data types in survey files.

Data type # col. % total Data type # col. % total

Number (digits) 129 531 43.672% Datetime 165 0.056%
Empty 121 992 41.130% Percentage 141 0.048%
String (long) 34 285 11.559% Number (float) 130 0.044%
String (fixed) 1 466 0.494% Email 103 0.035%
Date 730 0.246% Time 94 0.032%
String (short) 694 0.234% Unix path 4 0.001%
URL 261 0.088% Undetected 6 706 2.261%

empty columns, are trailing empty columns in a file. These trailing
empty columns affect 954 files (25.54% of the total files).

The survey files contain 111 340 columns (38.40% of the total)
with at least one quoted cell. We analyzed the distribution of quoted
cells inside these columns: in 37 833 columns, only less than 10%
of their cells are quoted, and 66 275 columns have more than 90%
of their cells quoted. This distribution is highly bimodal as the
combined two cases cover 93.50% of the total quoted columns, and
it reflects two different styles of handling quotation: in the former,
only cells that require quotation in a column are quoted (łminimalž
style); in the latter, all cells of a column are quoted regardless of need
(łholisticž style). Considering the results of our survey, we design
the source file as a csv file named łsource.csvž, with 9 columns and
84 lines ś one header row and 83 data rows, for a total of 756 file
cells. The file is available in the project repository. The number of
rows and columns is chosen as the median of the survey files. The
rows in the file represent products sold from an online shop at a
given time. Overall, the nine columns represent the most frequent
data types we encountered in our survey:

• DATE expressed as DD/MM/YYYY, with the column containing
unambiguous values wrt. day and month (e.g., 28/01/2018).

• TIME represents a time of the day. The format used is HH:MM
and the values increase the time from 00:00 in steps of 15 minutes.

• PRODUCTID contains a fixed-length alphanumeric code.
• Qty is a non-negative integer number.
• Price contains a currency value, expressed with the US dollar

sign and a positive floating-point number with a full stop as a
decimal delimiter and two significant digits.

• ProductType contains a short string (under 100 characters) in
natural language. This column contains quoted cells and escaped
characters and is quoted łminimalž style.

• ProductDescription contains a long string (above 100 charac-
ters) with a natural language description of the products. This
column also contains quoted cells and escaped characters and is
quoted łholisticž style.

• URL contains a sample URL and is quoted łholisticž style.
• Comments is a trailing empty column, simulating optional in-

formation regarding a given product.

Although the results of Table 2 show that numeric columns in
the form of digits are more frequent than other data types and that
many files contain numerous trailing empty columns, we design
our file to contain one numeric column and one trailing empty
column - in an effort of sampling a broader spectrum of data types.
We also note that, while we run our experiments of Section 4 with

Table 3: Overview of Pollock pollutions with respect to the

RFC4180 standard grammar.

Grammar rule # Generated polluted files

F0: file= payload CRLF {0,1} 3
F1: table = header{0,1} data 7
F2: data = record (CRLF record){0,∞} 2
F3: header = cell (COMMA cell){N,N} CRLF 17
F4: record = cell (COMMA cell){N,N} 1 411
F5: cell = DQUOTE (quoted){0,∞} DQUOTE 756
S0: CRLF = 0x2C 0x0A 2
S1: COMMA = 0x2C 88
S2: DQUOTE = 0x22 1
S3: ESCAPE = 0x22 2

this input file, the Pollock pollutions can be applied to any input
file that follows the standard csv format.

3.3 Pollution design

Not all files of our survey can be parsed correctly using the standard
csv grammar. Here we report, for each format and structural rule of
the RFC grammar (Cf. Figure 1), all different variations of the rules
required to parse the real-world files of the survey. For the scope of
our benchmark, we include a single pollution type to cover each of
these variations individually, even if the dialect of a single survey
file might have several. A single pollution may have different pos-
sible parameters wrt. a file, e.g., a single-row pollution may apply
to any row of a file. To generate polluted files, we first identify and
isolate all pollution types affecting real-world files, and then we
generate a benchmark file for each possible parameter, e.g., each
row, column, or cell. In sum, our benchmark includes 2 290 polluted
files. For every pollution type found in our survey, we report how
many real-world files were affected and how (many) benchmark
files (łPollock filesž) represent this pollution. The list of pollution
types and the number of benchmark files are summarized in Table 3.
While theoretically possible, we acknowledge that our framework
does not attempt to generate files with multiple pollutions. First,
applying several pollutions on the same file requires a notion of de-
pendency to avoid interactions where different pollutions cancel (or
alter) each other’s effect. Additionally, from a practical perspective,
it would be time-consuming to run the benchmark as the number
of files would increase exponentially. Studying the extension of
our framework to create more complex pollutions is an interesting
research problem discussed in Section 6.

3.3.1 F0: file format. The rule 𝐹0 of the grammar specifies that a
file is composed of a table with an optional newline sequence crlf.
In our survey, we encountered:

• 15 empty files, with no table
• 184 files with no trailing newline
• 3 508 files with one trailing newline
• 5 files with more than one trailing newline. All these files

end with two newlines.

In the following analysis, we exclude the 15 empty files but retain
one empty file among the benchmark files.
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Pollock files: 1 empty file; 1 file without a trailing crlf; 1 file with
two trailing crlf.

3.3.2 F1: table format. A table of a standard csv file is composed
of a single optional header line and data. Our survey found:

• 2 751 files with one header line
• 470 files with no header
• 476 files with multiple header lines

Of the files with multiple header lines, 94 contain multirow table
headers spanning two or three lines. The other 282 files contain
multiple łpreamblež lines: rows with comments or metadata sepa-
rated from the true table header with at least one empty line, i.e., a
line with only separators and no content. Finally, 188 files contain
multiple tables. In these files, there are two (or more) sections with
header and data that mark different sections of the file content, at
times with preamble lines or multiple header lines.
Pollock files: 1 file without a header; 2 files with multiple header
lines (2 and 3 lines); 1 file with a preamble line; 3 files with two
tables: one where both have the same number of columns, one
where the second has more columns than the first, and one where
the second has fewer columns than the first.

3.3.3 F2: data format. According to rule 𝐹2, csv files contain data
arranged in rows, each row containing a record. In our survey, we
encountered:

• 3 files with no records but only a header row
• 4 files with only a single record
• 3 690 files with multiple records

Pollock files: 1 file with only the header row; 1 file with a header
and a single data row.

3.3.4 F3, F4: header and record format. The RFC4180 grammar
requires that header and record rows have the same number of cells
(cf. rules 𝐹3 and 𝐹4 in Figure 1). We did not encounter files where
the header does not terminate with a newline sequence. Regarding
the number of cells, in our datasets we encountered

• 2 657 files with a consistent number of cells
• 1 040 files with an inconsistent number of cells

The number of cells can be inconsistent for different reasons: 221
files have preamble header lines with a different number of sepa-
rators, some files have multiple tables in them (see above), with
different column counts, others have data records with schema drift,
where missing or extra cells are present in a subset of the records.
Pollock files: 17 files with an inconsistent header: one with a
missing column separator for each of the 8 header separators, 9
with an extra separator before each column; 1 411 files with an
inconsistent row: 664 with a missing column separator for each
of the 8 column separators in the 83 data rows, 747 with an extra
column separator before each of the 9 columns in all data rows.

3.3.5 F5: Cell format. A cell inside a row can contain any sequence
of characters: however, if this sequence contains any of the tokens
of the rules 𝑆0, 𝑆1, 𝑆2 of Figure 3, the cell has to be enclosed in quo-
tation characters (cf. Rule 𝐹6). The łreservedž tokens correspond to
the structural characters required to separate rows (crlf), delimit
columns inside rows (comma), and the quotation character itself
(qote). The quotation character must be escaped with an extra

quotation character to disambiguate it from the end of the quoted
cell. We encountered seven files with an incorrectly quoted cell
where a quotation mark was not escaped. We note that other pollu-
tions related to quoting and escaping are harder to identify under
this scope without explicit domain knowledge, but they are possible
to identify with respect to other format rules. For example, a cell
containing a newline or extra separator character without a quote
would lead to a record having a different number of columns, a
problem we identified in the previous analysis of files under rule 𝐹4.
Pollock files: 756 files with incorrectly quoted cells, adding one
unescaped quotation mark in each of the file cells.

3.3.6 S0: newline sequence. The RFC4180 defines the newline se-
quence to be the combination of the carriage return (cr) and line
feed (lf) characters. In our survey, we encountered:

• 1 999 files with the sequence of both cr and lf

• 1 691 files with the only lf character
• 7 files with only the cr character

Pollock files: 2 files with non-standard newline sequences in every
row, one using cr-only and one using lf-only.

3.3.7 S1: cell delimiter. The standard character to delimit cells of a
record is comma (cf. 𝑆1 in Figure 1). Nonetheless, it is common for
csv files to have a different delimiter, e.g., due to different locale
specifications for floating-point numbers. In the survey dataset:

• 2 754 files use a comma delimiter.
• 834 files use a semicolon delimiter.
• 101 files use a comma plus whitespace or tab character as

the delimiter.
• 8 files use a tab or a sequence of white spaces as delimiters.

Among the files using comma as a delimiter, 12 files have some
of their rows delimited with sequences of white spaces. These
inconsistent rows typically contain metadata regarding the table
contained in the file, such as preamble or footnote lines.
Pollock files: 4 files with non-standard delimiters in every row,
one using semicolon, one using tab, one using whitespace, one
using comma+whitespace; 84 files with an inconsistent delimiter
in a single row, one using whitespace for each file row.

3.3.8 S2: quotation character. The second structural token specified
by the RFC4180 grammar is the quotation characterqote, defined
to be the double quotation character (Cf. 𝑆2 in Figure 1). In our
survey, we identified only two different characters used for this
marker:

• 1 596 files do not have any quoted cell.
• 2 090 files use the double quote character.
• 11 files use the apostrophe character.

We note that in the survey files using a different quotation character,
no quote is found inside a cell and requires escaping. However, a
different quotation character should also be accompanied by a
different escaping sequenceÐfollowing the RFC rules, a doubling
of the quotation character.
Pollock files: 1 file with non-standard quotation character in every
row (using apostrophe, also escaping any apostrophe in the cells
with an extra apostrophe).
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3.3.9 S3: escape character. The last structural token in the csv

grammar is escape, the character used to escape a quotation char-
acter when contained in the value of a quoted cell. The RFC standard
defines it to be the same as the qote character (cf. 𝑆3 in Figure 1).
This sequence occurs rarely and often leads to errors or incon-
sistencies if parsers or files do not adhere to the standard. In our
experiments, only 2 systems out of 16 can correctly load the whole
content of files with a polluted escape quote, with the others either
dropping the content of the cells following the escape character or
of the whole row altogether.

Of the 2101 files with quoted cells,

• 1 849 files do not contain cells with escaped values.
• 250 files contain cells with values escaped according to the

RFC standard.
• 2 files contain cells without any escape sequence.

Even if not observed in our survey, we also note that a common
non-standard escaping strategy is to preclude double quotes inside
a cell with a backslash symbol (Ux5C).
Pollock files: 1 file with a non-standard escape character in every
cell (the backslash symbol); 1 file where quotations are not escaped.

3.4 Metrics design

Formally, given an input file 𝑓 that encodes a content𝐶 with a stan-

dard grammar𝐺 , a single pollution obtains a different file 𝑓 = 𝐺 (𝐶),
encoding the same content with a formally equivalent grammar.
Once we obtain a polluted file, we aim at benchmarking how a
given system under test (SUT) parses and loads it in memory.

Any SUT parses the content of its input files with a given gram-
mar 𝐺𝑆𝑈𝑇 which is generally unknown to the end-users. Also,
every system has different in-memory representations of a content
𝐶𝑆𝑈𝑇 = 𝐺−1

𝑆𝑈𝑇
(𝑓 ). However, all tested systems that can load csv

input files are also capable of exporting content in an output file en-
coded with the standard RFC4180 grammar 𝑓𝑜 = 𝐺𝑅𝐹𝐶 (𝐺

−1
𝑆𝑈𝑇

(𝑓𝑖 )).
Although pollutions are not allowed to change content produc-

tion rules, we note that some format pollutions effectively create
polluted versions of the source file with different content. This be-
havior is possible with pollutions that edit format rules by deleting
content, e.g., to simulate a file with no header row; or by adding
content in the input file, e.g., to simulate multiple tables in files. It
would not be fair to expect a system to export content not present
in the input file due to deletions from pollutions. Similarly, a correct
loading should also include any extra input data not in the original
source file but introduced by pollutions.

To address this, in measuring systems’ performances we cannot
use the content of the original source file. However, the polluted

content 𝐶 can be parsed from the polluted file 𝑓 using the pol-
luted grammar𝐺 , which is known by design at benchmarking time.
Therefore, we compare if the content parsed with the RFC grammar
from the output file of a SUT,𝐶𝑜 = 𝐺−

1𝑅𝐹𝐶 (𝑓𝑜 ), is equivalent to the

polluted content parsed from the input polluted file 𝐶 = 𝐺−1 (𝑓 ).
Figure 4 summarizes our approach to benchmark a system’s

loading of a polluted file in a general, SUT-independent fashion. We

load a polluted file 𝑓 in a SUT, which parses it with an unknown
grammar 𝐺𝑆𝑈𝑇 . We then export it back using the standard RFC
grammar and compare the contents parsed from the input files

using the polluted grammar 𝐶 = 𝐺−1 (𝑓 ), and the content parsed

Figure 4: Summary of the benchmarking process.

from the system output file 𝐶𝑜 = 𝐺−1
𝑅𝐹𝐶

(𝐺𝑅𝐹𝐶 (𝐺
−1
𝑆𝑈𝑇

(𝐺 (𝐶))). To
compare contents independently of a specific internal system’s
representation, we normalize the output of individual cells to com-
pare their values. The normalization parses dates and numbers and
transforms all string characters in lowercase. For example, two cells
containing the same date in two different formats are considered
equivalent. To measure the equivalence of two parsed contents, we
refer to the hierarchy induced by the format rules of the grammars
(Cf. Section 2.3). Following the RFC standard grammar (Cf. Figure 3),
we identify four content groups: a file is composed of (1) a table; a
table is composed of (2) a header and (3) a set of records; records are
composed of (4) cells. For the first level, we use a binary measure:
success (S). If a file is loaded correctly without any application error,
we assign a value of 1 to this score, otherwise a 0. However, even
if a system successfully loads a polluted file, the resulting content
may still differ from the expected content. A system may either
miss some content while loading a file, e.g., excluding a polluted
row, or include łspuriousž content, e.g., by padding a row with
unwanted cells. Therefore we also use precision to evaluate the
loading łcompletenessž, and recall to evaluate the loading łconcise-
nessž, combining them both into the F1 score. Given an input set of
elements 𝐼 and an output set of elements𝑂 , precision (P), recall (R),
and F1 are defined as usual:

𝑃 =
| (𝐼 ∩ 𝑂) |

|𝐼 |
𝑅 =

| (𝐼 ∩ 𝑂) |

|𝑂 |
𝐹1 = 2 ·

𝑃 · 𝑅

𝑃 + 𝑅

To obtain a well-rounded score, we compute these metrics at the
header, record, and cell level:

(1) Header precision (𝐻𝑃 ), recall (𝐻𝑅), F1 (𝐻𝐹1 ): These metrics are
computed on header cells, and are necessary because systems
often have separate assumptions regarding header and data
rows. They measure the effect of pollutions on file headers, e.g.,
if an extra header column is added because a single data row
contains an extra cell.

(2) Record precision (𝑅𝑃 ), recall (𝑅𝑅), F1 (𝑅𝐹1 ): These metrics are
computed for each data record, defined as the string hash of
its cell values. They capture whether individual records are
loaded coherently, or their content is split, merged, or rear-
ranged within different records, e.g. if due to a missing escape
character two data rows get merged into one.

(3) Cell precision (𝐶𝑃 ), recall (𝐶𝑅), F1 (𝐶𝐹1 ): These metrics are com-
puted on individual data cells and are the most fine-grained.
They identify data errors regardless of their position in the
output file, e.g., if a value gets lost due to a missing delimiter.
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The range of all scores is [0, 1], with 1 representing a perfect
data loading. In case of a data loading with a success of 0, meaning
the system aborted loading due to some error, we assign a value of
0 to all remaining scores.

The nature of our benchmark is to isolate, whenever possible,
different pollutions and test systems on loading files with each
of them separately. As such, every system can be benchmarked
with respect to a single pollution, and a single dimension. However,
we also aim at providing a unified Pollock score for every SUT that
measures its data loading performance across all different pollutions.
To do so, we average all scores obtained across different polluted
files, plus the scores obtained on the source file, and then sum
them to obtain a single number per score. To provide an additional
and more realistic score, we weigh the average by the occurrence
of the pollution in the real world, as identified by the survey of
Section 3.1. The weights are normalized, to sum up to 1. In the case
of pollutions that replicate a single pollution systematically (e.g.,
for every row, cell or column), we scale the weights by the number
of repetitions. For example, considering that in our survey 12 files
had inconsistent row delimiters, and we repeat the pollution for
each of the 84 rows of the source file, the metrics of each polluted
file will weight 12/84 in the final average. Considering that every
score has a range of [0, 1] and that there are a total of 10 different
scores for each polluted file, the maximum Pollock score obtainable
by a system under test is 10.

4 BENCHMARKING RESULTS

To demonstrate the usage and usefulness of our benchmark, we
experimented by applying it to a set of diverse real-world systems.
By evaluating their data loading capabilities, we highlight their
shortcomings and simultaneously assess the usefulness of Pollock.
As listed in Table 4, we selected 16 systems of four tool-categories to
highlight our benchmark’s versatile nature and to analyze possible
differences in the handling of file pollutions at different stages of a
data preparation pipeline. We experimented with:

• Eight programming frameworks designed for csv parsing
in programming languages

• Four relational database management systems
• Three systems designed for spreadsheet data analysis
• One business intelligence/data visualization tool

We chose programming frameworks for three popular program-
ming languages: Python, R, and Java. For all Python modules, we
used Python version 3.10.5. We benchmark the native łcsvž mod-
ule [36], referred to as PyCsv, which is used to read and write csv
files; the Pandas module [28], designed for data analysis and ma-
nipulation; and CleverCSV [35], a module developed to specifically
address loading łmessyž csv files. For all R modules, we used R
version 4.2.1. We benchmark the native łread csvž function [27],
referred to as RCsv; and the specialized Hypoparsr algorithm [9],
introduced in a research paper to perform ładvancedž csv parsing.
For Java modules, we used OpenJDK version 11. We benchmark
the parsing libraries łApache CSV Commonsž, referred to as CSV-
Commons [10], OpenCSV [32], and Univocity [2]. For those that
allowed it, we resorted to automated parameter detection. In other
cases, we manually specified suitable parsing parameters, if it was

Table 4: Configurations of the benchmarked systems. łAž

stands for automatic detection, łMž for manual specification,

a missing entry marks the lack of a configurable option.
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CleverCSV 0.7.4 [35] A A A A
CSVCommons 1.9.0 M M M M
Hypoparsr 0.1.0 [9] A A A A
OpenCSV 5.6 M M M M
Pandas 1.4.3 M A A M A M M
PyCsv 3.10.5 A A A
RCsv 4.2.1 M M A A A A
Univocity 2.9.1 A A A A A

MariaDB 10.9.3 M M M M M M
MySQL 8.0.31 M M M M M M
PostgreSQL 15.0 M M M M
SQLite 3.39.0 M M M

Calc 7.3.7 M M
SpreadDesktop M M M M
SpreadWeb M

DataViz M M

possible to do so. For database systems, we benchmarked four open-
source RDBMS: MySQL [7], MariaDB [11], PostgreSQL [15], and
SQLite [18]. Due to the nature of relational database systems, load-
ing a file requires creating a table with the correct schema first. To
do so, we specify all data types of such a table to be of TEXT or
VARCHAR type, as our benchmark is concerned with file struc-
ture and not with semantic type detection of files. In Section 5, we
note how benchmarking type detection relates to data loading. For
spreadsheet systems, we benchmarked LibreOffice Calc [12], an
open-source desktop system, referred to as Calc, a commercial
desktop system referred to as SpreadDesktop5, and an online tool
referred to as SpreadWeb 5. Lastly, we benchmarked a commercial
data visualization tool, referred to as DataViz 5. We note that we
ran łbest effortž experiments, using every applicable configuration
option offered by each tool. Table 4 synthetically reports the loading
configurations used for each tool. In the project repository6, we
share the results obtained by all systems and the scripts used to
benchmark all non-commercial systems.

In the remainder of this section, we present an overview of the
most interesting and surprising findings, based on the results of our
benchmark, grouped by the rules of the grammar affected by the
different pollutions we presented in Section 3. For space reasons,
we report only F1 scores rather than precision and recall scores.
For every subsection, we include takeaways for end-users, high-
lighting which problems require adequate preparation to correctly
load the benchmark files, and for system developers, to identify
opportunities for improvement.

5Anonymized due to licenses that forbid disclosing benchmarking results.
6https://github.com/HPI-Information-Systems/Pollock
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Table 5: Systems with imperfect loading of the source file

(RFC4180 compliant): success and F1-scores.

𝑆 𝐻𝐹 1 𝑅𝐹 1 𝐶𝐹 1 Loading time (ms)

Hypoparsr 0.1.0 [9] 1.00 0.00 0.11 0.63 3 277.11 ± 94.66
OpenCSV 5.6 1.00 1.00 0.98 0.99 12.72 ± 0.48
PyCsv 3.10.5 1.00 1.00 0.92 0.99 14.29 ± 3.08
DataViz 1.00 0.77 0.00 0.77 18 569.75 ± 592.11

4.1 Source file

Before analyzing the effect of pollutions on data loading, we as-
sessed how systems handle the original source file. All systems
are successful in opening this RFC4180 compliant file, but unfortu-
nately not all of them load header, rows, and cells correctly. The
results of these systems can be seen in Table 5. Among parsers,
Hypoparsr is the only one unable to detect the header correctly,
parsing it as a data row and appending a new header to the file,
and also unable to detect the structure of rows containing cells
with escaped commas and double quotes. PyCsv and OpenCSV

both coincidentally fail in the same row, which contains the special
symbol ł\ž and a delimiter: PyCsv considers the backslash symbol
as an escape for the character that follows and ignores it in the re-
sulting cell value; OpenCSV splits the cell into two at the delimiter
character, even if the cell itself was properly enclosed in quotation
marks. DataViz loads all records erroneously because all values of
the TIME column, which represents an absolute time in the HH:MM
format, are transformed into the values ł30/12/1899 HH:MM:00ž
(HH:MM standing for the original values in the input file).
User takeaways: When loading otherwise standard files with
a programming framework, be aware of special symbols usually
reserved in the programming language, such as ł\ž: the framework
may require extra escaping on top of what is required for the RFC
standard. When loading files in more advanced systems, such as
those developed for business intelligence, prepare the file such that
its data types are compatible with the system.
Developer takeaways: When parsing content of a csv file, the
RFC4180 standard rules should take precedence over those of the
language: the value of cells should be interpreted first as a byte
string, and then parsed and/or escaped to a more refined data type.
Data type parsing should inform users of its łconfidencež, perhaps
defaulting to the raw cell value when confidence is low.

4.2 File and table pollution

Our benchmark contains 12 files that are polluted at the file and
table level, i.e., serializedwith non-standard file, table, and data rules
(Cf. Rules F0, F1, F2 in Table 3). The left columns of Table 6 report
the results on these files: some systems fail to load them altogether.
Notably, the Python parsers PyCsv and Pandas along with RCsv

and SpreadDesktop and DataViz abort while loading an empty
file, while all other systems correctly load it. Interestingly, when the
input file shows two trailing newline sequences, PostgreSQL halts
due to the presence of empty values in the łtimež column ś although
this error was not thrown while loading the standard source file.
After loading, no system can correctly recognize multiple header
rows or preamble rows, even those that claim to perform automatic
header detection. When no header is present, some systems load

data rows with missing cells: e.g., SpreadDesktop, Calc, RCsv,
and DataViz drop the empty column. When multiple tables are
present, all systems that successfully load them either remove the
extra column from the second table, if the first contains more; or
add an extra column to the first table if the second contains more.
User takeaways: All systems show high sensitivity to proper łtab-
ularž formatting of files. No matter the system of choice, and its
promised automation level, perform the following preparations:
condense header lines into one; remove preamble lines; split multi-
ple tables into separate files.
Developer takeaways: Many systems still lack the support for
non-standard headers, preamble lines, and multiple tables. For man-
ual loading, we advise implementing interfaces to ignore or specify
which rows are to be considered the header, and which ones are to
be considered the data rows. The same interface can also be used
to load a multitable file without the need to split it into separate
files. For automated loading, the most common strategy is to give
a higher weight to the first few rows, which then influences how
the remainder of the file is parsed. Apart from integrating existing
research algorithms to detect row classes, multiple tables, and head-
ers [6, 20, 37], we recommend that developers update the existing
algorithms with contextual information.

4.3 Structural characters and inconsistent rows

The remaining files of the benchmark are polluted with structural
changes and inconsistent rows. These include file-wise pollutions,
and row-wise pollutions. The former affects all rows, i.e., by chang-
ing one of the structural characters across the entire file (Cf. Rules
F0, F1, F2 in Table 3). The latter affect individual rows, making them
inconsistent with the rest of the file, either by having a different
number of delimiters, or by having a different structural character.
We apply these pollutions to every row/cell combination in the
file. This repetition is necessary for fine-grained evaluation: in fact,
while e.g., Hypoparsr, incorrectly loads all cells and rows after a
misquoted value, other systems, e.g., OpenCSV or SpreadWeb, are
more robust and only err on the affected cell/row.

The system with the worst performance is PostgreSQL: it is
only successful in loading files where the header has an inconsistent
number of delimiters, but if any of the data rows is inconsistent
either with an extra or a missing delimiter, it halts the data loading
operation. The other database systems are more robust to rows
with inconsistent delimiters, loading the record but shifting all cells
and/or trimming extra ones. Surprisingly, CSVCommons aborts the
loading, but only for the file where the separator is missing from the
last header column. For most systems, the headers are not affected
by extra delimiters in a data row, except for DataViz, which always
includes an extra header cell even if a single data row has an extra
separator ś leading to a 𝐻𝐹1 score of 0.57. Observing the results
of Table 6, this set of files proves to be the least successful across
many csv parsing systems for different reasons: CSVCommons and
OpenCSV fail to load any file with an extra quotation mark in one of
the rows. As for RCsv, its behavior changes depending on the row
affected by the quotationmark: if it is in one of the cells of the header
row, it appends all the first data row to the cell but parses the other
cells correctly and loads the file. If the extra quotation mark is found
in one of the cells of the first four data rows, it halts loading with
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Table 6: Pollock results (rounding down) of the 16 systems under test, grouped by pollution type.

File and table Inconsistent number Structural character Pollock score Average
pollution (12 files) of delimiters (1 428 files) change (850 files) (2 289 +1) files file-wise time

𝑆 𝐻𝐹 1 𝑅𝐹 1 𝐶𝐹 1 𝑆 𝐻𝐹 1 𝑅𝐹 1 𝐶𝐹 1 𝑆 𝐻𝐹 1 𝑅𝐹 1 𝐶𝐹 1 Simple Weighted (milliseconds)

CleverCSV 0.7.4 [35] 1.00 0.75 0.91 0.91 1.00 0.99 1.00 0.99 1.00 0.93 0.57 0.74 9.19 9.45 69.96 ± 0.13
CSVCommons 1.9.0 0.75 0.50 0.74 0.74 1.00 0.99 1.00 0.99 0.10 0.10 0.10 0.10 6.64 9.25 23.96 ± 7.64
Hypoparsr 0.1.0 [9] 1.00 0.35 0.30 0.53 1.00 0.07 0.07 0.44 1.00 0.26 0.16 0.69 3.88 4.37 6 040.15 ± 8.22
OpenCSV 5.6 1.00 0.75 0.90 0.91 1.00 0.99 0.98 0.99 0.10 0.10 0.10 0.10 6.63 7.74 18.50 ± 2.37
Pandas 1.4.3 0.91 0.67 0.85 0.85 1.00 0.99 0.98 0.99 0.99 0.99 0.97 0.98 9.89 9.43 1.39 ± 0.17
PyCsv 3.10.5 0.91 0.66 0.78 0.82 1.00 0.99 0.92 0.99 1.00 0.99 0.92 0.98 9.72 9.43 13.15 ± 0.13
RCsv 4.2.1 0.91 0.58 0.44 0.79 1.00 0.99 0.83 0.98 0.95 0.94 0.49 0.61 7.79 6.40 8.29 ± 0.61
Univocity 2.9.1 1.00 0.75 0.91 0.91 1.00 0.99 1.00 0.99 0.99 0.99 0.98 0.99 9.93 7.93 3.16 ± 0.19

MariaDB 10.9.3 1.00 0.75 0.98 0.90 1.00 1.00 0.98 0.88 1.00 0.99 0.97 0.88 9.58 7.48 20.96 ± 0.05
MySQL 8.0.31 1.00 0.75 0.98 0.90 1.00 1.00 0.98 0.88 1.00 0.99 0.97 0.88 9.58 7.48 63.96 ± 1.15
PostgreSQL 15.0 0.50 0.33 0.49 0.37 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.13 6.96 13.59 ± 0.28
SQLite 3.39.0 1.00 0.66 0.99 0.91 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.99 9.95 9.37 353.81 ± 22.54

Calc 7.3.7 1.00 0.74 0.91 0.90 1.00 0.99 1.00 0.99 1.00 0.98 0.98 0.98 9.92 7.83 2 646.06 ± 14.28
SpreadDesktop 0.91 0.74 0.83 0.74 1.00 0.99 1.00 0.99 0.99 0.98 0.98 0.98 9.92 9.59 28 776.18 ± 14.28
SpreadWeb 1.00 0.74 0.91 0.86 1.00 0.99 1.00 0.94 0.99 0.97 0.97 0.91 9.72 9.43 2 949.76 ± 16.29

DataViz 1.00 0.46 0.16 0.64 1.00 0.73 0.00 0.73 1.00 0.57 0.00 0.48 5.00 5.15 24 411.52 ± 292.67

an error reporting an inconsistent number of delimiters. Otherwise,
loading is carried out successfully, but several rows are merged into
one, hence the low 𝐶𝐹1 score. Pandas is unsuccessful with a single
file: the one where an extra delimiter is present in the last column
of the last row. Curiously, SpreadWeb’s only unsuccessful loading
is with the file containing an extra quote in row 35. Univocity and
SQLite are unable to load a file whose rows terminate with the
only carriage return character ś a pollution that does not affect any
other system’s loading capabilities. However, even if their loading
does not abort, not all systems can manage inconsistent delimiters
and extra quotation characters ś apart from the aforementioned
cell parsing issues of RCsv, OpenCSV, and Hypoparsr also have a
low 𝐶𝐹1. These systems all merge the content of subsequent cells,
often from multiple rows, if an inconsistent quote or delimiter is
found in a given cell. We note that the more robust systems appear
to be PyCsv, Pandas, SQLite, and the spreadsheet systems Calc,
SpreadDesktop, and SpreadWeb. As observable by the high 𝐶𝐹1

and 𝑅𝐹1 scores, the majority of parsing errors are limited within
the rows affected by the pollution, while the remaining rows are
parsed correctly.
User takeaways:Most systems demonstrate resilience to inconsis-
tent rows: even if the affected rows may have column shifts or lose
values, the remaining data rows load correctly. The drawback of
such behavior is the lack of feedback from the system’s perspec-
tive, which may lead to undesirable downstream results. In some
cases, these errors can be detected due to unexpected data types
(e.g., strings in place of numeric values), but in others they may go
unrecognized. We recommend that users pre-emptively check their
files for consistency, or set the systems to strict levels of logging to
catch these errors as early as possible.
Developer takeaways:We encourage systems (especially themore
automated ones) to warn users when loading inconsistent files. We
also call for a more advanced parsing to automatically detect łsim-
plež errors, such as missing delimiters or quotation characters, and

fix them ś perhaps by taking into account the expected structure/-
data type of a cell given its row and column context [17].

4.4 Overall Pollock score

The bolded columns of Table 6 report the Pollock score of the sys-
tems under test. We report two scores: one as a simple average,
and one weighted by the occurrence of pollutions in our real-world
survey ś therefore depicting a more realistic scenario, as explained
in Section 3.4. Different scoring schemes may serve different pur-
poses: although end-users may be interested in the weighted score,
to assess real-world performance, parser developers may want to
more easily identify łhardž cases, to correct critical bugs.

As a reminder, the score is obtained by summing up 10 different
numbers in the [0, 1] range. These numbers correspond to success
and precision, recall, and f1 scores at the header, record, and cell
levels. Therefore, the maximum score reachable by any system is
10. The last column of Table 6 reports the average file-wise loading-
time of the benchmark files. The measurements were obtained
by repeating our benchmark three times on a consumer machine
equipped with an Intel i7 CPU with 2.20GHz and 16GB of RAM.
We explicitly warn readers to not compare systems across different
categories: for example, the conditions under which an RDBMS
loads files into a table are much more restrictive and require more
specification parameters from end-users (e.g., defining the expected
table format), than, for example, automated frameworks.
User takeaways:Among specialized csv parsingmodules, the ones
with the highest scores, and the fastest are Pandas and Univocity.
We attribute this result to these systems’ development maturity:
having been in use for a long time and by a large community, they
include safeguards against many pollutions. Comparing different
languages, all Python frameworks have good results, while Java
frameworks have an overall worse loading performance.

Among databases, SQLite has the best benchmark score, but
also the highest average loading time. Interestingly, this system also
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shows the highest difference between the simple and the weighted
scoring schemes: for almost all pollutions with an inconsistent
row or cell, its loading failed altogether with a success of 0 (as
can be noted by the central columns of the table). Although these
pollutions constitute a large number of files, they are also infrequent,
which causes a higher weighted score.

Spreadsheet systems generally have good performance: in our
observation, their spreadsheet nature made them solid in loading
data from csv files. However, they are also amongst the ones with
the highest loading times: their user-interfaces make it more cum-
bersome to load large datasets composed of several files, due to
all the interactions needed to specify a correct loading. Finally,
business intelligence tools, such as DataViz, are tailored towards
cleaner, closer-to-standard data files. Its low score is influenced by
an excess of łintelligentž pre-processing that fails with data not
in line with the tool’s expectations. Therefore, before using such
tools we advise users to prepare their files, not only up to the csv
standard but also regarding their data types.
Developer takeaways: The lowest scores and the highest loading
times among programming frameworks are obtained by systems
whose file loading already proved unreliable even for the standard
source file itself, e.g. for Hypoparsr and OpenCSV. Within the
RDBMS category, the lowest scores are caused by highly restrictive
assumptions regarding file structures. For example, PostgreSQL’s
low success rate is due to halting loading even if a single record is
unrecognized by the system. We advise RDBMS developers to be
more flexible when loading csv files, and perhaps offer users the
option to skip polluted records rather than the whole file, as other
benchmarked systems do, e.g. Pandas.

Regarding user-oriented tools, such as spreadsheets and business
intelligence systems, one direction of improvement is the inclusion
of more sophisticated automated detection strategies. This would
improve usability as well as loading time for files, without the need
to manually specify parameters through user interfaces.

4.5 Real-world loading

To gain further insight into the loading of real-world files, we
tested the different systems with a sample of 100 survey files, which
were manually cleaned row by row to provide ground truth for
the measurements. We provide the sample and cleaned versions of
the files on the Pollock page7. The sample was chosen at random,
ensuring that all pollutions were represented in at least one of the
sampled files. The results of the experiment are reported in Table 7.

As can be seen from the generally lower scores obtained by all
systems, real-world files are more challenging to load for several
reasons. Considering the variety of errors, we refrain from pro-
viding an extensive rundown of all failures, but identify some of
the key reasons that lead to imperfect loading. Automatic detec-
tion of parameters does not work well in files affected by multiple
pollutions at once, such as Pandas delimiter detection failing to rec-
ognize a semicolon delimiter for files with inconsistent numbers of
delimiters in rows. In other cases, systems have restricted assump-
tions regarding otherwise standard csv files, such as PostgreSQL
failing to load files with duplicate or missing header names. Finally,
some systems fail to scale with file dimensions, for example Calc

7https://github.com/HPI-Information-Systems/Pollock

Table 7: Results on a sample of 100 files from our survey.

𝑆 𝐻𝐹 1 𝑅𝐹 1 𝐶𝐹 1 Po. Loading time (ms)

CleverCSV 0.7.4 [35] 1.00 0.70 0.96 0.95 8.89 840.55 ± 2.23
CSVCommons 1.9.0 0.46 0.26 0.43 0.42 3.85 297.81 ± 18.47
Hypoparsr 0.1.0 [9] 1.00 0.51 0.27 0.64 5.43 2 288.23 ± 15.67
OpenCSV 5.6 0.98 0.78 0.94 0.93 9.01 168.65 ± 5.92
Pandas 1.4.3 0.88 0.49 0.63 0.64 6.28 8.70 ± 0.26
PyCsv 3.10.5 0.98 0.67 0.88 0.87 8.33 176.82 ± 13.50
RCsv 4.2.1 0.97 0.24 0.52 0.58 5.05 25.14 ± 22.56
Univocity 2.9.1 0.95 0.4 0.61 0.63 5.92 60.38 ± 1.91

MariaDB 10.9.3 0.70 0.67 0.49 0.61 6.13 40.92 ± 9.96
MySQL 8.0.31 0.68 0.64 0.47 0.59 5.89 200.62 ± 17.90
PostgreSQL 15.0 0.54 0.51 0.53 0.53 5.30 12.00 ± 0.26
SQLite 3.39.0 1.00 0.65 0.73 0.90 7.96 342.02 ± 139.91

Calc 7.3.4 1.00 0.44 0.47 0.60 5.60 3 358.68 ± 460.75
SpreadDesktop 0.98 0.79 0.53 0.80 7.41 28 090.21 ± 51.80
SpreadWeb 0.98 0.68 0.60 0.81 7.31 4 846.62 ± 1265.19

DataViz 0.98 0.48 0.11 0.77 5.15 28 702.13 ± 294.54

failing to load more than 1m records in a file that contains more
than 1.1m records, orMariaDB andMySQL failing to load files if
the header name is above 64 characters.
User takeaways:When loading real-world files, several aspects
need to be taken into consideration aside from strict adherence to
the csv standard. Not every system is scalable for loading larger files
(over 1M records, or 100 columns): programming frameworks offer
the highest loading accuracy, whereas database systems are faster
but require łcleanerž inputs. One possible strategy is to łsanitizež
a polluted file by cleaning it through a programming framework
before feeding it into more complicated systems, e.g., database
systems or business intelligence tools.
Developer takeaways: Regarding automatic systems, we observed
that the detection of dialect parameters is often unreliable for files
with structural inconsistencies (varying numbers of row delimiters,
multiple tables, etc.). We recommend that automated approaches
take into account structural pollutions, either by addressing them
separately in a preprocessing step, or by filtering for łoutlierž rows
during their automatic detections. Additionally, we urge developers
to relax their assumptions regarding file structure and dimension:
as data becomes larger and more ubiquitous, it is not uncommon
to expect files with high record counts and column sizes.

5 RELATED WORK

In this work, we formalize a model to describe data serialization
grammars, we surveyed thousands of real-world csv files, and we
propose a benchmark to measure loading data from non-standard
csv files. We identify three corresponding categories of related
work: formal research to describe the csv grammar; research to
categorize and parse non-standard csv files; grammar-based fuzzing
and existing benchmarks for data preparation.

Research on csv standards and grammars: Although csv files
have been in use for decades, all efforts to regulate their format
have been reactive rather than proactive. The first and best-known
document defining a standard is the RFC4180 [29] of 2005. This
document already mentions the widespread use and lack of formal
specification for csv files and is presented as a consolidation of the
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most common csv features encountered in practice, rather than
an unambiguous standard. Ten years later, the W3C consortium
formalized a łnon-normativež document to establish a JSON model
for tabular data on the internet [34]. Their model extends RFC4180
with stricter specifications of tabular structures and, perhaps more
importantly, includes metadata to describe the structure and dialect
of the file content itself. Nevertheless, file distributors do not apply
the W3C recommendations and hardly ever distribute csv file meta-
data. Simultaneously, academia also started formal work on data
serialization grammars: Arenas et al. designed a language focused
on the metadata description of csv files [1], while Martens et al. pro-
posed SCULPT, a formal language to describe web tabular data [23].
The former is described as a language to navigate the content of
łcsv-likež files. Even though it is generally applicable to files with
different dialects of csv, it cannot be used to describe differences
in the structure of their grammars. Rather, given the knowledge
of a grammar, it provides a tool to reference and annotate content
within a file. The latter language is more similar to our framework,
and it inspired the definitions of content, structure, and format of a
grammar. SCULPT is described as a łschemaž language for tabular
data: a set of parsing expressions, tokens, and production rules.
Although similar to our framework, the focus of a SCULPT schema
is to annotate the content of a tabular file, rather than the grammar
used to produce it. In contrast, we propose a framework to annotate
grammars and their dialects, and not file contents. Therefore, our
framework is not tied to any specific grammar or file format, but
is applicable to any data serialization/parsing grammar. Moreover,
our framework is not only łdescriptivež, but it is also łgenerativež,
as the concept of file pollution can be applied to systematically
generate files expressed in different dialects.

Research on csv parsing: The csv file format is a known source of
data loading problems. For example, Mitlöhner et al. encountered
such problems in their survey of publicly available csv files [24],
where, out of 141 738 parsed csv files, 36 912 (26.04%) were parsed
with errors. They report different sources of errors, such as non-
standard dialects, incorrect file extensions, and multiple tables
within a file. Unlike our survey in Section 3, they do not follow an
explicit formal method to categorize file issues.

Over the years, research has tried to address the unique chal-
lenges of csv files: Döhmen et al. proposed the robust parser Hy-
poparsr [9]; van den Burg et al. focused on dialect detection for
łmessyž csv files withCleverCSV [35]; other projects tried to tackle
more complex issues, such as table recognition and cell classifica-
tion in csv files [6, 20, 37]. We evaluated the first two systems,
proposed as csv loading modules, with our benchmark.

Data preparation benchmarks: Grammar-based fuzzing comprises
a set of techniques to generate random inputs that are likely to
induce bugs in software, using grammars to ensure the validity
of the inputs [19, 33]. Albeit these techniques have been tradi-
tionally used in security testing, there has been recent interest in
applying fuzzing to benchmark the performance of data analytics
workloads [39]. The pollution framework of Pollock can be seen
as a particular instance of grammar-based fuzzing [38], specialized
for the task of benchmark data loading. The need for such a bench-
mark has been recently acknowledged by researchers in discussing
the state of real-world data preparation [21, 31]. In their survey,
Hameed and Naumann compiled a set of common data preparation

tasks and evaluated whether commercial tools for data preparation
offered the respective functionalities [16]. Although the focus of
their survey is on systems specifically designed for data preparation,
they identified how significant data preprocessing was required on
non-standard data files to enable loading data into said systems.
For some individual tasks occurring in a data-driven pipeline, re-
searchers have proposed specific benchmarks. Poess et al. designed
TPC-DI, a benchmark for data integration [26]. Its core includes
files in heterogeneous formats containing information to feed a
target decision support system. The benchmark includes plain-text
character delimited files in txt and csv format. Because its focus
is on system throughput and performance at scale rather than ro-
bustness, these files follow the RFC4180 standard, and therefore
TPC-DI is not fit to assess a system’s data loading capability in face
of pollution. Shah et al. focus on benchmarking the type-inference
task in AutoML platforms [30]. Their work provides a reference
labeled dataset of files usable for machine learning tasks, with a
variety of commonly used data types. The benchmark evaluates the
performance of an AutoML system by running the same machine
learning model twice and comparing the results: once loading data
with the correct data types (provided as ground-truth), and once
loading data with automatic type inference. The task covered by
that benchmark, aside from the specific focus on AutoML tools,
constitutes a semantic counterpart to the pollutions of Pollock, as
we do not measure whether data types are inferred correctly.

6 CONCLUSIONS

A complete and concise data loading stage is the prerequisite for
any further data operation and can substantially reduce the data
preparation burden of data scientists. We defined a framework to
formally distinguish the concepts of content, structure, format, and
grammar dialect and use it to systematically categorize issues in
real-world csv files. Second, we apply the notion of file pollution to
design Pollock, a benchmark for data loading. After benchmarking
16 real-world systems, our results showed that unsuccessful data
loading is often caused by a lack of flexibility in the systems’ con-
figurations. Currently, Pollock focuses on single-pollution files. As
our experiments in Section 4.5 show, systems struggle more with
multiple pollutions at once. Extending Pollock to pollute files with
multiple pollutions is an interesting research challenge: it would re-
quire notions of pollution dependency and a more complex strategy
to sample the search space of pollution combinations, which would
be exponentially large. Such an extension could open the door to
a łdynamic benchmarkž that can tailor specific data preparation
scenarios. With Pollock, we hope to stir research efforts in the data
preparation area toward a more principled direction. We advocate
that with the use of our benchmark, system designers have an ob-
jective metric to assess the data loading capabilities of their tools,
as well as a means to identify unexpected and surprising behaviors,
as we did in our experimental results.
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