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ABSTRACT
Hypothesis testing is a statistical method used to draw conclusions
about populations from sample data, typically represented in tables.
With the prevalence of graph representations in real-life applica-
tions, hypothesis testing on graphs is gaining importance. In this
work, we formalize node, edge, and path hypotheses on attributed
graphs. We develop a sampling-based hypothesis testing frame-
work, which can accommodate existing hypothesis-agnostic graph
sampling methods. To achieve accurate and time-e�cient sampling,
we then propose a Path-Hypothesis-Aware SamplEr, PHASE, an
<-dimensional randomwalk that accounts for the paths speci�ed in
the hypothesis. We further optimize its time e�ciency and propose
PHASEopt. Experiments on three real datasets demonstrate the abil-
ity of our framework to leverage common graph sampling methods
for hypothesis testing, and the superiority of hypothesis-aware
sampling methods in terms of accuracy and time e�ciency.
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1 INTRODUCTION
Hypothesis testing �nds widespread application in various domains
such as marketing, healthcare, and social science [23]. Hypotheses
are usually tested on representative samples since it is impractical,
or even impossible to extract data from entire populations due to
size, accessibility or cost. For instance, snowball sampling has been
proven e�ective in accessing a hidden population like drug abusers
through a chain-referral mechanism [14, 33]. In this paper, we study
hypothesis testing on graphs.
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Figure 1: DBLP network schema and paths

Graphs can represent real-world applications such as social, bibli-
ographic, and transportation networks where entities are nodes and
edges re�ect relationships between them. We focus on attributed
graphs that contain multiple types of nodes and edges, each labeled
with attributes that provide valuable information for graph ana-
lytics [8, 25]. In a bibliographic network like DBLP (see Figure 1a),
hypotheses expressed on nodes, edges, and paths unveil interest-
ing aspects of collaboration behavior and research trends based
on citation patterns. A node hypothesis examines attributes of a
single node type. For example, “the average citation of conference
papers is greater than average” concerns the citation attribute of the
conference paper nodes. Path hypotheses consider attributes along
a de�ned path, such as a path connecting authors from Microsoft
to their conference papers (see Figure 1b and 1c for the path and
an path instance, respectively). An example of path hypothesis is
“the minimum number of citations of conference papers written by
Microsoft researchers is greater than average”.
Objectives and Challenges. Given an attributed graph G, our
aim is to verify a hypothesis � and return a true or false result.
We aim to achieve two objectives: O1 - ensure hypothesis testing
is as accurate as possible; O2 - minimize execution time. To the
best of our knowledge, there is no existing literature addressing
hypotheses on attributed graphs. A straightforward approach is
to sample a subgraph S from G using hypothesis-agnostic sam-
pling methods [2, 21, 22]. Sampling is important when the full
graph is not accessible or when the hypothesis targets very speci�c
nodes, edges, or paths that are time-consuming to collect. However,
hypothesis-agnostic samplers struggle to achieve both objectives.
First, hypothesis-agnostic samplers may miss relevant nodes, edges,
or paths, i.e., those requested by the hypothesis, especially when
the sampling budget ⌫, i.e., the size of S, is small. The irrelevant
nodes, edges, or paths, which must be �ltered out for hypothesis
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testing, can compromise accuracy. This raises the accuracy chal-
lenge behind O1. We show in Section 3.2.3 that the hypothesis
estimator, which computes aggregate values of nodes, edges, or
paths speci�ed in � , converges to the ground truth in G as ⌫ in-
creases, resulting in accuracy approaching one. However, the rate
of convergence depends on the sampler, presenting a time e�ciency
challenge behind O2. By optimizing the sampler design, we aim
to balance accuracy and time e�ciency, enabling earlier sampling
halts with accurate hypothesis testing results.
Contributions. We classify hypotheses on attributed graphs into
three types: node, edge, and path ones. We develop a sampling-
based hypothesis testing framework, which accommodates com-
mon hypothesis-agnostic samplers, such as random node sam-
pler [29], randomwalk [13], and non-backtracking randomwalk [19].

The lack of awareness of the input hypothesis in existing sam-
pling methods may slow down the rate of convergence of accuracy.
Therefore, to address objectives O1 and O2, we design PHASE, a
Path-Hypothesis-Aware SamplEr. PHASE is aware of � and pre-
serves the corresponding nodes, edges, or paths. Consequently, the
resulting S is more likely to accurately test the hypothesis. PHASE
employs< � 1 dependent randomwalks with twoweight functions
to ensure path-hypothesis-awareness. One function prioritizes the
seed selection toward the �rst node in the path hypothesis. The
other steers the transition probability towards the nodes speci�ed
in the hypothesis. We further propose PHASEopt to improve the
time e�ciency of PHASE. PHASEopt adopts a non-backtracking
approach to avoid selecting previously visited nodes. It also reduces
computation overhead by �xing the number of neighbors to exam-
ine. We show both theoretically and empirically that, for all sam-
plers, the hypothesis estimator converges to the ground truth as ⌫
increases, and our proposed samplers ensures earlier and smoother
convergence of the hypothesis estimator.

We conduct extensive experiments on three real-world datasets:
MovieLens, DBLP, and Yelp. We aim to demonstrate the e�ective-
ness of two optimizations in PHASEopt compared to PHASE, and
to compare the test signi�cance, accuracy, and execution time of
hypothesis-agnostic and hypothesis-aware samplers.

We observe PHASEopt is at least 43 times faster than PHASE
with less than 4% accuracy di�erence in DBLP. For signi�cance,
PHASEopt consistently delivers the most precise and reliable esti-
mates. Compared to 11 state-of-the-art hypothesis-agnostic sam-
plers, we �nd PHASEopt excels in accuracy when ⌫ is �xed across
various hypothesis types and datasets. It also demonstrates robust
accuracy performance, especially for di�cult hypotheses, i.e., those
with longer paths or fewer relevant nodes, edges, or paths in G.
Moreover, the high accuracy achieved in the shortest amount of
time makes our proposed sampler usable in practice.

2 DEFINITIONS
2.1 Attributed Graphs

D��������� 1 (A��������� G����). An attributed graph is a
directed graph G = (V, E), where V denotes the set of nodes and
E ✓ V ⇥V is the set of edges, represented by ordered pairs of nodes.
It has a node type mapping function q : V ! T and an edge type
mapping functionk : E ! R. Each node and edge has attributes.

Each node E in G belongs to a speci�c node type q (E) 2 T , and
each edge 4 = (D, E) connecting nodes of type q (D) to q (E) belongs
to a speci�c edge type A = k (4) 2 R. Once the relation A exists, its
inverse relation A�1 naturally holds from q (E) to q (D). In this work,
we assume each node in G has at least one incoming or outgoing
edge. It implies the connectedness of the graph.

The DBLP Network in Figure 1a is an attributed graph containing
four types of nodes and four types of edges. For example, paper
nodes belong to the node type paper 2 T with �ve attributes,
including title and year. Edges from paper to �eld of study (FOS)
nodes belong to the edge type WithDomain 2 R with a weight
attribute indicating the paper’s relevance to an FOS. The reverse
relationship WithDomain

�1 2 R holds accordingly from FOS to
paper nodes.

D��������� 2 (P���). A path P is de�ned as

C1
A1��! . . .

A;�! C;+1
where the node type C8 and edge type A8 can repeat; ; � 0 is the length
of P. When ; = 0, P is a node and when ; = 1, it is an edge.

An attributed path is a path where each node has some at-
tributes, referred to asmodi�ers. Figure 1b presents an example
of a length-one attributed path, “conference papers written by Mi-
crosoft researchers”, and Figure 1c is an instance of that path.

2.2 Hypotheses on Attributed Graphs
We formally de�ne path hypotheses on attributed graphs. Node
and edge hypotheses are two special cases of path hypotheses.

D��������� 3 (P��� H���������). Given a path P = C1
A1��!

C2
A2��! ...

A;�! C;+1 in G, where ; � 0, a path hypothesis is de�ned as:

�?0C⌘ : %>2
�
agg(5P | "C8 ,8C8 on P)

�
where > 2 {=, <>, >, <}; 2 2 R is a constant value; %>2 is the predicate
in the format: equal, unequal, greater, or less than a value; 5P is any
function of node and/or edge attributes on P; agg(5P | "C8 ,8C8 on P)
is an aggregation function applying on the 5P of all paths whose nodes
satisfy the corresponding modi�ers.

In the DBLP network de�ned previously, co-authorship can be
represented as a path:

P = author
Authorship

�1
������������! paper

Authorship����������! author

“The average citation of papers co-authored byMicrosoft researchers
is greater than 100” can be expressed as:

%>100 (avg(5P | author[MSR], paper[], author[MSR])
where 5P = paper[citation], MSR stands for microsoft research.

When ; = 0, a path hypothesis is reduced to a node hypoth-
esis. An example in DBLP, “the average number of citations for
conference papers is larger than 50”, can be expressed as:

%>50 (avg(paper[citation] | paper[conference]))
When ; = 1, we refer it as an edge hypothesis. For instance, the

edge hypothesis, “the average FOS_weight of conference papers
on data mining is larger than 0.5”, can be expressed as:

%>0.5 (avg(WithDomain[FOS_Weight] | paper[C], FOS[DM])
C (resp. DM) stands for conference papers (resp. DM data mining).
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Figure 2: The Sampling-based Hypothesis Testing Framework on attributed graphs.

2.3 Problem Statement and Challenges
Given an attributed graph G, our aim is to verify a node, edge,
or path hypothesis � and return true or false. We formulate two
objectives to address our problem: O1 - ensure hypothesis testing
is as accurate as possible; O2 - minimize execution time.

When testing a hypothesis like “the average number of citations
for conference papers is greater than 50”, a conventional approach
is to collect representative conference papers from the database,
compute the average number of citations, and perform the statistical
test. However, the entire graph may not be accessible, or collecting
all relevant nodes, edges, or paths from G is time-consuming and
impractical. Hence, we adopt graph sampling techniques to sample
a subgraph S from G, assuming a sampling budget ⌫ that re�ects
the maximum size of S. For simplicity, unless stated otherwise,
sampling an edge or a node incurs the same unitary cost of one.

Ahypothesis estimator computes an aggregate value for nodes,
edges, or paths based on � . It directly impacts the accuracy of
hypothesis testing. The challenge for hypothesis-agnostic sam-
plers to achieve O1 is that they can miss relevant nodes, edges, or
paths when ⌫ is small. By examining the applicability of existing
hypothesis-agnostic samplers, we observe that a large ⌫ (almost the
size of G) is required to achieve an accuracy of one, which results in
longer execution time and the challenge behind O2. We conjecture
that this is due to a lack of awareness of the underlying hypothe-
sis during sampling. Hence, to address two challenges, we aim to
design a hypothesis-aware sampler that preserves relevant nodes,
edges, or paths in ( . We also intend to show, both theoretically and
empirically, that using our sampler, the hypothesis estimator on S
will converge earlier to its corresponding value in G as ⌫ increases.

3 SAMPLING-BASED HYPOTHESIS TESTING
We propose a sampling-based hypothesis testing framework that
supports both hypothesis-agnostic and hypothesis-aware graph
samplers. After reviewing existing hypothesis-agnostic methods,
we introduce our hypothesis-aware sampler, PHASE, in Section 3.2.1.
It achieves O1 by incorporating hypothesis awareness into the sam-
pling, andO2 by ensuring earlier convergence of hypothesis estima-
tors. Additionally, we implement two optimizations in PHASEopt
to reduce the execution time of PHASE in Section 3.2.2.

3.1 Hypothesis-Agnostic Samplers
Figure 2 illustrates our sampling-based hypothesis testing frame-
work for testing node, edge, and path hypotheses on attributed
graphs. It consists of two steps: (1) Sampling and (2) Hypothesis
Testing. There are two work�ows: hypothesis-agnostic, shown with
dashed arrows, where � is considered only in the hypothesis test-
ing step, and hypothesis-aware, indicated by dash-dot-dash arrows,
which requires � during the sampling step.

In the hypothesis-agnostic work�ow (dashed arrows), given G
and ⌫, a hypothesis-agnostic sampler is used in the sampling step
to obtain S. Existing hypothesis-agnostic samplers fall into three
categories: node samplers that choose ⌫ nodes from G [2, 29], edge
samplers that choose ⌫ edges from G [18], and random walk based
samplers that pick edges and nodes by random walks [13, 19–21].
In the hypothesis testing step, relevant nodes, edges, or paths are
extracted from S for hypothesis testing. Finally, the acceptance
result, p-value, and con�dence interval are returned.

3.2 Hypothesis-Aware Samplers
3.2.1 PHASE Algorithm. We introduce PHASE, our Path-
Hypothesis-Aware SamplEr (Algorithm 1), for the sampling step.
Since G may contain both relevant and irrelevant nodes, edges, or
paths for a given � , PHASE aims to preferentially sample those
speci�ed in � . This strategy resembles strati�ed sampling [7, 24],
where the target population is sampled at higher rates without bias.
PHASE can be integrated with any random walk based sampler. To
clarify, we describe it using Frontier Sampler (FrontierS) [28], which
picks a node from< random seeds based on degree-proportional
probability and performs a random walk by uniformly selecting a
neighboring node. This process repeats until ⌫ is reached.

PHASE takes G, ⌫, � , & as inputs. For a node, edge, or path
hypothesis, � contains P with lengths zero, one, or more than one,
respectively.< seed nodes in G are randomly initialized and stored
in a list ! (Line 1). This line increases the chance of picking relevant
nodes, edges, and paths and ensures they are not locally clustered,
preventing locality bias. Each seed is assigned a weight in !F (Line
2) to guide the selection of seed nodes for random walks later. The
weights are determined based on heuristics: nodes satisfying the
�rst node modi�er on P (denoted by G1) receive a higher weight
F⌘ , while others receive a lower weightF; , whereF⌘ � F; > 0.

3194



Algorithm 1 PHASE
Input: G = (V, E) , ⌫, � ,&
Output: a sampled graph S

1: Initialize ! = (E1, E2, . . . , E< ) with< randomly chosen nodes
2: !F = AssignWeight(!,� ) ù Assign F⌘ to G1 nodes and F; to others.
3: VS = {}, ES = {}
4: while ⌫ >< do
5: Normalize !F
6: Select E 2 ! with probability !F
7: #  # [E ] ù # [E ] is the set of neighbors of E.
8: #F = AssignWeight(# ,� ,& ) ù Assign weights according to& .
9: Select D 2 # with the normalized #F

10: VS .update(E,D)
11: Replace E by D in ! and update !F
12: ⌫ = ⌫ � 1
13: end while
14: return S = {VS, ES }

G1 ~

G1 F⌘ F;

~ F⌘ F;

(a)

G1 G2 ~

G1 F; F⌘ F;

G2 F⌘ F; F;

~ F⌘ F; F;

(b)

G1 G2 G3 ~

G1,G1 F; F⌘ F; F;

G1,G2 F; F; F⌘ F;

G1,G3 F⌘ F; F; F;

G1, ~ F⌘ F; F; F;

(c)

Figure 3: Transition probability matrices & for (a) node, (b)
edge, and (c) path (; = 2) hypotheses (up to the�rst four rows).
G8 represents nodes in G satisfying the 8-th node modi�er on
P and ~ represents other nodes.

Lines 4-14 describe an iterative randomwalk to select nodes until
⌫ is reached. During each iteration, the algorithm chooses a node E
from ! based on the probability distribution !F (Line 6). Next, it
picks a neighbor D of E using a weighted selection process (Lines
7-9) (O1). Speci�cally, in Line 8, we steer the random walks towards
relevant nodes, edges, or paths. The transition probability matrices
for node, edge, and path hypotheses are shown in Figures 3a, 3b,
and 3c, respectively. For a node hypothesis, a higher weightF⌘ is
assigned to G1 regardless of the current node. For an edge hypothe-
sis,F⌘ is given to G2 when the current node is G1, and given to G1
in other cases. This increases the chance of sampling more relevant
edges (G1, G2). The random walks are 1st-order in Figures 3a and 3b.
Path hypotheses (; = 2) have 2nd-order random walks (Figure 3c),
meaning the transition depends on the current and previous nodes.
For example, given two nodes G1 and G2, G3 gets a higher weightF⌘ .
The consistent F⌘ prevents sampling bias within the population.
After adding nodes D and E to V( (Line 10), the algorithm updates
! by replacing E with D (Lines 11) and decreases the sampling bud-
get by one (Lines 12). This iteration continues until ⌫ > <. The
resulting sampled graph S is the induced subgraph fromV( .

3.2.2 PHASEopt Algorithm. We further propose optimizations to
reduce execution time based on heuristics. Algorithm 2 introduces

two lines that replace line 7 in Algorithm 1. In line 1, we employ
a non-backtracking approach to avoid selecting previously vis-
ited nodes during sampling [19], preventing cycles and unneces-
sary revisits. Additionally, in densely connected graphs, computing
neighbor weights in line 8 of Algorithm 1 can be time-consuming
due to the potentially large number of neighbors. To address this,
line 2 in Algorithm 2 introduces random sampling of a subset of
min{|# 0 |,=} neighbors as candidates, where = is a parameter. This
can e�ectively reduce computation time. But it may result in some
accuracy loss when = is signi�cantly smaller than |# 0 |.

Algorithm 2 PHASEopt
(showing only 2 lines that replace line 7 in Algorithm 1
1: # 0  # [E ] � VS (Optim 1)
2: #  Select min{ |# 0 |,=} nodes randomly from # 0 (Optim 2)

Complexity. On average, each node has 2|E |/|V| neighbors to
be examined by PHASE, resulting in a time complexity of $ (⌫ ⇥
2|E |/|V|). On the other hand, by constraining the number of neigh-
bors, PHASEopt achieves a time complexity of $ (⌫).

3.2.3 Convergence of Hypothesis Estimators. We demonstrate the
convergence of hypothesis estimators, which ensures the conver-
gence of hypothesis testing accuracy to one, for all sampling meth-
ods. Then, we show our proposed sampler achieves earlier and
smoother convergence (O2).

We will focus on scenarios where agg is an average function
to construct and prove the convergence of hypothesis estimators.
Estimators for other aggregation functions, such as maximum and
minimum, can be derived analogously.

For a path hypothesis (; � 0), avg(5P | "C8 ,8C8 on P) has a
primary subject 5P . Let P⇤ be all relevant paths in G, and PG be
all paths with the same length as P in G. The mean value of the
path hypothesis, \?0C⌘ , is

\?0C⌘ =
1

|P⇤ |
’
8P2PG

) (P) (1)

where ) (P) = 5P ⇥ "C8 ✓Lq (C8 ) 8C8 on P . Replacing G with the
sampled graph S, the estimator for \?0C⌘ on S is

\̂?0C⌘ =
1

|P⇤ \ PS |
’
8P2PS

) (P) (2)

When ; = 0 (resp. ; = 1), we name the corresponding mean value
\=>34 (resp. \4364 ) and estimator \̂=>34 (resp. \̂4364 ).

Some sampling methods, including random edge sampler, simple
random walk, and FrontierS, obey the Strong Law of Large Numbers
(SLLN) [28]. Their \̂=>34 and \̂4364 are asymptotically unbiased
estimators of \=>34 and \4364 , respectively, when ⌫ !1.

T������ 1 (SLLN). For any function 5 , whereÕ
(D,E)2E |5 (D, E) | < 1,

lim
⌫!1

1
⌫

⌫’
8=1

5 (D8 , E8 ) !
1
|⇢ |

’
8 (D,E)2E

5 (D, E)

almost surely, i.e. the event occurs with probability one.
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Figure 4: The convergence of hypothesis estimator for two
path hypotheses: DB-P3 (left) and YP-P3 (right).

In general scenarios with any path hypotheses (; � 0) and sam-
pler, SLLN may not apply, and the estimator may not be asymp-
totically unbiased. However, \̂path still converges to \path due to
Finite Population Correction (FPC), a statistical adjustment made
when sampling without replacement from a �nite population [6].
As ⌫ increases, FPC = | P⇤ |�PS

|P⇤ |�1 approaches zero, which ensures
the convergence of the hypothesis estimator to its ground truth.

While all samplers ensure the convergence of the hypothesis
estimator, our proposed samplers achieve earlier convergence than
other methods. This is due to their higher probability of selecting
relevant nodes, edges, and paths. For instance, when ; = 2, the
probability to pick nodes (G1, G2, G3) is:

% (G1, G2, G3) = % (G1) ⇥ (% (G2 | G1) ⇥�(G2 | G1))
⇥ (% (G3 | G1, G2) ⇥�(G3 | G1, G2))

where �(G8 | G8�1) indicates the accessibility (0 or 1) of node G8
from G8�1. Assuming node G8 has =8 neighbors with :8 of type G8+1
and there are 3 G1 in< seed nodes, where 3 � 0 and :8 � 0:

%PHASE (G1, G2, G3) =
3 ·F⌘

3 ·F⌘ + (< � 3) ·F;

⇥
✓

F⌘

:1 ·F⌘ + (=1 � :1) ·F;
⇥�(G2 | G1)

◆

⇥
✓

F⌘

:2 ·F⌘ + (=2 � :2) ·F;
⇥�(G3 | G1, G2)

◆

Random node and edge samplers have the lowest probability of pick-
ing (G1, G2, G3). Random walk based samplers have a transitional
probability from G8 of 1

=8
 F⌘

:8 ·F⌘+(=8�:8 ) ·F;
, particularly when :8

is large. With a higher probability to pick (G1, G2, G3), PHASE and
PHASEopt have earlier convergence of the hypothesis estimator
than existing hypothesis-agnostic samplers. Also, as shown in Fig-
ure 4, the empirical results of two path hypotheses, whose details
are in Table 2, align with the claim.

4 EXPERIMENTS
The goal of our experiments is twofold: 1) test the e�ectiveness of
optimizations in PHASEopt compared to PHASE (Section 4.3), and
2) compare hypothesis-agnostic and hypothesis-aware samplers in
terms of test signi�cance (Section 4.4), accuracy (Section 4.5), and
time (Section 4.6).

4.1 Experimental Setup
Datasets. We use three datasets [1, 15, 31], extracted from real
attributed networks: MovieLens, DBLP, and Yelp. Table 1 shows
the statistics of the datasets.

Table 1: Statistics of datasets

Dataset #(Nodes) #(Edges) Density #(Node
Types)

#(Edge
Types)

MovieLens 9,705 996,656 1.06e-02 2 1
DBLP 1,623,013 11,040,170 4.19e-06 4 4
Yelp 2,136,118 6,743,879 1.48e-06 2 1

Samplers We compare PHASEopt with 11 existing samplers:
• Node samplers: Random Node Sampler (RNS) [29], Degree-Based

Sampler (DBS) [2]
• Edge samplers: Random Edge Sampler (RES) [18]
• Random walk based samplers: Simple Random Walk (SRW ) [13],

Frontier Sampler (FrontierS) [28], Non-Backtracking Random
Walk (NBRW ) [19], Random Walk with Restarter (RWR) [20],
Metropolis-Hastings Random Walk (MHRW ) [30], Snaw Ball
Sampler (SBS) [14], Forest Fire Sampler (FFS) [20], Shortest Path
Sampler (ShortestPathS) [27]

Hypotheses. For each dataset (e.g., DB) and hypothesis type (e.g.,
N for node hypotheses), we chose three example hypotheses (e.g.,
DB-N1) in the experiment. Due to the page limit, examples for DBLP
and Yelp are shown in Table 2. These hypotheses are chosen based
on context and di�culty. Based on the context of the datasets, the
subject of interest and the constant in the hypothesis should re�ect
meaningful requests from real users. The di�culty is related to the
path length and the number of relevant nodes, edges, or paths, as
indicated in the third column of Table 2. The longer the path or
the fewer the relevant nodes, edges, or paths, the more di�cult it
becomes to sample them from G for accurate hypothesis testing.We
use the following path hypotheses of DBLP with lengths of three
and four in the experiment: “the average citation of two papers,
each authored by a Microsoft researcher and citing each other, > 50”
and “the average citation of two conference papers, each authored
by a Microsoft researcher, > 50”.
Parameter Choice. We determine optimal settings for<, =, F⌘ ,
and F; through a grid search, with < and = ranging from 10 to
200, andF⌘ andF; from 0.1 to 20. We set< = 50 to maintain the
path-preserving ability of multi-dimensional random walks, and
= = 30 to strike a balance between accuracy and time e�ciency.
F⌘ = 10 and F; = 0.1 help regulate the prioritization towards
sampling relevant nodes, edges, or paths. The sampling budget ⌫ is
maintained as a proportion of the total number of nodes in G for all
samplers. In real deployment, we recommend iteratively increasing
⌫ until the accuracy stabilizes at a high threshold (e.g., 0.9) based
on the average from 30 samples to determine the optimal ⌫. As for
existing hypothesis-agnostic samplers, we use the best parameters
in their respective settings. We report an average of 30 runs for
every evaluation measure.

4.2 Evaluation Measures
Accuracy. Accuracy at a speci�c sampling proportion re�ects the
e�ectiveness of a sampling method. It measures the number of
matched hypothesis testing results on G and S:

Accuracy =
1
:

’
:

� (G)==� (S)

where � (G) and � (S) return 0 (false) or 1 (true).
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Table 2: Examples of hypotheses for DBLP and Yelp

Hypothesis
Type Example Relevant nodes,

edges, paths
DBLP

Node

DB-N1: The avg citation of papers published as
journals > 20 199205 (easy)

DB-N2: The avg citation of papers in conferences
in 2010 > 10 31566 (medium)

DB-N3: The avg citation of papers published in
Journal in 2017 > 10 1588 (hard)

Edge

DB-E1: The avg weight of conference papers on
data mining > 0.5 44925 (easy)

DB-E2: The avg weight of journal papers on data
mining > 0.5 13400 (medium)

DB-E3: The avg weight of papers on telecommuni-
cations network > 0.5 2510 (hard)

Path

DB-P1: The avg weight of papers by China’s insti-
tutes on data mining > 0.5 17671 (easy)

DB-P2: The avg citation of papers co-authored by
authors in Peking and China’s institutions > 50 7065 (medium)

DB-P3: The avg citation of conference papers by
Microsoft Researchers > 50 3217 (hard)

Yelp

Node

YP-N1: The avg reviews given by users with high
popularity > 200 112043 (easy)

YP-N2: The avg stars given by users who have low
proli�cacy and medium popularity > 3 16429 (medium)

YP-N3: The avg number of reviews of business in
Illinois > 4 2144 (hard)

Edge

YP-E1: The avg ratings of fast food > 4 224536 (easy)
YP-E2: The avg ratings of furniture stores > 3 33040 (medium)
YP-E3: The avg percentage of useful reviews given
by useful writers to Illinois businesses > 0.5 4242 (hard)

Path

YP-P1: The avg rating di�erence on path [business
in FL - high popularity user - business in LA] > 0.5 615174 (easy)

YP-P2: The avg rating di�erence on path [business
in LA - high popularity user - business in IL] > 0.5 15542 (medium)

YP-P3: The avg rating di�erence on path [business
in LA - medium popularity user - business in AB]
> 0.5

1080 (hard)

(a) P-value Plot (b) CI Plot

Figure 5: DBLP p-value and CI plot for the hypothesis DB-P1

Time.Wemeasure the total execution time, including the sampling
time, the time taken to extract relevant information from S for
hypothesis testing, and hypothesis testing time.

4.3 PHASE vs PHASEopt
We evaluate PHASEopt’s optimizations compared to PHASE in Ta-
ble 3 and 4. For DBLP, PHASEopt is at least 43 times faster than
PHASE with minimal accuracy loss (under 4%). Consequently, we
use PHASEopt exclusively in further experiments and discussions.

4.4 Signi�cance
To assess statistical signi�cance and estimation precision, we eval-
uate p-value trends and con�dence intervals (CIs) as ⌫ increases
using DB-P3, as shown in Figure 5. Similar trends are observed for

(a) Accuracy (; = 3) (b) Accuracy (; = 4)

(c) Time-Accuracy (; = 3) (d) Time-Accuracy (; = 4)

Figure 6: Accuracy (a, b) and time-accuracy (c, d) performance
for DBLP path hypotheses.

other hypotheses. PHASEopt consistently maintains p-values below
the signi�cance level (e.g., 0.05), showing stronger evidence against
the null hypothesis as ⌫ increases. It also exhibits the narrowest CI
at all ⌫, re�ecting the highest precision among other samplers.

4.5 Accuracy
Table 3 presents the accuracy of 11 existing samplers and PHASEopt
with a �x ⌫ in column three. ⌫ is set to ensure the accuracy is su�-
ciently stabilized without saturating across all samplers. Each row
reports an average accuracy from three examples, based on 30 runs
each. The highest and second highest accuracies are highlighted in
bold and underlined, respectively.

Table 3 shows PHASEopt’s robust performance across most sce-
narios, except for MovieLens edge hypotheses where it slightly
lags behind NBRW. SRW, RWR, and ShortestPathS perform well on
edge and path hypotheses, whereas RES, RNS, and DBS struggle
with path hypotheses. This observation aligns with their sampling
mechanisms: node and edge samplers can hardly preserve the path
information from G. Also, PHASEopt outperforms FrontierS, show-
casing the e�ectiveness of the two weight functions in enhancing
the sampler’s hypothesis-awareness.

We rank the accuracy of all samplers by averaging their accu-
racy per column in Table 3 and identify the top �ve: PHASEopt,
NBRW, ShortestPathS, RWR, and SRW. The accuracy performance
on individual hypotheses for DBLP and Yelp is shown in Figures 7
and 8, respectively. Figures for MovieLens are omitted due to the
space constraints and result similarity. Sub�gures a-c, e-g, and i-k
depict accuracy versus ⌫ for three node, edge, and path hypotheses,
respectively, with truncated x-axes to highlight the convergence.

In Figures 7 and 8, PHASEopt consistently outperforms other
samplers across most hypotheses and sampling proportions. When
there are abundant relevant nodes, edges, or paths in G (e.g, easy
and medium hypotheses), hypothesis-agnostic samplers can per-
form well, reducing PHASEopt’s relative advantage. However, its
superiority is more obvious for more di�cult hypotheses (e.g., hard
hypotheses). Also, for di�cult hypotheses with longer paths in
DBLP, PHASEopt achieves the highest accuracy at any sampling
proportion, as shown in Figures 6a and 6b. Moreover, ShortestPathS
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Table 3: The accuracy of 11 existing samplers and PHASEopt on three datasets and three types of hypothesis.

Dataset Hypothesis
Type

Sampling
Proportion (%) PHASEopt PHASE RES RNS DBS SRW NBRW RWR MHRW ShortestPathS FrontierS FFS SBS

Node 1 0.9 1 0.89 0.83 0.86 0.88 0.89 0.87 0.89 0.86 0.84 0.83 0.56
Edge 2.5 0.98 1 0.68 0.77 0.98 0.99 1 0.99 0.98 0.99 0.73 0.93 0.91MovieLens
Path 5 0.99 1 0.1 0.88 0.83 0.82 0.89 0.91 0.98 0.95 0.38 0.85 0.62
Node 0.2 0.96 1 0.48 0.87 0.93 0.92 0.91 0.9 0.94 0.92 0.92 0.94 0.88
Edge 0.2 0.76 0.79 0.48 0 0.71 0.73 0.69 0.7 0.29 0.69 0.63 0.7 0.42DBLP
Path 0.2 0.89 0.88 0 0 0 0.26 0.3 0.32 0.18 0.33 0.043 0.3 0.12
Node 0.1 0.99 1 0.65 0.77 0.61 0.69 0.69 0.69 0.77 0.7 0.64 0.66 0.48
Edge 1 1 1 0.73 0.54 0.76 0.79 0.91 0.87 0.84 0.76 0.77 0.79 0.71Yelp
Path 1 0.99 1 0.11 0.05 0.79 0.78 0.78 0.72 0.8 0.99 0.42 0.67 0.42

Table 4: The execution time (sec) of 11 existing samplers and PHASEopt on three datasets and three types of hypothesis.

Dataset Hypothesis
Type

Sampling
Proportion (%) PHASEopt PHASE RES RNS DBS SRW NBRW RWR MHRWS ShortestPathS FrontierS FFS SBS

MovieLens
Node 1 0.083 0.41 0.99 0.023 0.077 0.057 0.06 0.05 0.06 0.063 0.083 0.067 0.047
Edge 2.5 0.45 2.07 0.99 0.11 0.36 0.31 0.36 0.33 0.29 0.26 0.33 0.35 0.31
Path 5 4.92 14.80 1.03 0.34 4.32 4.53 4.55 4.76 3.10 0.95 0.38 3.87 3.08

DBLP
Node 0.2 5.56 418.07 18.70 0.55 6.98 7.98 8.22 9.67 1.66 31.32 10.48 5.73 3.03
Edge 0.2 8.76 414.47 22.57 0.90 10.07 14.76 12.89 12.32 3.53 33.91 14.46 8.87 5.27
Path 0.2 5.44 236.82 19.61 0.71 6.87 8.24 8.39 8.13 2.17 31.13 9.37 5.33 3.01

Yelp
Node 0.1 2.56 6.10 13.84 1.02 6.81 1.19 0.96 1.16 1.12 1.84 1.68 1.02 6.58
Edge 1 19.42 67.55 16.88 2.01 13.61 8.58 8.97 9.17 6.93 30.23 10.22 10.27 6.03
Path 1 56.97 130.3 14.35 1.53 23.48 15.97 16.61 19.03 7.35 37.81 9.95 25.61 19.94

(a) DB-N1 (easy) (b) DB-N2 (medium) (c) DB-N3 (hard) (d) DB-N3 (hard)

(e) DB-E1 (easy) (f) DB-E2 (medium) (g) DB-E3 (hard) (h) DB-E3 (hard)

(i) DB-P1 (easy) (j) DB-P2 (medium) (k) DB-P3 (hard) (l) DB-P3 (hard)

Figure 7: Comparison of the top �ve sampling methods for accuracy (a-c, e-g, i-k) and time-accuracy (d, h, l) performance across
three node (a-d), three edge (e-h), and three path hypotheses (i-l) for DBLP.

sometimes shows competitive performance, possibly due to the high
betweenness centrality of the concerned nodes, edges, or paths,
which implies many shortest paths traversing them.

4.6 Scalability
In Table 4, the lowest execution time is in bold. First, the execution
time increases with dataset size. Second, RNS generally requires the
shortest execution time because it uniformly samples nodes. Our
method, PHASEopt, has varying time performance across datasets.

Speci�cally, it ranks among the highest in execution time for Yelp,
especially for path hypotheses. This is attributed to the limited
node types that extend path extraction times. While for DBLP, its
execution time ranks in the lowest �ve.

As PHASEopt can achieve high accuracy with a small ⌫, it is
unfair to compare the time e�ciency at a �xed ⌫. Instead, we plot
accuracy versus execution time in sub�gures d, h, and l of Figures 7
and 8 for DBLP and Yelp, respectively, for the top �ve samplers
ranked by accuracy. Due to the space constraints, only the most

3198



(a) YP-N1 (easy) (b) YP-N2 (medium) (c) YP-N3 (hard) (d) YP-N3 (hard)

(e) YP-E1 (easy) (f) YP-E2 (medium) (g) YP-E3 (hard) (h) YP-E3 (hard)

(i) YP-P1 (easy) (j) YP-P2 (medium) (k) YP-P3 (hard) (l) YP-P3 (hard)

Figure 8: Comparison of the top �ve sampling methods for accuracy (a-c, e-g, i-k) and time-accuracy (d, h, l) performance across
three node (a-d), three edge (e-h), and three path hypotheses (i-l) for Yelp.

di�cult hypothesis of each type is shown. We measure time and
accuracy starting from ⌫ = 1000 in increments of 1000 until the
accuracy reaches one, or time reaches 50s (DBLP) and 30s (Yelp).
We �nd that PHASEopt consistently achieves high accuracy in the
shortest time and with the least ⌫. Also, the execution time does not
grow exponentially. Moreover, when the path length increases, as
shown in Figure 6c and 6d, PHASEopt achieves the highest accuracy
in the shortest time.

5 RELATEDWORK
There has been a lot of research interest on hypothesis testing [3,
8, 11, 12, 17, 25, 35] and graph sampling techniques [19–21]. In this
section, we summarize the most representative works.
Hypothesis Testing on Graphs. Hypotheses on graphs can be
categorized by their object of interest [3, 5, 36]. Tang et al. and
Ghoshdastidar et al. [9, 10, 32] extend the one-sample problem
into two-sample to test whether two groups of random graphs are
obtained by the same generative model or with the same graph
distribution. In [35], nodes are objects of interest, and one-sample
hypothesis testing is used to detect conditional dependence between
nodes in brain connectivity networks.

Our goal is closely related to works that focus on nodes as the
object of interest. However, there are twomajor di�erences between
our work and the existing ones. First, we enable more expressive
hypotheses, including edge and path hypotheses, on graphs. Second,
we leverage graph sampling methods to conduct hypothesis testing.
Sampling Methods on Graphs.Most sampling methods are de-
signed to sample a representative subgraph to accurately estimate
graph properties [16, 20, 22, 30]. Leskovec and Faloutsos [20] are the
�rst to study this problem in real-world networks [20] by proposing

sampling techniques to maintain degree distribution, clustering co-
e�cient, and distribution of component sizes. Hübler et al. [16]
propose the Metropolis-Hastings sampling method. Maiya and
Berger-Wolf [22] de�ne the community representativeness sam-
ple and propose a community structure expansion sampler. Later,
many sampling methods are proposed to improve the e�ciency and
convergence rate of simple random walk [19, 21]. Besides represen-
tative sampling, some sampling methods are designed for speci�c
tasks, such as graph compression [4], community detection [22],
and graph visualization [26, 34]. However, none of them is designed
for hypothesis testing on attributed graphs.

6 CONCLUSION
In this paper, we develop a framework for hypothesis testing on
large attributed graphs, which accommodates 11 existing hypothesis-
agnostic samplers and new hypothesis-aware samplers. We propose
dedicated optimizations to speed up sampling while achieving high
test signi�cance and accuracy. We also demonstrate theoretically
and empirically that our hypothesis-aware sampling achieves ear-
lier convergence of the hypothesis estimator than other methods.

Our work opens several new directions in the area of hypothesis
sampling on graphs. The �rst direction is to examine additional
optimizations that make use of domain-speci�c information on the
input graph. The second direction is to handle more expressive
hypotheses and specify two-sample and multiple sample scenarios.
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