
Optimizing VideoQueries with Declarative Clues

Daren Chao
University of Toronto

Toronto, Canada
drchao@cs.toronto.edu

Yueting Chen
York University
Toronto, Canada
chenyt@yorku.ca

Nick Koudas
University of Toronto

Toronto, Canada
koudas@cs.toronto.edu

Xiaohui Yu
York University
Toronto, Canada
xhyu@yorku.ca

ABSTRACT

Video Database Management Systems (VDBMS) leverage ad-
vancements in computer vision and deep learning for efficient video
data analysis and retrieval. This paper introduces the concept of
user-specified Clues, allowing users to incorporate domain-specific
knowledge, referred to as Clues, into query optimization. Clues
are expressed as Clue types, each associated with optimization
rules, and applied to queries through Clue instances. The exten-
sible ClueVQS system we present to incorporate these ideas, op-
timizes queries automatically, utilizing Clues to improve process-
ing efficiency. We also introduce algorithms to optimize queries
using Clues allowing for trade-offs between speed and query ac-
curacy. Our proposals and system address challenges such as data-
dependent Clue effectiveness, limiting search space, and accuracy-
efficiency trade-offs. Detailed experimental results demonstrate
query speedups of up to two orders of magnitude compared to
other applicable approaches, and a reduction of the query optimizer
time by up to 95% while respecting user-specified accuracy con-
straints, showcasing the effectiveness of the proposed framework.

PVLDB Reference Format:

Daren Chao, Yueting Chen, Nick Koudas, and Xiaohui Yu. Optimizing
Video Queries with Declarative Clues. PVLDB, 17(11): 3256-3268, 2024.
doi:10.14778/3681954.3681998

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/daren996/ClueVQS.

1 INTRODUCTION

Video Database Management Systems (VDBMS), fueled by ad-
vancements in computer vision and deep learning, have actively
been developed to facilitate the analysis and retrieval of video data
[20, 31, 39, 40, 43]. These systems enable the search and analy-
sis of video content using SQL-like queries incorporating various
predicates. Recently several approaches have been presented to
efficiently analyze large-scale visual data in VDBMS, including
sampling-based approaches, filtering, as well as reuse of intermedi-
ate outcomes [4, 8, 11, 16, 21, 25, 28, 30, 34, 41, 49, 50].

Videos vary greatly in content, and more often than not, users
have an accurate idea of the content or structure of the video they
wish to analyze. Such knowledge could be utilized to greatly facili-
tate query processing but is currently overlooked. To realize things
concretely, consider the following example query Q1.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3681998

-- Q1: Find a frame from a time -lapse video.

SELECT DISTINCT fid FROM LOAD_VIDEO('time_lapse.mp4')

WHERE TimeOCR(img) = ToDate('2018 -05 -02 04:35:00 ');

Listing 1: Example Query Q1.

Q1 aims to locate a specific frame in a time-lapse video that matches
a given timestamp, using a model TimeOCR1 to detect the timestamp
on each frame, as depicted in Fig. 1a. Since the user has the knowl-
edge that timestamps appear in each frame, this information can
be capitalized to process the query faster. In particular, if we know
timestamps increase monotonically over the sequence of the video
frames, leveraging this knowledge an optimization strategy can be
implemented, enabling a frame binary search technique, as illus-
trated in Fig. 1b. The TimeOCR model is selectively applied to frames
at middle points during the binary search process, thereby avoiding
invoking the model on a frame-by-frame basis.

TimeOCR Model

(a) TimeOCR model can rec-

ognize the timestamp.

Binary Search
Target

Video(s)

(b) A binary search strategy can be applied to the

monotonic timestamps to minimize model calls.

Figure 1: Optimization of Q1 utilizing the knowledge about themono-

tonic nature of timestamps.

This is just one example of user knowledge that is currently
difficult to incorporate into a query framework for videos. In this
paper, we refer to such knowledge that can lead to query optimiza-
tion strategies as Clues. However, VDBMS cannot infer and apply
such Clues automatically. Expressing such knowledge through
SQL is not an option2. Hard-coding such knowledge per query is
also impractical. To address this challenge, we build an extensible
framework to enable utilization of Clue. We provide the capability
to register a Clue type and develop and implement an optimization
rule

3 for each Clue type. For example, the Clue type conceptual-
ized from the example in Fig. 1b, namely MONOTONIC, along with its
optimization rule, can be defined as presented below.
CREATE CLUE TYPE MONOTONIC (monotonic_on VARCHAR ,

decreasing BOOLEAN , nullable BOOLEAN DEFAULT TRUE)

AS IMPL 'clues/monotonic.py';
Listing 2: Clue Type MONOTONIC – Its arguments (e.g. monotonic_on) are
designated when instantiating the Clue type for a specific query; its
optimization rule (frame binary search) is implemented in a python file in
this example.

Then for a specific query like Q1 (Lst. 1), we can declare a Clue
instance of type MONOTONIC, as presented below. The Clue instances

1Optical Character Recognition (OCR) is a technology to recognize text in an image.
2SQL is a declarative language that is limited in its ability to handle complex logic
beyond simple database queries.
3The optimization rules operate on the query plans created from user queries and
generate optimized plans for execution.

3256

https://doi.org/10.14778/3681954.3681998
https://github.com/daren996/ClueVQS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3681998
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CLUEVQS

Query

Optimized Plans

Execution Engine

Result

Best Plan

User
Clue Instances

Clue-Based Plan Genenerator
CGen

Cost-Based Plan Selector
CSel

 Query Parser and
 Conventional Query

Initial Query Plan

Clue Types

MONOTONIC

DISJOINT

DOMAIN_MAPPING

PREFILTER

BULK_SUBSTITUTE

...

Registered Clue Types

Optimizer

Figure 2: ClueVQS – A user submits a query and a set of Clue instances.
CGen applies these Clue instances onto the initial query plan (created by a
query parser) using pre-implemented optimization rules, generating multi-
ple optimized plans. CSel selects the best plan with the lowest estimated
cost, and its executed results are returned to the user.
are positioned directly following the query statement, indicating
the specific query they can be applied to.

CREATE CLUE INSTANCE Q1_CLUE1 {

clue_type: MONOTONIC , monotonic_on: TimeOCR(img),

decreasing: FALSE , nullable: TRUE};

Listing 3: Clue Instance Q1_CLUE1 for Query Q1.

Although Clue instances are query-specific, the rules implemented
for the Clue types they belong to are query-independent. This
allows each Clue instance with customized arguments to apply the
implemented optimization rule for the type it belongs, to a specific
query, thus facilitating the utilization of user knowledge in the
query.

In this paper, we fully develop the concept of Clue types and
embed it into a general system, ClueVQS (Clue-based Video Query
Processing System), to support optimizations involving Clues. We
demonstrate how Clue types can express existing and new primi-
tives for optimization andwe present five Clue types, each equipped
with its corresponding optimization rules. Notably, ClueVQS is an
extensible system that enables easy creation of new Clue types,
through the syntax as exemplified in Lst. 2. At query processing
time, we submit a set of Clue instances that are potentially benefi-
cial to the query (each belonging to one of the Clue types supported
by the system). The system will automatically employ these Clue
instances utilizing the corresponding optimization rules to optimize
the query.

To fully utilize Clues in query processing, however, we must
overcome a number of challenges. First, the effectiveness of a Clue
instance to a query is data (video) dependent and difficult for the
user to assess. To see this, consider the case where the query in-
volves accurate detection and tracking of a certain type of objects,
say, cars. It is possible to apply to the query a Clue instance that
utilizes a cheap albeit inaccurate machine learning model (predi-
cate) as a filter to detect whether a frame contains an object type,
say, a car. When processing the query, this predicate is applied to
every frame first, and a more expensive and accurate predicate is
applied if the cheap filter indicates the presence of a car [25, 34, 41].
It is easy to see that the performance of query processing may
benefit from, or get penalized by, the introduction of this new Clue
instance depending on how many frames contain cars. Arguably, it

is difficult, if not impossible, to accurately assess the effectiveness of
Clue instances to queries. Instead of relying on the user to decide
which Clue instances should be applied, we allow the declaration
of Clue instances for a query without worrying about their ef-
fectiveness. We design ClueVQS to automatically select the best
subset of Clue instances declared by a user for query optimization.
Specifically, we propose a plan generator, CGen, that enumerates all
query plans (with varying efficiency) examining subsets of Clue
instances while optimizing a query. We also propose a plan selector,
CSel, that selects the best plan with the lowest cost. This is ac-
complished by computing the cost of each plan through a selective
temporally-constraint execution over the target video.

Second, as the number of Clue instances increases, the search
space for candidate query plans grows exponentially. Computing
the cost of the candidate plans precisely leads to considerable ex-
tra overhead. To address this challenge, our proposed CSel adopts
a pruning-based approach. It estimates the cost bounds of candi-
date query plans through strategically executing them, rather than
executing them exhaustively, thereby minimizing time overheads.

Third, since machine learning models incur prediction errors,
some Clue instances incorporating such models may reduce query
result accuracy. Balancing accuracy and efficiency is crucial to
ensure that the improvements in processing efficiency do not detri-
mentally affect the reliability and accuracy of the query results.
To address this challenge, we incorporate an accuracy constraint
into our system, representing the maximum acceptable reduction
in accuracy resulting from the application of Clues. Furthermore,
we refine CSel in our design, proposing CSel-AC, which is tailored
to efficiently identify the best plan that conforms to set accuracy
constraints.

The entire framework is illustrated in Fig. 2. Our system incor-
porates a number of Clue types each with its own optimization
rules. It is fully extensible, so new types along with associated opti-
mization rules can be incorporated. A query is accompanied with a
number of Clue instances (both provided by a user). Queries are
optimized automatically to make use of all applicable Clue type
optimizations before execution. The system also incorporates user
defined accuracy constraints.

In summary, we make the following contributions:
• We propose to incorporate user-provided knowledge into the

video query processing framework by introducing the concept
of user specified Clue.

• We define Clue types to express this knowledge along with
optimization rules to make this knowledge actionable during
query optimization.

• We provide the ability to express Clue types applicable to a
query by defining and specifying Clue instances.

• We design a system, ClueVQS, that utilizes Clue instances
for user queries effectively and automatically to improve the
efficiency of video query processing.

• We elaborate on five Clue types along with their specific
optimization rules implemented in ClueVQS, while also em-
phasizing the extensibility by adding new Clue types into the
system along with corresponding optimization rules in the
future.

• We frame the challenges of identifying the best query plan
from a search space of candidate plans as an optimization

3257

problem, and propose a novel efficient optimizer, including
a Clue-based plan generator, CGen, and a plan selection al-
gorithm, CSel, as well as its enhanced variant, CSel-AC, that
integrates accuracy constraints into the optimization system.

• We present the results of a comprehensive evaluation demon-
strating that our framework, by utilizing Clues, can accelerate
query runtime by up to 2 orders of magnitude compared to
other options. Additionally, it can reduce the optimization
time by up to 95%, compared to alternatives, with or without
the presence of accuracy constraints.

2 BACKGROUND

Video Database Management Systems (VDBMS) utilize User-
Defined Functions (UDFs) to leverage advanced machine learning
(ML) or computer vision (CV) models for video content retrieval
[49]. The UDFs, however, significantly increase the costs associated
with query processing in VDBMS. Traditional optimization tech-
niques in relational systems have limited applicability in a video
setting, since most predicates involve expensive UDFs [50]. In addi-
tion, in contrast to traditional RDBMS whose indexes are created
on some columns and automatically maintained, in VDBMS, the
input video is naturally ordered by frames, and no other indexes
are available prior to invoking external UDFs.

Recent research has been exploring the various approaches to
optimizing query processing in VDBMS [25, 34, 41, 49, 50]. Prior
to presenting Clues, this section will first provide an overview of
UDFs, the execution pipeline, and prior research on query process-
ing and optimization in VDBMS. To illustrate these concepts, we
will use the query Q2 that retrieves frames satisfying some specific
predicates from a movie, as shown in Lst. 4, as an exemplary case.
Scalar and Table UDFs in VDBMS. In RDBMS (e.g., IBM [22],
Snowflake [44], and Databricks [18]), UDFs can be categorized into
scalar functions (returning a single value) and table functions (re-
turning data in a tabular format). These can be similarly adopted
in the context of VDBMS. The table functions take a table (such as
OBJ_DET in Q2) or a value (such as LOAD_VIDEO in Q2) as input, and
return data in a tabular format. They are typically referenced in the
FROM clause of a SELECT statement. On the other hand, scalar func-
tions take values from a tuple as input, and return a single value
or tuple, such as TimeOCR in Q1 (Lst. 1) and PosDet in Q2. They are
commonly referenced in either the SELECT clause or the WHERE clause.
Examples of how to create both types of UDFs are provided respec-
tively in Lst. 5. Both examples employ externally referenced Python
code incorporating CV models to fulfill the intended function ob-
jectives. While UDFs offer flexibility and functional expansion for
handling tasks requiring ML/CV models, they can impact query
performance, as UDFs might not be optimized in the same way as
built-in functions of the database system [38].
Pipeline for executing a query in VDBMS. In VDBMS, a query
is first parsed and interpreted to form a raw query plan, followed
by an optimization phase to analyze and select the most effective
plan [49]. Then, relevant video data is retrieved and processed
according to the query requirements by executing the plan. In this
paper, in contrast to many existing VDBMS that are limited to
linear-structured query plans, we adapt VDBMS to accommodate
tree-structured query plans. Queries with tree-structured plans may
involve the join of results from ML models or other input sources

label='car'
Object Detection

Person Detection
label='Tom Hanks'

label='Running'
Posture Detection

-- Q2: Retrieve running Tom Hanks with a car in the scene

from Movie Forrest Gump.

WITH V AS LOAD_VIDEO('forrest_gump.mp4');

SELECT DISTINCT P.fid FROM PERSON_ID(V) AS P,

OBJ_DET(V) AS D ON (P.fid = D.fid)

WHERE P.label = 'Tom Hanks' AND D.label = 'car'

AND PosDet(P.box) = 'running ';

Listing 4: Example Query Q2.

CREATE SCALAR FUNCTION TimeOCR (img IMAGE , box BBOX)

RETURN DATE

AS RETURN IMPL 'sudfs/time_ocr.py';

CREATE TABLE FUNCTION OBJ_DET (V VIDEO)

RETURN TABLE (

id LONG , fid LONG FOREIGN KEY REFERENCES V.fid ,

label INT , box BBOX , scores FLOAT , PRIMARY KEY (id))

AS RETURN IMPL 'tudfs/fastrcnn_object_detector.py';

Listing 5: Example UDFs. – Data types VIDEO denotes the table with
schema (fid LONG, img IMAGE), IMAGE denotes NDARRAY UINT8(3,
ANYDIM, ANYDIM), BBOX denotes NDARRAY FLOAT32(4).

Figure 3: Query Plans of Q2. – Directly interpreted plan of Q2 and the
plans after rule-based optimizations. The predicate filters (denoted as 𝜎)
are streamlined for clarity.

(e.g., joining visual, audio and text data). The raw query plan of Q2
interpreted by the parser is illustrated in Fig. 3 (Q2-0). It typically
consists of the nodes of table UDFs (denoted as 𝐹), predicate filters
(denoted as 𝜎), along with other framework nodes such as joins
and projections.
Query optimization in VDBMS. In VDBMS, the raw query plan
first undergoes Rule-Based Optimization (RBO) by a conventional
optimizer, employing both standard RDBMS rules such as predi-
cate decomposition and push-down (e.g. Fig. 3 (Q2-1)) and video
query-specific rules like predicate pull-up (e.g. Fig. 3 (Q2-2), which
pulls up predicates from a branch of the join subtree) [19, 34, 45].
However, due to the challenges associated with querying video
data (e.g. uncertainty introduced by ML models), RBO often falls
short in effectively identifying the optimal query plan on its own.
In contrast, Cost-Based Optimization (CBO) offers a more suitable
approach. It begins with conducting a logical transformation and
enumerating various functionally equivalent query plans, and then
determines the best one by estimating and comparing the costs
(typically estimated by table statistics or empirical methods) associ-
ated with each plan. Recent research has shed light on innovative
approaches to generate more functionally equivalent query plans,
including introducing proxies (i.e., lightweight filters) ahead of
costly ML models [34], altering the processing order of different
models [50], and introducing relational hints for the models [41].

3258

3 CLUES

Clues are designed to convey user knowledge for query optimiza-
tion. Our system, ClueVQS, comes equipped with five predefined
Clue types proposed, each featuring its own optimization rules to
be detailed in §3.1. These rules distill the abstract query-related
knowledge encapsulated in Clues into executable optimization
strategies that can rewrite query plans. Moreover, the rules are de-
signed to be independent of any specific query or video content. As
a result, as shown in Fig. 2, to process a specific query in ClueVQS,
users only need to declare all available Clue instances, without con-
cern about the optimization rules associated with each Clue type or
the compatibility and effectiveness of each Clue instance for query
optimization. ClueVQS will automatically parse all the declared
Clue instances, identify those that can be effectively applied to the
query, and apply the optimization rules of the corresponding Clue
type to optimize the query (to be discussed in §4). Additionally,
ClueVQS can easily accommodate new Clue types. The consider-
ations and guidelines for creating new Clue types are detailed in
§3.2. The way to declaring Clue instances is outlined in §3.3.

3.1 Supported Clue Types in ClueVQS

In this section, we introduce five distinct Clue types, including
three based on novel optimization principles we propose (MONOTONIC,
DISJOINT, DOMAIN_MAPPING), and two adapting ideas introduced in
previous research (PREFILTER, BULK_SUBSTITUTE), thus demonstrat-
ing that our framework is general enough to encompass other types
of optimization knowledge. Typically, Clues assist in optimizing
queries by manipulating nodes within the query plan represented
as a tree, such as adding new nodes or altering existing ones. We
also detail their respective optimization rules in this section.
3.1.1 Clue Type MONOTONIC. Clues of this type indicate that the
output relation of a scalar UDF (or a column in the output relation
of a table UDF), denoted as 𝐹Mono, has a monotonic property in
its values across the whole video or within a specified segment
of the video. For instance, in query Q1 (in Lst. 1), the outputs of
UDF TimeOCR increase monotonically over the sequence of the video
frames.
Optimization Rules. We can optimize query processing when ap-
plying the UDF 𝐹Mono by skipping frames that do not satisfy the
predicates without applying 𝐹Mono to every frame, utilizing search
algorithms such as binary search or interpolation search. For in-
stance, as depicted in Fig. 1b, query Q1 (in Lst. 1) is optimized using
a binary search procedure when the variable in the predicate (i.e.,
the outputs of the scalar UDF TimeOCR) is monotonically increasing.
The query efficiency is improved by applying TimeOCR only to the
middle frame at each iteration of the binary search procedure.
3.1.2 Clue Type DISJOINT. Unlike MONOTONIC, Clues in this new
type provide information for patterns that repeat across disjoint
video segments, which can be leveraged to optimize query process-
ing. For instance, in query Q3 (in Lst. 6), the video frames in a
basketball game video satisfying the query predicate constitute
disjoint video segments containing active playing periods. Fig. 4a
reveals a Clue that a 24-second countdown timer appears on the
screen in each disjoint video segment, initializing from 24 and then
keeps decreasing. The detection of the 24-second timer helps sepa-
rate segments containing active playing from pauses and timeouts
as is typical in basketball games.

-- Q3: Retrieve active playing period from a basketball

game video.

SELECT * FROM LOAD_VIDEO('basketball_game.mp4')

WHERE ActivePlayingDet(img) = TRUE;
Listing 6: Example Query Q3.

Active Playing
Periods

Pauses and
Timeouts

(a) A 24-second countdown timer is al-

ways visible during active play.

Frame Skipping Timer Detection
Target

Video(s)

(b) A frame skipping strategy can

be applied to minimize frame-by-

frame processing.

Figure 4: Optimization of Q3 utilizing the Clue that a 24-second

countdown timer is always visible during active play.

-- Q4: Retrieve the cars turning left at the intersection

from a surveillance video.

SELECT T.tid FROM OBJ_TRACK(LOAD_VIDEO(

'surveillance.mp4')) AS T

WHERE T.obj = 'car' AND T.boxes.x1 >= 500 AND T.boxes.

y1 >= 200 AND Trajectory(T.boxes) = 'turning left';

Listing 7: Example Query Q4.

Crop Recover
Object

Tracking

40 fps

Object Tracking 15 fps
without Optimization

Target Video(s) Domain Mapping

Figure 5: In the example of Q4, Clue DOMAIN_MAPPING applies object track-

ing models solely on cropped images to reduce inference overhead.

Figure 6: Query Plans of Q4 Revised by Clues in Type DOMAIN_MAPPING.

Optimization Rules. It can optimize query processing by leveraging
such repeating patterns within the disjoint video segments, similar
to the values of the 24-second timer (which always start at 24 and
decreases monotonically in each segment), as illustrated in Fig. 4b
More optimization strategies can be developed with a richer set of
query-related knowledge provided by Clue DISJOINT.
3.1.3 Clue Type DOMAIN_MAPPING. Fig. 5 illustrates an optimiza-
tion applied to the UDF OBJ_TRACK (object tracking model [6, 7])
of query Q4 (in Lst. 7), including two main steps: (1) cropping the
image according to bounding box predicates (i.e., removing areas
of irrelevant pixels that the predicates are not concerned with),
and (2) mapping the bounding boxes from the cropped image back
to the original (i.e., applying offsets based on the cropped pixels).
We generalize such optimization and use DOMAIN_MAPPING to denote
such Clue types.
Optimization Rules. Clues in this type can be applied to rewrite
the original query by adding two new UDFs, denoted as 𝐹MAP
and 𝐹RECOVER, positioned before and after an existing UDF (e.g.
𝐹OBJ_TRACK), respectively, and pushing down some of its predicates
into 𝐹MAP (e.g. boxes.x1 >= 500 AND boxes.y1 >= 200), as demon-
strated in Fig. 6. This allows 𝐹MAP to map the input relation of
𝐹OBJ_TRACK to a relation that is easier to process for 𝐹OBJ_TRACK.

3259

-- Q5: Retrieve a specific event from a BBC documentary.

SELECT * FROM EVENT_DET(LOAD_VIDEO('bbc_earth.mp4'))

WHERE event = 'wildebeests attacked by crocodiles ';

Listing 8: Example Query Q5.

Target
Video(s)

Speech Recognition Model 10K fps Event Detection
Model 5-10 fps

without Optimization

Figure 7: In the example of Q5, using the caption to prefilter frames

that are not related to the queried event can prevent the need to

apply the computationally intensive model to every frame.

Figure 8: Query Plans of Q5 revised by Clues in Type PREFILTER.

Subsequently, 𝐹RECOVER is used to remap the outcomes processed
by 𝐹OBJ_TRACK back to the original results.
3.1.4 Clue Type PREFILTER. A very common optimization tech-
nique in VDBMS is to use prefilters to pre-process certain frames
and only send promising ones for further evaluation to compu-
tationally intensive ML models [10, 25, 34, 41]. In line with this
approach, we demonstrate how prefilters can be expressed in our
framework and also enable them to incorporate diverse sources
when using Clue instances. For example, for query Q5 (in Lst. 8)
that aims to locate a specific event within a lengthy documentary,
the caption recognized by a speech model (10k fps4) [35] can be uti-
lized to prefilter frames with caption irrelevant to the queried event,
thereby avoiding the application of the computationally expensive
event detection model (5-10 fps) at each frame, as illustrated in
Fig. 7.
Optimization Rules. Clues in this type can be applied to rewrite
the original query plan by introducing a prefilter as a new branch,
positioning it as a child of the filtered ML model in the plan. For
example, Fig. 8 illustrates the plan after applying the Clue based
on the knowledge of the video caption illustrated in Fig. 7 on query
Q5 (in Lst. 8). The output relation of the prefilter should align with
one or more common columns (e.g., fid) of the filtered ML model
input. While executing the query plan revised by Clues in this type,
the prefilter applies its predicate (e.g. 𝜎det) to filter entries from the
input of the filtered ML model (e.g. 𝐹EVENT_DET), thereby reducing
the computational overhead of the latter.
3.1.5 Clue Type BULK_SUBSTITUTE. Another common optimization
technique similar to prefilter is to substitute onemodel with another
that may be more time-efficient or accurate [41, 50]. We demon-
strate how this can be adapted in our framework and also extend it
to allow for the substitution of multiple models, not just one. The
models involved are not restricted to being functionally similar.
4Frames per second (fps) of a model refers to the number of frames it can process or
analyze per second.

Figure 9: Plans of Q2 revised by Clues in Type BULK_SUBSTITUTE.

For instance, for query Q2 (in Lst. 4), a more versatile model, such
as OBJ_DET_PLUS, which is capable of identifying both persons (de-
tected by PERSON_ID) and objects (detected by OBJ_DET), can replace
two original models, as demonstrated in Fig. 9.
Optimization Rules. Clues in this type can rewrite the original
query by introducing a new UDF, referred to as 𝐹𝑆 , to substitute
one or more previously used UDFs. 𝐹𝑆 produces an output relation
covering columns (e.g., label and box) in the predicate filters of
the UDFs being replaced. A new predicate filter for 𝐹𝑆 is created
combining the predicate filters of the substituted UDFs.
3.2 Defining New Clue Types

ClueVQS, is designed to easily accommodate new Clue types,
as the example presented in Lst. 2. To create a new Clue type,
initially, we define the name and argument list for this new type,
along with the data types and any constraints. Following this, we
develop a new optimization rule for this Clue type, which could
involve rewriting subtrees of the original query plan or improving
the execution of certain nodes or subtrees within the plan.

The argument list provided to a Clue type brings two benefits:
(1) for each Clue type, developers can pre-define all arguments
for important parameters to be used in developing optimization
rules for Clue instances; (2) exposing the parameters to end-users
could significantly improve the flexibility and applicability of us-
ing Clue instances, allowing users to provide insights bounded to
specific application domains or video sources. Such arguments are
used to instantiate CLUE types with specific query information. In
ClueVQS, we provide an API for implementing these rules [9]. The
rule implemented for a new Clue type will be used by the optimizer
CGen (to be discussed in §4.1), enabling ClueVQS to rewrite the
query plan accordingly.
3.3 Declaration of Clue Instances

Clue instances are declared right after the query statement using
a simple and straightforward syntax of key-value pairs, making it
easy for users to implement. Lst. 3 presents how Clue instances
for query Q1 (in Lst. 1) are specified. The Clue type (specified
with clue_type) is mandatory for all Clue instance declarations.
The key-value pairs vary depending on the Clue type, and are
determined based on the query itself: monotonic_on key indicates
the UDF with monotonic outputs; decreasing specifies whether the
monotonicity is increasing or decreasing; nullable denotes if the
UDF results can be null. As shown in Lst. 3, users simply fill in
the values corresponding to these keys to reflect their knowledge
about monotonicity, without concerns about compatibility and
effectiveness.

4 CLUE-BASED OPTIMIZATION IN CLUEVQS

Although §3 presents numerous Clues, utilizing them effectively
to optimize queries remains a challenge. This section proposes the
cost-based optimization framework adopted by ClueVQS. In §4.1,

3260

Algorithm 1: Plan Generation with Clues
1 Procedure CGen(𝑞𝑜 , C)
2 G𝐷 ← GraphBuilder(C) ;
3

ord
𝑉𝐷 ← TopologicalSort(G𝐷) ;

4 Q+ ← ∅ ;
5 PlanGeneratorRecursion(

ord
𝑉𝐷 , ∅) ;

6 OrderPermutation(Q+) ;
7 return Q+ ;

8 Procedure PlanGeneratorRecursion(
ord
𝑉 ′ ,𝑉use)

9 𝜉 ←
ord
𝑉 ′ .pop() ;

10 if
ord
𝑉 ′ ≠ ∅ then

11 PlanGeneratorRecursion(
ord
𝑉 ′ ,𝑉use) ;

12 if ClueVerifier(𝜉 ,𝑉use) then

13 PlanGeneratorRecursion(
ord
𝑉 ′ ,𝑉use∪{𝜉 }) ;

14 if
ord
𝑉 ′=∅ ∧𝑉use≠∅ then

15 Q+ ← Q+ ∪ { PlanRewriter(𝑞𝑜 ,𝑉use) } ;

we introduce a plan generator, CGen, to apply the Clues strategi-
cally and enumerate all candidate query plans. §4.2 formalizes the
problem of identifying the optimal plan from all candidate query
plans, known asMinETOpt . We next introduce a plan selector, CSel,
employed by ClueVQS as a solution to the problem MinETOpt . Fi-
nally, §4.4 discusses a variant of the aforementioned problem that
incorporates accuracy constraints, namely MinETOpt-AC, along
with a brief overview of how our proposals adapt to this new prob-
lem (referred to as CSel-AC) and its limitations.

4.1 CGen

As shown in Fig. 2, ClueVQS accepts a query along with a collec-
tion of Clues, denoted as C, as inputs. Initially, ClueVQS optimizes
the query through a conventional rule-based query optimizer (as
described in §2) to generate a query plan 𝑞𝑜 . Then, with the original
query plan 𝑞𝑜 and user-provided Clues C as inputs, the algorithm,
CGen, is employed to generate all candidate query plans Q+, as
outlined in Alg. 1. Through a recursive procedure, CGen iteratively
visits all Clues and then rewrites the query plans to catalogue all
candidate query plans.

At the outset, CGen constructs a graph to represent dependencies
among the Clues, utilizing GraphBuilder, as outlined in Lines 2-3 of
Alg. 1. The dependencies play a crucial role in the Clue validation
process (to be elaborated in §4.1.1). Let G𝐷 :{𝑉𝐷 , 𝐸𝐷 } represent the
dependency graph, where each vertex is a Clue, and each directed
edge 𝑢→𝑣 signifies that 𝑣 depends on 𝑢. We denote the topological
sort of all its vertices as

ord
𝑉𝐷 . TopologicalSort can compute

ord
𝑉𝐷

for G𝐷 efficiently in linear time by employing methods such as
Kosaraju’s algorithm [17].

Subsequently, in Line 5 of Alg. 1, CGen visits all the Clues and
generates all candidate query plans using a recursive approach
called PlanGeneratorRecursion. It accepts two parameters: one is
the queue of Clues (in topological order) that have yet to be visited,
denoted as

ord
𝑉 ′, and the other is the collection of Clues used

for generating plans, denoted as 𝑉use. During each recursion of
PlanGeneratorRecursion, a Clue 𝜉 within the queue

ord
𝑉 ′ will be

visited, and its applicability will be verified (Line 12; explained in
§4.1.1): if its verification fails, the algorithm will only enter the
branch with the same parameter as 𝑉use (Line 11); however, if it

is verified, the algorithm will additionally enter the branch with
𝑉use∪{𝜉} (Line 13). When the unvisited queue

ord
𝑉 ′ becomes empty

while𝑉use is not an empty set, the recursion will halt, leading to the
generation of a new plan (Lines 14-15; elaborated in §4.1.2). After
all the recursive steps halt, Q+ will have contained all the candidate
plans generated throughout the recursion.

In addition, CGen can also take into account other query rewriting
techniques, such as predicate pull-up (illustrated in Fig. 3) and
predicate order permutation (elaborated in §4.1.3).
4.1.1 Clue Validation. In Line 12 of Alg. 1, ClueVerifier is utilized
to assess whether a Clue (∈C) is valid for the queries. For each type
of Clues, the validator will employ a dedicated built-in fast static
procedure to verify its applicability to the current query plan. This
may involve verifying the presence of arguments in the declaration
and assessing if the optimization rule is compatible with the query.
We exemplify the procedure of Clue validation using the Clue
Q1_CLUE1 in type of MONOTONIC declared in Lst. 3: the validator will
verify if the attribute monotonic_on is present in the query predicates
and verify its data type. Some Clues may depend on others, where
these dependencies originate from their associated optimization
rules. For example, when a Clue needs to use UDFs introduced by
other Clues, it can only be applied after the other Clues have been
applied.
4.1.2 Rewriting aQuery Plan. As per Line 15 of Alg. 1, PlanRewriter
is utilized to create a new query plan by rewriting the original query
plan (𝑞𝑜) utilizing a given set of Clues (𝑉use). PlanRewriter sequen-
tially applies each Clue (∈𝑉use) in a topological order:
⊲ For eachℎ𝑖 ∈ 𝑉use, it applies thisℎ𝑖 to rewrite the query plan gen-
erated by the previous ℎ𝑖−1 (i.e. 𝑞 (𝑖−1) ; the first ℎ1 will rewrite
𝑞𝑜), creating a new query plan 𝑞 (𝑖) , by adopting its optimization
rule appropriately (as detailed in §3.1).

4.1.3 Order Permutation. As per Line 6 of Alg. 1, for every gen-
erated query plan in Q+, OrderPermutation permutes the order of
predicates in each of its predicate filters, by placing the predicates
without scalar UDFs at the beginning and exhausting all possible
orderings of the remaining predicates.

4.2 Optimization Problem Formulation

After CGen generates all candidate query plans Q+, ClueVQS
aims to select a query plan, denoted as 𝑞∗ (∈Q+), which has the
lowest execution time under the same input setting compared to
all other plans.
4.2.1 Canary Data. ClueVQS utilizes a canary input (D𝐶) to assess
the cost of each candidate plan. The canary input is a user-specified
representative sample of the input being queried, such as a short
clip from the video involved in the original query. Using small,
representative canaries is common for tuning and calibration in
computer vision, machine learning, and data mining systems before
execution [33, 41]. They have also been used by recent VDBMS
[41, 48–50]. Our empirical evaluation proves that it is sufficient to
use a canary with at least one instance of each Clue proposed by
users for optimization, to assess the performance of the Clues.
4.2.2 MinETOpt: Problem Statement. For each plan 𝑞∈Q+, let ˆ︁𝐶 (𝑞)
represent the execution cost of 𝑞 on the canary input. ClueVQS
aims to select the optimal plan 𝑞∗ that minimizes the execution costˆ︁𝐶 (𝑞∗), by strategically evaluating the performance of all plans on
the canary input. Meanwhile, we should keep this evaluation cost

3261

Figure 10: Blocks in Example Query Plans of Q4 and Q5.

as small as possible. Let 𝐸 (𝑞 |𝑞∗) represent the cost of evaluating
each plan 𝑞 (∈Q+) on the canary input to identify 𝑞∗. Formally, the
problem of finding the optimal plan is defined as:

𝑞∗ := arg min
𝑞∈Q+

ˆ︁𝐶 (𝑞) . (1)

The goal of the optimization problem, MinETOpt , is to:

minimize
∑︂
𝑞∈Q+

𝐸 (𝑞 |𝑞∗) . (2)

4.2.3 Naive Approach. A naive approach to the problemMinETOpt

is to execute each plan 𝑞∈Q+ on D𝐶 to evaluate their performance,
whose total evaluation cost is 𝐸max=

∑︁
𝑞∈Q+ ˆ︁𝐶 (𝑞). However, as the

number of Clues (|C+ |) grows, the search space for candidate query
plans (|Q+ |) expands exponentially, making this approach imprac-
tical. Therefore, it is imperative to devise an algorithm capable of
efficiently identifying the optimal plan, avoiding assessing the can-
didate plans one by one. In §4.3, we will propose an algorithm, CSel,
that strategically allocates evaluation resources and significantly
reduces the evaluation cost.

4.3 CSel

We propose an algorithm, namely CSel, to addressMinETOpt ,
selecting the optimal query plan (𝑞∗) from a collection of candidate
query plans (Q+) efficiently. The algorithm follows a branch-and-
bound approach [2, 49], assigning upper and lower bounds to each
query plan. As queries are progressively evaluated on the canary
data, these bounds are updated, which enables CSel to prune plans
safely, effectively narrowing down the number of plans to be com-
pletely evaluated, thereby accelerating optimal plan selection.
4.3.1 Preliminaries. In a query plan tree, a structure consisting of
a predicate filter followed by several related table UDFs is referred
to as a Block, denoted as 𝜆, as illustrated in Fig. 10. A plan tree
consists of one or more Blocks, which we sequentially order based
on their distance from the leaf nodes, such as the 𝜆𝑞51 and 𝜆

𝑞5
2 of

Q5-1 in Fig. 10. Specifically, a plan 𝑞 includes 𝑛𝑞 Blocks: 𝜆𝑞1 , ...,
𝜆
𝑞

𝑛𝑞
, where a smaller index number indicates a lower level and a

smaller subtree the Block is at. We assume that the processing cost
of a Block for one row from the input relation, such as a single
video frame, remains constant. Let 𝑐 (𝜆) represent the processing
costs of a Block 𝜆 on a single row. Thus, the execution cost of a
Block depends only on its input row count. Let 𝜈 (𝜆𝑞

𝑖
) represent

the cardinality of the outputs of the Block 𝜆
𝑞

𝑖
when evaluating 𝑞

on the canary. The cost of the Block 𝜆
𝑞

𝑖
when evaluating 𝑞 on the

canary is: ˆ︁𝐶 (𝜆𝑞
𝑖
) = 𝜈̂ (𝜆𝑞

𝑖−1) · 𝑐 (𝜆
𝑞

𝑖
), (3)

Algorithm 2: Cost-Based Plan Selection
1 Procedure CSel(D𝐶 , Q+)
2 B← GroupBlock(Q+) ;
3 bounds← BoundInitializer(B) ;
4 Qpruned ← ∅ ;
5 while ¬ HaltCondition do

6 𝜆′ ← TopUnexplored(B, Qpruned) ;
7 BlockEvaluate(D𝐶 , 𝜆′) ;
8 BoundUpdate(𝜆′) ;
9 Qpruned ← PlanPruner(Q+, bounds, Qpruned) ;

10 return 𝑞∗ ;

where 𝜆𝑞
𝑖−1 is the preceding Block of 𝜆𝑞

𝑖
. Clearly, the cost of evalu-

ating a query 𝑞 on the canary is

ˆ︁𝐶 (𝑞) = 𝑛𝑞∑︂
𝑖=1

ˆ︁𝐶 (𝜆𝑞
𝑖
) . (4)

The Blocks present in different query plans could be identical,
or they might be related, such as be output-equivalent, namely
they produce the same outputs for identical inputs (e.g. 𝜆𝑞41 ∼𝜆

𝑞4′
1

in Fig. 10). Let𝑂 (𝜆 |𝐼) represent the outputs generated by executing
Block 𝜆 with 𝐼 as the inputs. We will leverage these characteristics
of Blocks to avoid the full evaluation of each plan, thereby reducing
the evaluation cost.
4.3.2 Algorithm. CSel utilizes an iterative method, exploring (ex-
ecuting) an unexplored Block of a plan at each iteration, to update
the bounds of plans and prune plans, as detailed in Alg. 2.

At the beginning (Line 2 of Alg. 2), CSel enumerates all the
Blocks in Q+, denoted as B, and identifies the identical or output-
equivalent ones. Following that, as per Line 3 of Alg. 2, CSel ini-
tializes the upper and lower bounds of the cost of all queries in Q+,
denoted as ˆ︁𝐶ub (𝑞) and ˆ︁𝐶lb (𝑞), and the bounds on the cardinality
for all Blocks in B, denoted as 𝜈ub (𝜆) and 𝜈 lb (𝜆), according to
Lemma 4.1 (elaborated in §4.3.3).

In Lines 5-9 of Alg. 2, CSel iteratively performs the following
steps: it selects and executes an unexplored Block 𝜆′, updates
the cost bounds, and prunes plans. The iteration repeats until the
HaltCondition is triggered, i.e. there exists an optimal plan whose
cost upper bound is lower than the costs of all other plans:

HaltCondition : ∃ 𝑞∗, ∀𝑞𝑖 ∈Q+ ˆ︁𝐶ub (𝑞∗) ≤ ˆ︁𝐶lb (𝑞𝑖) .

As per Line 6, TopUnexplored ranks all plans by the average of their

upper and lower cost bounds, calculated as ˆ︁𝐶avg (𝑞) =
ˆ︁𝐶ub (𝑞)+ˆ︁𝐶lb (𝑞)

2 ,
and selects an unexplored Block from the plan with the smallest
average cost, namely 𝜆′. Subsequently, as per Line 7, BlockEvaluate
executes the subtree of the query plan located at Block 𝜆′ on the
canary. Since all other Blocks within this subtree have already been
executed in previous iterations, the cost of executing this subtree
equates to the cost of executing Block 𝜆′. Following that, in Line 8,
CSel updates the bounds for 𝜆′ and for all the plans relevant to
𝜆′. Lastly, as per Line 9, CSel prunes plans by comparing the cost
bounds of each pair of plans (e.g. 𝑞𝑖 and 𝑞 𝑗) to eliminate those that
cannot be optimal, specifically, if a plan’s lower bound exceeds the
upper bound of another plan,

∀𝑞𝑖 ,𝑞 𝑗 ∈Q+
ˆ︁𝐶ub (𝑞𝑖) ≤ ˆ︁𝐶lb (𝑞 𝑗) ⇒ prune 𝑞 𝑗 .

3262

4.3.3 Upper and Lower Cost Bounds. As indicated by Eq. 3, the
estimation of the upper and lower bounds for the cost of a Block 𝜆𝑖
(i.e. ˆ︁𝐶ub (𝜆𝑖) and ˆ︁𝐶lb (𝜆𝑖)) essentially involves estimating the upper
and lower bounds for the cardinality of its preceding Block 𝜆𝑖−1
(i.e. 𝜈ub (𝜆𝑖−1) and 𝜈 lb (𝜆𝑖−1)).ˆ︁𝐶ub (𝜆𝑖) = 𝜈̂ub (𝜆𝑖−1) · 𝑐 (𝜆𝑖) ; ˆ︁𝐶lb (𝜆𝑖) = 𝜈̂ lb (𝜆𝑖−1) · 𝑐 (𝜆𝑖) . (5)

The upper bound of the cardinality for a Block 𝜆𝑖 is typically a
fraction (or multiple) of the input row count,

𝜈̂ub (𝜆𝑖)=𝜇 (𝜆𝑖) · 𝜈̂ub (𝜆𝑖−1), (6)

where 𝜇 (𝜆𝑖) is the largest fraction (or multiple) of input rows that
Block 𝜆𝑖 can output, a value influenced by the inherent properties
of the UDFs in the Block and established by expert guidance. The
lower bound of the cardinality for a Block 𝜆𝑖 is 𝜈 lb (𝜆𝑖)=0. Eventu-
ally, the upper and lower bounds for the cost of a query plan 𝑞 (i.e.ˆ︁𝐶ub (𝑞) and ˆ︁𝐶lb (𝑞)) can be estimated by summing the upper and
lower bounds for the costs associated with all its Blocks.

ˆ︁𝐶ub (𝑞) =
𝑛𝑞∑︂
𝑗=1

ˆ︁𝐶ub (𝜆
𝑞

𝑗
) ; ˆ︁𝐶lb (𝑞) =

𝑛𝑞∑︂
𝑗=1

ˆ︁𝐶lb (𝜆
𝑞

𝑗
) . (7)

BoundInitializer: During the initialization (Line 3 of Alg. 2), with-
out additional information, the lower bound for a Block’s output
cardinality is set to 0, and its upper bound is set based on the
cardinality of the preceding Blocks.

Lemma 4.1. Cost Bound Initialization. For each plan, the initialized

upper and lower bounds of the cardinality for the output of a Block

𝜆𝑖 are set as follows: 𝜈ub (𝜆𝑖)=𝜇 (𝜆𝑖) · 𝜈ub (𝜆𝑖−1), 𝜈 lb (𝜆𝑖)=0, where
𝜈
ub
(𝜆0)=𝜈 lb (𝜆0)=|D𝐶 |, the row count of the canary inputs. The ini-

tialized upper and lower bounds of the cost for a plan 𝑞 are set as fol-

lows: ˆ︁𝐶
ub
(𝑞) = ∑︁𝑛𝑞

𝑗=1 𝜈ub (𝜆
𝑞

𝑗−1)·𝑐 (𝜆
𝑞

𝑗
), ˆ︁𝐶

lb
(𝑞) = ∑︁𝑛𝑞

𝑗=1 𝜈 lb (𝜆
𝑞

𝑗−1)·𝑐 (𝜆
𝑞

𝑗
).

BoundUpdate: At each iteration, after executing a Block 𝜆′, the upper
and lower bounds of its cost and output cardinality are both updated
to a single value, i.e. ˆ︁𝐶 (𝜆′) and 𝜈 (𝜆′). The cost bounds of the plan
𝜆′ belongs to can be directly updated utilizing Eq. (5), Eq. (6) and
Eq. (7).
4.3.4 Example. We illustrate Alg. 2 with an example as shown in
Tb. 1. For simplicity, we consider only three query plans from a set,
namely 𝑞1, 𝑞2, and 𝑞3. Tb. 1a illustrates the relationship between
Blocks produced by GroupBlock: 𝜆𝑞12 and 𝜆𝑞33 are output-equivalent;
𝜆
𝑞2
2 and 𝜆𝑞33 are identical. Tb. 1b presents the estimated cost bounds

and the explored Blocks of the three plans, after (𝑖−1)-th iteration.
The input for the front-most unexplored Block in each plan (i.e.

𝜆
𝑞1
2 , 𝜆𝑞21 and 𝜆

𝑞3
3) is the output of its preceding node, which has

been obtained in prior iterations. For instance, the inputs for 𝜆𝑞12
and 𝜆𝑞33 are𝑂 (𝜆𝑞11) and𝑂 (𝜆

𝑞3
2) respectively; meanwhile, 𝜆𝑞21 , which

lacks a preceding node, receives its input from canary data D𝐶 .
At 𝑖-th iteration, CSel uses TopUnexplored to rank these plans

based on their ˆ︁𝐶avg (𝑞) and selects the one with the smallest ˆ︁𝐶avg (𝑞),
which is 𝑞3. It then uses BlockEvaluate to explore the front-most
unexplored Block in𝑞3 (i.e. 𝜆′=𝜆

𝑞3
3). This involves executing 𝜆𝑞33 on

𝑂 (𝜆𝑞32), which yields the outcome 𝑂 (𝜆𝑞33) and the associated costˆ︁𝐶 (𝜆𝑞33). Then, BoundUpdate updates the bounds of 𝜆𝑞33 accordingly.
Other Blocks that have a relationship with 𝜆

𝑞3
3 (as indicated in

Tb. 1a) will have their bounds updated by CSel without actual

execution. This is achieved by utilizing the selectivity of 𝜆𝑞33 on its
input 𝑂 (𝜆𝑞32). Since 𝜆

𝑞1
2 and 𝜆𝑞22 are expected to produce the same

outcomes as 𝜆𝑞33 when provided with the same inputs, it is possible
to update their bounds by computing the overlap between their
inputs with that of 𝜆′.

After updating the upper and lower bounds of the cost for each
plan, as illustrated in Tb. 1c, at the end of the iteration, CSel uses
PlanPruner to prune plans whose lower bound exceeds the upper
bounds of other plans (e.g., the pruning of 𝑞3).
4.4 Accuracy Constraint

Since machine learning models are prone to prediction errors, in-
corporating these models into certain Clue instances might reduce
the accuracy of query results. The query plan optimized by Clues
generated by CGenmight exhibit reduced accuracy compared to the
original query plan due to these errors. Instead of relying on the
user to assess the accuracy impact of Clues, the system ClueVQS is
supposed to automatically eliminate plans that fall below a certain
accuracy threshold. This is achieved by introducing an accuracy
constraint (user provided), which specifies the maximum accept-
able reduction in accuracy resulting from the application of Clues.
We update the aforementioned problem formulation in §4.4.1 to
account for such a potential reduction in accuracy. Additionally,
we discuss a method adapted from CSel, namely CSel-AC, that
addresses this issue and its limitations in §4.4.2, hoping to inspire
future research.
4.4.1 MinETOpt-AC: Problem Statement with Accuracy Constraint.

We adopt the query-wide accuracy, 𝐴 (∈[0, 1]) [34, 50], to measure
the accuracy of a plan compared to the original query plan 𝑞𝑜 .
Let 𝛼 represent the minimum tolerant accuracy. The problem of
identifying the optimal plan under this setting becomes:

𝑞∗𝐴𝐶 := arg min
𝑞∈Q+

ˆ︁𝐶 (𝑞), s.t. ˆ︁𝐴(𝑞) ≥ 𝛼, (8)

The goal of the new optimization problem with accuracy constraint,
named MinETOpt-AC, becomes:

minimize
∑︂
𝑞∈Q+

𝐸 (𝑞 |𝑞∗𝐴𝐶) . (9)

A widely used method for calculating query-wide accuracy in other
VDBMS [34, 50] involves using the recall rate5 of the outputs pro-
duced by the revised plan compared to the ground truth outputs
(or the outputs produced by the original plan if no ground truth is
available). A way to estimate this accuracy is to continue using a
canary. Specifically, the query-wide accuracy ˆ︁𝐴(𝑞) of a query 𝑞 on
the canary is the recall rate of the row-level6 outputs produced by
𝑞 (denoted as ˆ︁𝑂 (𝑞)) versus the ground truth outputs (denoted asˆ︁𝑂GT (𝑞)), ˆ︁𝐴(𝑞) = | ˆ︁𝑂 (𝑞) ∩ ˆ︁𝑂GT (𝑞) |

| ˆ︁𝑂GT (𝑞) |
. (10)

If the canary has no ground truth, an alternative method to com-

pute the query-wide accuracy is: ˆ︁𝐴(𝑞)= | ˆ︁𝑂 (𝑞)∩ˆ︁𝑂 (𝑞𝑜) |
| ˆ︁𝑂 (𝑞𝑜) | , where ˆ︁𝑂 (𝑞𝑜)

5Our approach aligns with prior works in defining the optimization problem with
recall, because, while optimizations often lead to efficiency gains, they typically reduce
recall by potentially missing relevant results, yet do not necessarily affect precision.
6The row-level outputs can not only refer to the rows of the input table (e.g., when
querying fid, each row corresponds to a frame), or refer to the rows of a table produced
by a table UDF (e.g., the table generated by OBJ_TRACK as per Q4 in Lst. 7, where each
row corresponds to a tracking result).

3263

Table 1: Example of CSel Handling an Iteration.

(a) Relationship

between Blocks.

B
𝜆
𝑞1
2 ∼ 𝜆

𝑞3
3

𝜆
𝑞2
2 ≡ 𝜆

𝑞3
3

...

(b) The state after the (𝑖−1)-th iteration.

Plans Blocks
(ˆ︁𝐶lb (𝑞) , ˆ︁𝐶ub (𝑞)) ˆ︁𝐶avg (𝑞)Explored Unexplored

𝑞1 𝜆
𝑞1
1 𝜆

𝑞1
2 , 𝜆𝑞13 , ... (100, 200) 150

𝑞2 / 𝜆
𝑞2
1 , 𝜆𝑞22 , ... (80, 160) 120

𝑞3 𝜆
𝑞3
1 , 𝜆𝑞32 𝜆

𝑞3
3 , 𝜆𝑞34 , ... (90, 110) 100

(c) The state after the 𝑖-th iteration.

Plans Blocks
(ˆ︁𝐶lb (𝑞) , ˆ︁𝐶ub (𝑞)) ˆ︁𝐶avg (𝑞)Explored Unexplored

𝑞1 𝜆
𝑞1
1 𝜆

𝑞1
2 , 𝜆𝑞13 , ... (100, 140) 120

𝑞2 / 𝜆
𝑞2
1 , 𝜆𝑞22 , ... (80, 100) 90

𝑞3 𝜆
𝑞3
1 , 𝜆𝑞32 , 𝜆𝑞33 𝜆

𝑞3
4 , ... (90, 100) 95

Algorithm 3: Plan Selection with Accuracy Constraint
1 Procedure CSel-AC(D𝐶 , Q+, 𝛼)
2 B← GroupBlock(Q+) ;
3 bounds← BoundInitializer-AC(B) ;
4 Qpruned, Qdisqualified ← ∅, ∅ ;
5 while ¬ HaltCondition do

6 𝜆′ ← TopUnexplored(B, Qpruned, Qdisqualified) ;
7 BlockEvaluate(D𝐶 , 𝜆′) ;
8 BoundUpdate-AC(𝜆′) ;
9 Qdisqualified ← PlanExcluder-AC(Q+, bounds) ;

10 Qpruned ← PlanPruner-AC(Q+, bounds) ;

11 return 𝑞∗ ;

represents the outputs produced by the original plan 𝑞𝑜 without
Clue optimization.
4.4.2 CSel-AC. The previously proposedAlg. 2 requires only a few
modifications to adapt to the new problemMinETOpt-AC, which
involves estimating the accuracy of each plan and pruning those
that fail to meet the accuracy constraint. This revised approach is
referred to as CSel-AC, presented in Alg. 3.

Beyond cost, CSel-AC also estimates the upper bound for the
accuracy of each plan on the canary, denoted as ˆ︁𝐴ub (𝑞),

ˆ︁𝐴ub (𝑞) = min(𝜈̂ub (𝑞)
| ˆ︁𝑂GT (𝑞) |

, 1.0), (11)

where ˆ︁𝑂GT (𝑞) is the ground truth outputs of the canary. If the
canary has no ground truth available, then the outputs generated
by the original plan 𝑞𝑜 can be used instead, i.e., ˆ︁𝑂GT (𝑞)=ˆ︁𝑂 (𝑞𝑜).

CSel-AC also employs an iterative method to prune plans, but
it modifies several functions, as highlighted in bold in Alg. 3. Dur-
ing the initialization, for each plan, BoundInitializer-AC addition-
ally initializes the upper bound for the accuracy of each plan
on the canary, using Eq. 11. In each iteration, after executing a
Block, BoundUpdate-AC additionally updates the accuracy bounds
(ˆ︁𝐴ub (𝑞)) using the updated cardinality bounds through Eq. 11.
PlanExcluder-AC excludes the plans whose accuracy upper bounds
fall below the minimum accuracy constraint, specifically whenˆ︁𝐴ub (𝑞)<𝛼 . The halt condition HaltCondition becomes

HaltCondition : ∃ 𝑞∗, ∀𝑞𝑖 ∈Q+\Qdisqualified
ˆ︁𝐶ub (𝑞∗) ≤ ˆ︁𝐶lb (𝑞𝑖) .

If all plans are pruned but the halt condition is not triggered yet,
PlanPruner-AC should additionally recover some plans that are not
in Qdisqualified, preferably those with the lowest cost.

However, a limitation of this approach is that accuracy estima-
tion depends heavily on canary assumptions about their coverage.
Future work could explore more effective algorithms, particularly
those that adaptively update statistical estimates.

Table 2: Datasets, queries, and the number of available Clue in-

stances for each query.

Query Dataset Length Query Description # Clues
𝐷1 WLD 414 min leopard hunting event 4
𝐷2 WLD 414 min leopards and monkeys 3
𝐷3 WLD 414 min track of leopards 5
𝐷4 NBA 135 min active play segments of

James dunking
6

𝐷5 Traffic 350 min cars turning left with
people at night

5

𝐷6 Breakfast 162 min baby making breakfast 4
𝐷7 VideoGame 78 min number of game wins 3
𝐷8 Timelapse 43 sec specific timestamp 1

5 EVALUATION

We now turn our attention to the evaluation of the algorithms
proposed so far. We first detail the experimental setting, followed
by our results.

5.1 Experimental Setup

Datasets, Queries and Clues. The real-world datasets employed
in our evaluation are detailed below.
• WLD [12]: a wild life documentary dataset, comprising 15 films,

complete with annotations for animal object detection and track-
ing, as well as subtitles.

• NBA: a recorded video of basketball games. Analysis of sports
videos has been employed in prior work, such as [41, 42].

• Traffic: a surveillance video from a crossroad intersection. Traffic
video analysis has been studied in prior work, such as [23, 28].

• Breakfast [32]: an action recognition dataset consisting of several
cooking activities, such as preparation of coffee.

• VideoGame: live screen recordings of video game play7.
• Timelapse: a YouTube time-lapse video8 captured over extended

periods, showcasing changes in city scenery over time.
Tb. 2 outlines the datasets, queries, and the number of available
Clue instances used to optimize query processing9. For each query,
we declared several Clue instances belonging to the five Clue
types previously described. For example, consider the query 𝐷1,
which aims to identify all the video segments containing the event
leopard hunting and employs an event detection model as the UDF
to identify the events. For this query, we declare four available Clue
instances: (1) C1, a PREFILTER type Clue instance that utilizes video
captions to filter the frames by searching for keyword leopard; (2)
C2, another PREFILTER type Clue instance that utilizes an object
detection model to filter the frames by searching for object leopard;
(3) C3, a BULK_SUBSTITUTE type Clue instance that offers a faster (but

7Available in the project repository.
8https://www.youtube.com/watch?v=JRH3rydhmKs
9Due to space constraints we cannot include the full specification of all queries and
Clues we utilized in our evaluation. They are available in our technical report [9].

3264

Table 3: The runtime of the original query plan of each query.

Query Original Plan Runtime Query Original Plan Runtime
𝐷1 1130 min 𝐷5 411 min
𝐷2 376 min 𝐷6 486 min
𝐷3 562 min 𝐷7 12.2 min
𝐷4 913 min 𝐷8 78 sec

Figure 11: Ratio of the runtime of the best Clue-optimized plans to

the original runtime.

Table 4: Queries where individual Clue instances of each type are

most effective.

Clue Types Queries Clue Types Queries
MONOTONIC 𝐷5,𝐷8 DISJOINT 𝐷3,𝐷4,𝐷7

DOMAIN_MAPPING 𝐷1,𝐷2,𝐷5 PREFILTER 𝐷1,𝐷2,𝐷4
BULK_SUBSTITUTE 𝐷1,𝐷2,𝐷6

less accurate) object detection model; and (4) C4, a DOMAIN_MAPPING

type Clue instance that crops parts of each frame identified as
sky, before forwarding them to the object detection model in C2

and later adjusts the bounding box coordinates of the frame to its
original size.
Metrics:

• Runtime: the time taken to execute a query plan. It serves as
a measure to evaluate and compare the runtime efficiency of
various query plans for a given query.

• Optimization Time: the time taken to select the best query plan
from a set of candidates by evaluating them on the canary. It
serves as a measure to assess and compare the optimization time
required by various plan selection approaches.

• Accuracy: the query-wide accuracy of a query plan on the canary,
compared against the ground truth outputs (or the outputs of
the original query plan), as defined in Eq. 10.

Algorithms Compared.We generate an original query plan uti-
lizing the parser and conventional query optimizer provided by a
state-of-the-art VDBMS, EVA [49]. Other advanced optimization
strategies proposed in EVA, such as UDF result reuse, are orthogonal
to the proposal in this paper and are not included in our experi-
ments. We compare the query runtime of the query plan optimized
through our Clue-based approach against the query plans pro-
duced by EVA and those produced by VIVA a state-of-the-art video
analytics system [41].
• VIVA leverages relational hints about the relationships between

machine learning models, which include two types: replace and
filter. We generalize the definition of filters in VIVA to support
other data sources (such as captions) and metadata (such as
shooting time), beyond including additional models, to enable
VIVA to utilize the PREFILTER or BULK_SUBSTITUTE Clues that are
identified for each query.

For the query optimization process (i.e. plan generation and selec-
tion), we compare our proposal with an approach we refer to as
PlanScan. PlanScan operates by executing all candidate plans on
the canary and then selecting the most efficient one.

Figure 12: Accuracy reduction resulting from the use of Clues.

5.2 Evaluation of Clues

We first explore how Clue instances enhance query processing,
evaluated by runtime–the time taken to execute a query plan. Tb. 3
presents the runtime of executing the original query plan that is
parsed and optimized by a conventional query optimizer in EVA
[49] (as shown in Fig. 2), without applying any Clues for each query
enumerated in Tb. 2. Fig. 11 illustrates a comparison of the query
runtime of the query plans optimized by CSel utilizing the Clues,
against both the runtime of the original plan (generated by EVA) and
the plan optimized by VIVA. It presents the ratio of the optimized
plan runtime over the original plan runtime. The comparison vividly
demonstrates that the incorporation of Clue instances leads to a
significant reduction in query runtime. For example, for query 𝐷1,
the runtime required by the query plan optimized with Clues is
merely 0.02% of the original plan runtime; for 𝐷6, this ratio drops to
just 0.01%, which demonstrates the effectiveness of the Clue-based
query optimization system proposed in this paper.

Compared to VIVA, our Clue-based optimization applies a broader
range of optimization strategies, not limited to just model filter and
model replace. As a result, it manages to reduce the query runtime
by 1-2 orders of magnitude on most queries compared to VIVA. On
some queries (such as 𝐷7 and 𝐷8), where suitable relational hints
are absent or their effects are limited, VIVA is unable to optimize
the query; in contrast, ours achieves a 10x speedup.
5.2.1 Effectiveness of Individual Clue Instances. In this section, we
aim to gain insights into the most frequently effective Clues per
query. Tb. 4 displays the queries that individual Clue instances of
each type are most effective on. For detailed information on which
Clues were employed for each query and their effectiveness, refer
to our technical report [9]. Here we illustrate the effectiveness of
individual Clue instances of each type through the following exam-
ples: the employment of a MONOTONIC type Clue instance onto 𝐷8
results in a reduction of its query runtime by approximately 90%; the
DISJOINT type Clue instance applied to 𝐷7 leads to a 90% decrease
in its runtime (this is the individual contribution of this filter out of
the 3 applied to the reduction of the runtime); the DOMAIN_MAPPING

type Clue instance used in 𝐷5 contributes a reduction in runtime
by about 80%; the PREFILTER type Clue instance for 𝐷1 reduces its
runtime by around 2 orders of magnitude; the employment of a
BULK_SUBSTITUTE type Clue instance to both 𝐷1 and 𝐷6 results in a
decrease of their runtime by 50%.
5.2.2 Combined Effect of Clues. We investigate the combined
impact of Clues on query optimization through systematic experi-
mentation. Specifically, for each query, we first conduct multiple
experiments, optimizing it with a different single Clue in each
experiment, and observe the runtime reduction. Subsequently, we
optimize each query using combinations of these single Clues in
each experiment. It allows us to compare the effects of individual
versus combined Clues on performance. If Clues are unrelated,

3265

Figure 13: Runtime of the best Clue-optimized plans (left y-axis)

and the optimization time of different plan selection methods (right

y-axis), varying the number of Clue instances on query 𝐷1.

such as the Clues DISJOINT and PREFILTER applied to dataset 𝐷4,
then the combined effect nearly equals the product of their indi-
vidual impacts. However, in most cases, the combined effect is less
than the product of their individual impacts due to overlapping
functionalities between the optimizations provided by the Clues.
5.2.3 Accuracy of Clue-OptimizedQuery Plans. Fig. 12 presents
the accuracy of those Clue-optimized query plans (the runtime
of these plans was shown in Fig. 11). The query plan accuracy is
defined as its query-wide accuracy (i.e. recall rate) when executed
on the canary, compared against either the ground truth data or
the outcomes produced by the original query plan, as specified in
Eq. 10. It is evident that while our Clues typically result in a modest
accuracy reduction of no more than 10% for most queries, certain
queries, such as 𝐷1, might experience more significant accuracy im-
pacts due to specific Clues like BULK_SUBSTITUTE (which introduces
a new machine learning model that brings additional uncertainty
and errors). In these instances, VIVA imposes a similar accuracy
reduction to that using Clues. However it is imperative to have the
flexibility to control accuracy and this underscores the need for the
forthcoming evaluation of the CSel-AC algorithm, which incorpo-
rates accuracy constraints into plan selection, especially for these
queries. In addition, we conducted experiments to assess whether
the Clues used affect precision, confirming that these Clues do not
impact it.
5.2.4 Impact of Varying Clue Instance Number. Fig. 13 presents
the runtime of the Clue-optimized plans, varying the number of
Clue instances that are applicable (depicted using the bar chart
on the left y-axis) for query 𝐷1 so that we obtain versions of 𝐷1
with varying number of Clues. Using the notation introduced in
§5.1 for 𝐷1 we employ the Clue instances as the following order:
C2 (PREFILTER), C3 (BULK_SUBSTITUTE), C4 (DOMAIN_MAPPING), followed
by C1 (PREFILTER). Hence, as the number of applied Clue instances
increases (from 0 to 4), the number of generated query plans also
rises correspondingly (from 1 to 14), alongside a significant reduc-
tion in the query runtime of the best plan (from 1130 min to 16.2
min), showcasing a dramatic enhancement in query performance.
This pattern is consistent across various queries; we use query 𝐷1
as a representative example for brevity. This trend underscores
the effectiveness of Clue instances in optimizing overall runtime
performance.

5.3 Evaluation of CSel

We next evaluate the effectiveness of the plan selection approach
proposed, CSel, by examining their optimization time–the time
taken to select the best query plan from a set of candidates by
evaluating them on the canary. Tb. 5 presents the optimization time
for PlanScan over a variety of queries when applied to canary data

Table 5: Optimization time of PlanScan on each query.

Query PlanScan Query PlanScan Query PlanScan
𝐷1 74.3 min 𝐷4 12.1 min 𝐷7 1.0 min
𝐷2 5.7 min 𝐷5 113.6 min 𝐷8 28.8 sec
𝐷3 69.4 min 𝐷6 51.4 min

Figure 14: Ratio of the optimization time of CSel and CSel-AC (with

a minimum tolerant accuracy A=0.9) compared to PlanScan.

sets. Fig. 14 provides a comparison of the optimization time required
by the different plan selection approaches for each query, when
applied to canary data sets. It presents the ratio of the optimization
time over PlanScan. This evaluation highlights a key advantage of
our proposed CSel method, which computes the cost bounds of
plans and enables early pruning, avoiding exhaustive and precise
estimation of runtime for the plans. As evident from the table,
CSel demonstrates a substantial decrease in optimization time; for
example, with query 𝐷4, CSel reduces the optimization time by up
to 95% in comparison to PlanScan.

Fig. 13 presents the optimization time associated with CSel and
PlanScan on its right y-axis, specifically in scenarios where the
number of Clue instances varies for query 𝐷1. As expected, the
increase in the number of Clue instances results in a correspond-
ing increase in the optimization time required for plan selection.
With the increase in Clue instances, which causes the search space
of candidate plans to grow exponentially, the optimization time
required by PlanScan similarly escalates in an exponential manner.
However, the increase of optimization time for CSel is not propor-
tional and is remarkably lower than that observed for PlanScan.
When 2 Clue instances are applied, the optimization time for CSel
is roughly half of that required by PlanScan; when 4 Clue instances
are applied, the optimization time for CSel becomes only one-fifth
of that required by PlanScan. This is due to the fact that the CSel
algorithm, when executing a plan Block, can update the bounds of
all its relevant Blocks, thereby saving on optimization time. This
pattern is consistent across various queries; we present results for
query 𝐷1 only for brevity. It indicates that CSel not only enhances
the efficiency of query plan selection but does so in a manner that
scales well with the complexity and number of Clue instances
involved.

Additionally, when a non-applicable Clue is declared by the user,
CSel can still determine the best query, but it slightly increases the
optimization time. This is because a non-applicable Clue increases
the number of candidate plans generated by CGen, subsequently
extending CSel’s execution time. However, it is a minor penalty.
According to our experiments, the increase in optimization time
caused by a non-applicable Clue typically amounts to less than 1

𝑛 ,
where 𝑛 is the total number of Clues.

5.4 Evaluation of CSel-AC

We turn our attention to the optimization problemMinETOpt-

AC, where the objective is to identify the optimal plan with the
least optimization time, while simultaneously ensuring that the

3266

Figure 15: Runtime of the selected plans (left y-axis) and the opti-

mization time of CSel-AC (right y-axis), varying the accuracy con-

straints (i.e. minimum tolerant accuracy) on query 𝐷1.

Figure 16: Optimization time of the plan selection approaches and

their ablations on query 𝐷1.

accuracy of the chosen plan exceeds a predefined minimum accept-
able threshold. Fig. 14 presents a comparison of the optimization
time of CSel-AC against both PlanScan and CSel. When compared
with PlanScan, CSel-AC demonstrates a significant improvement,
substantially reducing the optimization time. When compared to
CSel, the optimization time of CSel-AC is slightly higher than that
of CSel, in some queries (such as 𝐷1). This increase in cost can be
attributed to the potential need for executing a greater number of
query plan Blocks to ensure that the plans meet the given accuracy
constraint (i.e. minimum tolerant accuracy).

This figure highlights the ability of CSel-AC to strike a bal-
ance between efficiency and accuracy. Although in certain cases
it marginally increases the optimization time compared to CSel,
its importance becomes evident in situations where maintaining a
high level of query accuracy is paramount.
5.4.1 Impact of Accuracy Constraints. Fig. 15 illustrates the op-
timization time of CSel-AC (right y-axis) and the runtime of the
selected plans (left y-axis), while varying accuracy constraints for
query𝐷1. As the minimum tolerant accuracy increases, some Clues
can no longer be utilized, leading to an increase in the query run-
time (from 16.2 min to 408.8 min). However, the optimization time
of CSel-AC tends to be slightly higher compared to scenarios with
no accuracy constraints or when the minimum tolerant accuracy
are lower, due to the execution of additional query plan Blocks as
explained earlier. Conversely, when the minimum tolerant accuracy
becomes higher, many query plans that do not meet the constraint
can be excluded early in the process. This early exclusion results in
a lower optimization time for CSel-AC compared to the no accuracy
constraint situation.
5.4.2 Ablation Study. Fig. 16 presents the optimization time for
various plan selection approaches, including their ablated versions,
applied to query 𝐷1. For the purpose of comparison, we removed
the mechanism for updating cardinality bounds based on Block
relationships (see §4.3) from both CSel and CSel-AC, retaining only
the bound pruning mechanism. This figure demonstrates that the
optimization time for these ablated approaches is still significantly
lower than that of PlanScan, but is greater than that of the full
algorithm (i.e. CSel and CSel-ACwithout ablated), with an increase

of about 60%-70%. This demonstrates that both the bound pruning
mechanism and the mechanism for updating cardinality bounds
based on Block relationships in our algorithms are effective and
contribute to the efficiency improvement.

6 RELATEDWORK

Video Database Management Systems. In the data management com-
munity, several recent works [1, 3–5, 8, 11, 13–16, 24, 26–28, 48]
have introduced declarative query interfaces that utilize frame con-
tent (objects, spatial locations in the frame, etc), while optimizing
for various parameters such as accuracy and/or execution. NoScope
and BlazeIt [23, 25] utilize special-purpose-build neural networks
(NNs) to detect objects accelerating queries via inference-optimized
model search. Focus [21] implements low-latency search over large
video datasets aiming to balance precision and query speed. SVQ
[30, 46] provides a series of filters to accelerate video monitoring
queries involving count and spatial constraints on objects present in
the frames. [10, 47] present declarative query processing on video
streams involving objects and their interactions. CORE [50] acceler-
ates ML inference through predicate reordering, taking into account
correlations in predicates. EVA [49] introduces a VDBMS that au-
tomatically materializes and reuses the results of costly UDFs to
enhance faster exploratory data analysis. VIVA [41] presents a video
analytics system that leverages relational hints to optimize SQL
queries on video datasets. Our work extends this line of research,
expanding the types of optimization strategies while proposing
novel optimization algorithms demonstrating vast performance
benefits to prior art.
Domain Knowledge Specification. The concept of specifying domain
knowledge plays a crucial role in enhancing the performance and
accuracy of both database systems and machine learning (ML) mod-
els [51]. Historically, the idea of feeding additional knowledge to a
system to optimize query execution traces its origins to the early
stages of query processing [29]. This approach is akin to the imple-
mentation of semantic integrity constraints in earlier computational
models, as well as the utilization of hints in contemporary database
systems like Microsoft SQL [36] and MySQL [37]. These hints serve
as a guide to the database management system, suggesting more
efficient ways to execute queries.

7 CONCLUSIONS

In this paper, we propose a novel framework for enhancing query
optimization through domain-specific knowledge, introducing the
concept of Clues. These Clues, diverse in types and associated with
optimization rules, lay the groundwork for our proposed ClueVQS
system, designed to automatically optimize queries for improving
query processing efficiency. Further, we present algorithms, CGen,
for query rewriting and plan generation, and CSel, for effective
query plan selection, alongside its variant, CSel-AC, respecting user-
specified accuracy constraints and allowing for trade-offs between
query speed and query accuracy.

Future work could explore the extension of ClueVQS to sup-
port a wider array Clue types, and potentially employ machine
learning techniques to enhance its capability for learning, summa-
rizing, and autonomously utilizing the Clues, to further improve
its adaptability and use experience.

3267

REFERENCES

[1] Michael R Anderson, Michael Cafarella, German Ros, and Thomas F Wenisch.
2019. Physical representation-based predicate optimization for a visual analytics
database. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 1466–1477.

[2] Egon Balas and M Guignard. 1979. Report of the Session on: Branch and Bound-
/Implicit Enumeration. In Annals of Discrete Mathematics. Vol. 5. Elsevier, 185–
191.

[3] Jaeho Bang, Gaurav Tarlok Kakkar, Pramod Chunduri, Subrata Mitra, and Joy
Arulraj. 2023. Seiden: Revisiting Query Processing in Video Database Systems.
Proceedings of the VLDB Endowment 16, 9 (2023), 2289–2301.

[4] Favyen Bastani, Songtao He, Arjun Balasingam, Karthik Gopalakrishnan, Mo-
hammad Alizadeh, Hari Balakrishnan, Michael Cafarella, Tim Kraska, and Sam
Madden. 2020. Miris: Fast object track queries in video. In Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data. 1907–1921.
[5] Favyen Bastani and Samuel Madden. 2022. OTIF: Efficient Tracker Pre-processing

over Large Video Datasets. In Proceedings of the International Conference on

Management of Data. 2091–2104.
[6] Philipp Bergmann, TimMeinhardt, and Laura Leal-Taixe. 2019. Tracking without

bells and whistles. In Proceedings of the IEEE/CVF International Conference on

Computer Vision. 941–951.
[7] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. 2016.

Simple online and realtime tracking. In 2016 IEEE international conference on

image processing (ICIP). IEEE, 3464–3468.
[8] Daren Chao, Yueting Chen, Nick Koudas, and Xiaohui Yu. 2023. Track Merging

for Effective Video Query Processing. In 2023 IEEE 39th International Conference

on Data Engineering.
[9] Daren Chao, Yueting Chen, Nick Koudas, and Xiaohui Yu. 2024. Optimizing

Video Queries with Declarative Clues (Technical Report). https://www.cs.toronto.
edu/~drchao/papers/cluevqs_techreport.pdf.

[10] Daren Chao, Nick Koudas, and Ioannis Xarchakos. 2020. Svq++: Querying for
object interactions in video streams. In Proceedings of the International Conference
on Management of Data. 2769–2772.

[11] Daren Chao, Nick Koudas, and Xiaohui Yu. 2023. Marshalling Model Inference In
Video Streams. In 2023 IEEE 39th International Conference on Data Engineering.

[12] Kai Chen, Hang Song, Chen Change Loy, and Dahua Lin. 2017. Discover and
learn new objects from documentaries. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 3087–3096.
[13] Yueting Chen, Xiaohui Yu, and Nick Koudas. 2020. TQVS: Temporal Queries

over Video Streams in Action. In Proceedings of the International Conference on

Management of Data. 2737–2740.
[14] Yueting Chen, Xiaohui Yu, and Nick Koudas. 2022. Ranked Window Query

Retrieval over Video Repositories. In 2022 IEEE 38th International Conference on

Data Engineering (ICDE). IEEE, 2776–2791.
[15] Yueting Chen, Xiaohui Yu, Nick Koudas, and Ziqiang Yu. 2021. Evaluating

Temporal Queries Over Video Feeds. In Proceedings of the International Conference
on Management of Data. 287–299.

[16] Pramod Chunduri, Jaeho Bang, Yao Lu, and Joy Arulraj. 2022. Zeus: Efficiently
Localizing Actions in Videos using Reinforcement Learning. (2022).

[17] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
2022. Introduction to algorithms. MIT press.

[18] Databricks Inc. 2024. User-Defined Functions - Databricks Documentation.
https://docs.databricks.com/en/udf/index.html.

[19] Beatrice Finance and Georges Gardarin. 1991. A rule-based query rewriter in
an extensible dbms. In Proceedings. Seventh International Conference on Data

Engineering. IEEE Computer Society, 248–249.
[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision. 2961–2969.
[21] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,

Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. 2018.
Focus: Querying large video datasets with low latency and low cost. In 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
269–286.

[22] IBM. 2024. User Defined Functions in DB2. https://www.ibm.com/docs/en/db2/
11.5?topic=functions-user-defined.

[23] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declara-
tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.
Proceedings of the VLDB Endowment 13, 4 (2019), 533–546.

[24] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. Challenges and Opportunities
in DNN-Based Video Analytics: A Demonstration of the BlazeIt Video Query
Engine.. In CIDR.

[25] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale.
Proceedings of the VLDB Endowment 10, 11 (2017), 1586–1597.

[26] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei
Zaharia. 2021. Accelerating approximate aggregation queries with expensive
predicates. arXiv preprint arXiv:2108.06313 (2021).

[27] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei
Zaharia. 2024. Data Management for ML-based Analytics and Beyond. ACM/JMS

Journal of Data Science 1, 1 (2024), 1–23.
[28] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, and Matei Za-

haria. 2022. TASTI: Semantic Indexes for Machine Learning-based Queries over
Unstructured Data. (2022).

[29] Jonathan Jay King. 1979. Exploring the use of domain knowledge for query pro-

cessing efficiency. Department of Computer Science, Stanford University.
[30] Nick Koudas, Raymond Li, and Ioannis Xarchakos. 2020. Video monitoring

queries. In IEEE International Conference on Data Engineering. 1285–1296.
[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2017. Imagenet classifi-

cation with deep convolutional neural networks. Commun. ACM 60, 6 (2017),
84–90.

[32] Hilde Kuehne, Ali Arslan, and Thomas Serre. 2014. The language of actions: Re-
covering the syntax and semantics of goal-directed human activities. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 780–787.
[33] Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars,

and Lingjia Tang. 2016. Input responsiveness: using canary inputs to dynamically
steer approximation. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation. 161–176.
[34] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.

Accelerating machine learning inference with probabilistic predicates. In Pro-

ceedings of the 2018 International Conference on Management of Data. 1493–1508.
[35] Mishaim Malik, Muhammad Kamran Malik, Khawar Mehmood, and Imran

Makhdoom. 2021. Automatic speech recognition: a survey. Multimedia Tools and

Applications 80 (2021), 9411–9457.
[36] Microsoft. 2024. MicrosoftSQL Hints (Transact-SQL). https://learn.microsoft.

com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16.
[37] MySQL. 2024. MySQL Optimizer Hints. https://dev.mysql.com/doc/refman/8.0/

en/optimizer-hints.html.
[38] Karthik Ramachandra, Kwanghyun Park, K Venkatesh Emani, Alan Halverson,

César Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of
imperative programs in a relational database. Proceedings of the VLDB Endowment

11, 4 (2017), 432–444.
[39] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.

arXiv preprint arXiv:1804.02767 (2018).
[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:

Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015).

[41] Francisco Romero, Johann Hauswald, Aditi Partap, Daniel Kang, Matei Zaharia,
and Christos Kozyrakis. 2022. Optimizing video analytics with declarative model
relationships. Proceedings of the VLDB Endowment 16, 3 (2022), 447–460.

[42] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: A GPU
cluster engine for accelerating DNN-based video analysis. In Proceedings of the

27th ACM Symposium on Operating Systems Principles. 322–337.
[43] Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional net-

works for action recognition in videos. In Advances in neural information pro-

cessing systems. 568–576.
[44] Snowflake Inc. 2024. User-Defined Functions Overview. https://docs.snowflake.

com/en/developer-guide/udf/udf-overview.
[45] Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding,

Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022. Wetune: Automatic discovery
and verification of query rewrite rules. In Proceedings of the 2022 International

Conference on Management of Data. 94–107.
[46] Ioannis Xarchakos and Nick Koudas. 2019. Svq: Streaming video queries. In

Proceedings of the International Conference on Management of Data. 2013–2016.
[47] Yannis Xarchakos and Nick Koudas. 2021. Querying for interactions. In IEEE

International Conference on Data Engineering. 2153–2158.
[48] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata Mitra, Sasa Misailovic,

and Saurabh Bagchi. 2018. {VideoChef}: Efficient Approximation for Streaming
Video Processing Pipelines. In 2018 USENIX Annual Technical Conference (USENIX

ATC 18). 43–56.
[49] Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ramachan-

dran. 2022. EVA: A symbolic approach to accelerating exploratory video analytics
with materialized views. In Proceedings of the 2022 International Conference on

Management of Data. 602–616.
[50] Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X Sean Wang.

2022. Optimizing machine learning inference queries with correlative proxy
models. Proceedings of the VLDB Endowment 15, 10 (2022), 2032–2044.

[51] Lina Zhou, Shimei Pan, JianwuWang, and Athanasios V Vasilakos. 2017. Machine
learning on big data: Opportunities and challenges. Neurocomputing 237 (2017),
350–361.

3268

https://www.cs.toronto.edu/~drchao/papers/cluevqs_techreport.pdf
https://www.cs.toronto.edu/~drchao/papers/cluevqs_techreport.pdf
https://docs.databricks.com/en/udf/index.html
https://www.ibm.com/docs/en/db2/11.5?topic=functions-user-defined
https://www.ibm.com/docs/en/db2/11.5?topic=functions-user-defined
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query?view=sql-server-ver16
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html
https://docs.snowflake.com/en/developer-guide/udf/udf-overview
https://docs.snowflake.com/en/developer-guide/udf/udf-overview

	Abstract
	1 Introduction
	2 Background
	3 Clues
	3.1 Supported Clue Types in ClueVQS
	3.2 Defining New Clue Types
	3.3 Declaration of Clue Instances

	4 Clue-based Optimization in ClueVQS
	4.1 CGen
	4.2 Optimization Problem Formulation
	4.3 CSel
	4.4 Accuracy Constraint

	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation of Clues
	5.3 Evaluation of CSel
	5.4 Evaluation of CSel-AC

	6 Related Work
	7 Conclusions
	References

