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ABSTRACT

Many organizations have embraced the "Lakehouse" data man-
agement paradigm, which involves constructing structured data
warehouses on top of open, unstructured data lakes. This approach
stands in stark contrast to traditional, closed, relational databases
and introduces challenges for performance and stability of dis-
tributed query processors. Firstly, in large-scale, open Lakehouses
with uncurated data, high ingestion rates, external tables, or deeply
nested schemas, it is often costly or wasteful to maintain perfect
and up-to-date table and column statistics. Secondly, inherently
imperfect cardinality estimates with conjunctive predicates, joins
and user-de�ned functions can lead to bad query plans. Thirdly,
for the sheer magnitude of data involved, strictly relying on static
query plan decisions can result in performance and stability issues
such as excessive data movement, substantial disk spillage, or high
memory pressure. To address these challenges, this paper presents
our design, implementation, evaluation and practice of the Adaptive
Query Execution (AQE) framework, which exploits natural execu-
tion pipeline breakers in query plans to collect accurate statistics
and re-optimize them at runtime for both performance and robust-
ness. In the TPC-DS benchmark, the technique demonstrates up to
25× per query speedup. At Databricks, AQE has been successfully
deployed in production for multiple years. It powers billions of
queries and ETL jobs to process exabytes of data per day, through
key enterprise products such as Databricks Runtime, Databricks
SQL, and Delta Live Tables.
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1 INTRODUCTION

Modern enterprises store the majority of their vast amounts of raw,
structured, semi-structured, and unstructured data in scalable and
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elastic data lakes like Amazon S3, Azure Data Lake Storage, and
Google Cloud Storage. These data lakes have raw, usually uncu-
rated datasets stored in open �le formats such as Apache Parquet.
They can be processed using various engines, including Apache
Spark [46] and Presto [41]. However, data lakes can face challenges
related to data quality, transactional properties, governance, and
the ability to support complex analytics. In contrast, a data ware-

house is a structured storage system that is optimized for query and
analysis. It usually stores structured and processed data, making
it suitable for BI (business intelligence) and reporting. Data ware-
houses are designed for high-performance queries but may struggle
to handle large volumes of raw or unstructured data e�ciently.

The concept of a Data Lakehouse [7] emerged to combine the
strengths of both data lakes and data warehouses, including open
storage formats and raw data support from data lakes, as well as
transaction support and data governance from data warehouses.
Databricks supports major, open-source, industrial Lakehouse stor-
age implementations including Linux Foundation Delta Lake [6, 31],
Apache Iceberg [4], and Delta UniForm [21]. In a Lakehouse, a dis-
tributed query engine such as the one in Figure 1 needs to support
a range of analytics workloads, including BI, data exploration, ad-
vanced analytics, and ETL (extract, transform, load) jobs. In this
setting, statistics are often unavailable, or not as accurate or up-to-
date as in closed systems such as data warehouses. This necessitates
a more dynamic approach to query optimization and execution,
such as the solution that we propose in this paper. But �rst, let us
discuss the challenges that query optimizers face in a Lakehouse.

Supporting raw, uncurated data (lacking statistics). When
organizations move data from their data lakes to their warehouses,
the data is typically �rst cleaned via ETL jobs. This step normal-
izes column values, �atten semi-structured data like JSON, discards
faulty values, and so forth. The result is a structured dataset that is
amenable to fast BI processing. In contrast, raw data tends to be un-
curated. It contains little to no statistics. As a result, in a Lakehouse
query engine, properties of the data have to be discovered during
execution to obtain the performance bene�ts usually achieved by
pre-processing.

Supporting external tables (lacking statistics). In the Lake-
house paradigm, organizations have the �exibility to utilize their
own storage space in the cloud for tabular data and employ their
own catalogs or third-party catalog services for table metadata. This
approach allows them to incorporate various query engines tailored
to di�erent workloads while accessing the same data. However, in
such scenarios, there is no straightforward method to ensure the
presence of statistics in table metadata.
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Figure 1: Databricks’ Lakehouse architecture. The AQE layer sits between Query Optimizer and Distributed Scheduler, runs

as part of the Photon distributed query engine. The query engine executes queries on a distributed cluster of public cloud

instances, while AQE drives the execution of decomposed fragments of a query plan.

Supporting deeply nested data (lacking statistics). Nested,
de-normalized schemas are becoming increasingly popular in both
raw and curated datasets because of the enhanced readability by
reducing complex joins. Data types like arrays, maps, and structs,
as well as their arbitrary recursive combinations, are extensively
employed by organizations. Such deeply nested �elds are typically
accessed after unnesting operations and can be referenced in op-
erators like Filter, Join and Aggregation. Gathering statistics for
hundreds to thousands of deeply nested �elds within arrays, structs,
and maps, and subsequently representing them in a catalog, is often
expensive and unpractical.

Supporting rapidly evolving data and workloads (stale sta-

tistics and volatile histories). In many organizations, data from
their products are ingested at an astonishing speed into the Lake-
house. Thus, maintaining up-to-date statistics like histograms of
individual table columns is resource consuming. Furthermore, work-
loads can burst or dip from time to time without a clear repetitive
pattern. Therefore, learning statistics from historical queries is not
always feasible.

Supporting UDFs (lacking information for cardinality es-

timation). The widespread adoption of user-de�ned functions
(UDFs), including user-de�ned scalar functions, user-de�ned aggre-
gation functions (UDAFs) and user-de�ned table-valued functions
(TVFs) within our platform, underscores their importance in cus-
tomer workloads. However, UDFs present a challenge for accurate
cardinality estimation and cost modeling, because they operate as
black boxes to the query optimizer.

Supporting diverse workloads (amplifying bad plans). In a
Lakehouse, table sizes range fromMegabytes to Petabytes. Thus, an
optimizer overestimate may cause a miss of a key optimization so
that a query can runs into a timeout, e.g., when shu�ing a massive
amount of data; an underestimate may result in an aggressive query
plan which may lead to unnecessary, high memory pressure or disk
spillage.

To address these challenges, we built an adaptive query execu-
tion (AQE) framework. The key idea is to collect statistics during
query execution from task metrics of completed and ongoing query
plan fragments, and subsequently re-optimize un�nished execution
plan fragments into better ones based on these runtime statistics.
The AQE layer, depicted in Figure 1, is placed between static query
optimizer and distributed scheduler. It incorporates key innova-
tions in plan representation (Section 4.1), event-driven architecture
(Section 4.2), a cancellation primitive (Section 4.3), and leveraged
performance and robustness opportunities in distributed query
processing (Section 5 and 6). As a result, AQE delivers up to 25×
individual query speedup for standard TPC benchmark queries as
well as up to 1.7× total speedup per benchmark (see Section 7), on
top of our vectorized Photon execution engine [11]. Today, AQE has
been enabled by default in all Databricks production environments,
supporting billions of diverse Lakehouse queries and ETL jobs per
day with latencies ranging from tens of milliseconds to a few hours.
While the idea of dynamic query optimization has been explored in
earlier research prototypes [28, 33, 36, 43, 44], we believe this paper
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describes one of the largest successful, industrial deployments at
scale.

In the rest of this paper, we describe the background of Lake-
house and Photon in Section 2, and detail our motivations for AQE
in Section 3; Section 4 presents the AQE framework; Section 5 ex-
plains a few important performance optimizations while Section 6
elaborates how AQE makes the query execution robust; we then
present quantitative performance evaluations as well as our opera-
tional practices with AQE in Section 7; �nally, we discuss related
work in Section 8 and conclude the paper in Section 9.

2 BACKGROUND

This section brie�y introduces the background that AQE �ts into,
including an overview of the Lakehouse and the Photon query
engine.

2.1 Data Lakehouse

By combining the strengths of data lakes and data warehouses,
a Data Lakehouse [7] aims to provide a more �exible, scalable,
and cost-e�ective solution for managing and analyzing diverse
data sets in modern data-driven environments. This concept has
gained popularity as organizations seek ways to harness the full
potential of their data assets with one simple platform. As a result,
the majority of Databricks customers have been using Delta or
Delta UniForm for their data. Key advantages of a data Lakehouse
include:

• Uni�ed, open storage. A Lakehouse typically uses a uni�ed
storage system with an open data format that can accommodate
both raw, unprocessed data (similar to a data lake) and structured,
processed data (similar to a data warehouse). In an industrial
Lakehouse, the open-source Parquet format is used for both data
and metadata. This way, organizations can use any compute
engines to query or run machine learning models over their
existing data rather than loading the data into a warehouse.

• Automatic data management. Like data warehouses, a Lake-
house typically o�ers an ACID table storage layer over cloud
object stores. In our case, both Delta Lake and Delta UniForm
enable warehouse-style features such as ACID transactions, time
travel, audit logging, and fast metadata operations over tabular
datasets.

• Data governance. Unlike an ad-hoc data lake, a Lakehouse in-
corporates data governance and metadata management, through
a catalog service, to ensure the quality, security, and compliance
of the data. The catalog service could be run at any third party
outside of the core storage and compute.

• Elastic and e�cient query processing. In a Lakehouse with
diverse workloads, an instance of a distributed query engine
(a.k.a. computer cluster) can be created based as-needed to exe-
cute those workloads so as to save costs. The adaptive and robust
query execution described in this paper �ts into this layer in the
Lakehouse stack.

Figure 1 gives a high-level view of query engine, catalog service,
and the Lakehouse storage.

2.2 The Databricks Photon Query Engine

Photon [11], which started as a vectorized, single-thread query
execution library, has evolved into a full-�edged, new-generation,
distributed query engine powering Databricks’ major products in-
cluding Databricks Runtime, Databricks SQL, and Delta Live Tables.
As illustrated in Figure 1, inputs to the Photon query engine consist
of unresolved logical plans generated from SQL texts, Python/Scala
DataFrame programs, or Pandas programs. The analyzer retrieves
table metadata from catalog services, performs semantic analysis,
and converts an unresolved logical plan into a resolved logical plan.
Next, the static optimizer rewrites the resolved logical plan into
an optimized logical plan and converts it into an initial physical
plan. The scheduler assigns execution tasks, which are parallel in-
stances of a physical plan fragment, to run on executors. Within
each task, vectorized execution operators and expression evaluators
are invoked to process data. Unlike most other query engines, the
Photon engine incorporates an AQE (adaptive query execution)
framework positioned between the static optimizer and scheduler.
Upon receiving an initial physical plan from the optimizer, AQE
divides the plan into fragments, orchestrates their execution with
dependencies, monitors their progress, and continuously adjusts
uncompleted plan fragments based on runtime metrics from the
execution tasks.

3 PROBLEMS AND ALTERNATIVES

In this section, we go over critical query plan decisions in a dis-
tributed, Lakehouse query engine (Section 3.1), a running example
with AQE (Section 3.2), and a detailed comparison with alternative
approaches (Section 3.3).

3.1 Key Query Plan Decisions

In a distributed query engine, the query optimizer typically makes
the following decisions, which are critical to individual query’s
performance as well as the engine’s stability.

• Physical operator selections. Broadcast Join and Shu�ed Join
are two typical distributed Join algorithms. They have very dif-
ferent performance characteristics. A misplacement could cause
severe performance or even stability issues, e.g., either unneces-
sarily shu�ing huge amounts of data or mistakenly broadcasting
a huge amount of data to all executors.

• Degrees of parallelism. Determining the optimal degree of
parallelism, including both Scan and Shu�e parallelism, remains
challenging in distributed query processing. Poorly chosen paral-
lelism can lead to severe issues; for example, excessive parallelism
can overload and throttle the task scheduler.

• Trade-o�s based on data volume. In our Photon engine, we
have developed several Semi-Join reduction �lter variants, such
as dynamic partition/�le pruning �lters [23] and Bloom�lters [14]
to not only speedup individual joins but also remedy imperfect
join orders. However, due to �lter creation costs, the choice of
these �lters is often a data-dependent decision.

• Optimizations based on dynamic data properties. A set of
query optimizations are subject to data properties such as empty
intermediate relations, single-row relations, partitioning proper-
ties, and interesting orders. Oftentimes, such data properties can
only be discovered during query execution.
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• Graceful degradation strategies. Situations due to unantic-
ipated data, e.g., skew or intermediate data bloat, might cause
queries to either run into a timeout (e.g., hours, days) or result
in memory pressure in executors. Therefore, the optimizer may
need to balance performance and stability.

3.2 Example Query

In the rest of this paper, we will use the example SQL query with the
TPC-H schema in Listing 1 (Q0) as a running example to elaborate
problems, concepts, ideas and optimizations. For Q0, key problems
adaptive query execution (AQE) tries to tackle include the following.

SELECT c.c_name,

o.o_orderdate,

SUM(o.o_totalprice) AS revenue

FROM customer AS c, orders AS o

WHERE c.c_mktsegment = 'BUILDING'

AND c.c_acctbal > 8000.0

AND c.c_custkey = o.o_custkey

AND o.o_orderdate BETWEEN date('2024-03-15')

AND date('2024-04-15')

GROUP BY c.c_name, o.o_orderdate

ORDER BY revenue DESC

LIMIT 10

Listing 1: Q0: an example SQL query.

• What is the number of rows from the customer table qualifying
the two WHERE predicates, and what is the corresponding size-
in-bytes? (Section 4.1.)

• Should we apply Semi-Join reduction �lter variants, namely, a
dynamic �le pruning �lter or a Bloom �lter? (Section 5.1.)

• How can we leverage dynamic data properties discovered during
execution time to perform further query optimizations? (Sec-
tion 5.2.)

• Which join algorithm should be used? (Section 5.3.)
• What should be a proper degree-of-parallelism to run the query?

(Section 5.4.)
• How should cases like skew and memory pressure be mitigated,

for unanticipated, extreme data? (Section 6.)

3.3 Alternatives to AQE

Static query optimizers rely on stored catalog statistics (e.g., ob-
tained from the Analyze Table command), cardinality estimation,
and a cost model (a.k.a., a function of cardinality and plan), to make
aforementioned planning decisions. A viable alternative to adaptive
query execution is to enhance the accuracy of statistics, cardinality
estimation, and cost modeling. However, despite decades of e�orts
within the database community, cardinality estimations remain
challenging in traditional database systems [32].

Cardinality estimation. Column-level statistics such as the
number of distinct values and histograms can provide good esti-
mates for a local, binary comparison predicate directly over a table
column, yet estimation errors may arise in the case of conjunc-
tive predicates, predicates with UDFs, and join predicates. Further,
errors may amplify on complex query plans with multiple such
predicates. A "famous" cardinality estimation heuristic in System

R [38] is that any equality �lter predicate over an un-indexed table
column by default reduces input cardinality to 1/10. Modern opti-
mizers still have similar heuristics when they lack information. For
instance, the open-source Catalyst optimizer [8] uses the worst-case
cardinality as an estimate when information is unavailable.

Physical plan cost models. A traditional Cascades-style plan-
ner [25] usually requires a numeric physical plan cost to do search
space prioritization, alternative plan comparison, branch-and-bound,
and pruning. As mentioned in literature [32], cost models tend to
have smaller errors than cardinality estimates. However, a "perfect"
cost model still has to be kept in sync with the evolution of query
execution and hardware characteristics over time.

Below, we delve into several alternative approaches along the
lines of improving static optimizer cardinality estimates for the
Lakehouse challenges mentioned in Section 1.

• Sampling. There has been a �urry of research literature [1, 17,
18] attempting to leverage sampling, including random samples,
online samples, block samples, materialized samples, and strati-
�ed samples to make cardinality estimation better. In practice,
they could be e�ective for speci�c scenarios, e.g., random sam-
ples for uniformly distributed data, and strati�ed samples [1] for
predicates over strata columns. Nevertheless, there is an inher-
ent trade-o� between the expense of sample collection and its
e�ectiveness.

• History-based cardinality estimation like the LEO proto-
type [40] may work for repetitive query workloads in a relatively
closed environment that compute and history-store are bundled
together in a single cluster instance. However, the Lakehouse ar-
chitecture operates at a larger scale with higher elasticity, which
requires a dis-aggregation of compute, storage and catalog. Thus,
building a separate history-store service in the control plane
might pose non-trivial engineering challenges such as binary
compatibility and RPC latency.

• Machine learning could be a promising direction to make esti-
mates more accurate. However, in order to deploy it in produc-
tion, there is still substantial engineering work to tune models,
in addition to challenges like debuggability and interpretability.

Note that the adaptive query execution described in this paper
requires the existence of synchronous pipeline breakers during the
distributed execution of a query, such that re-optimizations can
kick in and be e�ective. Some query engines have such breakers in
the way they implement DAG (directed acyclic graph) Scheduler,
Task Scheduler, Shu�e, Join, Aggregation, and Sort; others may
lack it by design. In our Photon engine, the Shu�e implementation
has such a breaker, originally for the simplicity of task scheduling
and fault-tolerance. Thus, AQE is a natural �t. At a high level, AQE
and advancements in its alternatives are largely complementary
in their evolutions. Better static query plans may eventually relax
constraints on the query execution substrate, while AQE provides
the ultimate safeguard to experiment with its alternatives. Based on
these observations several years ago, we prioritized and executed
an adaptive query processing strategy.

4 THE AQE FRAMEWORK

In this section, we present the AQE framework by introducing the
representation of plan fragments (Section 4.1), the re-optimization
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event loop (Section 4.2), and the cancellation and idempotence of
plan fragments (Section 4.3).

4.1 Plan Representation

Adjusting execution plan fragments dynamically while the plan
is running may introduce signi�cant complexity to the execution
engine. Tomaintain system simplicity, AQE integrates special opera-
tors into both logical and physical plans to represent plan fragments.
These operators enable on-the-�y plan modi�cations through log-
ical/physical rewrite rules or planner rules. Similar to our static
optimizer as well as a couple of other optimizers [8, 37], plans are
immutable in AQE and rewrite rules return new plan instances. Key
concepts in the plan representation are outlined below.

• QueryStage: A QueryStage operator denotes a plan fragment
submitted to the distributed scheduler. The corresponding logical
and physical plan fragments are wrapped inside a QueryStage,
which functions as a leaf operator, akin to table scans. This
ensures that the enclosed plan fragments do not accidentally get
modi�ed by any subsequent plan rewrites that only intend to
re-optimize the remaining part of the query plan. In the current
system, QueryStages are cut at Shu�e boundaries.

• LogicalLink: A LogicalLink serves as a backward mapping
pointer from a physical operator to its corresponding logical
operator. These links are populated for each physical operator by
the physical planner at the time of initial planning and at each
occurrence of AQE re-planning. This mapping allows the AQE
framework to bring the ongoing logical plan in sync with the
current physical plan in order to perform re-optimization from
the logical plan with the latest statistics inferred from runtime
task metrics.

• Runtime Statistics: Each QueryStage can either estimate sta-
tistics from running tasks’ metrics or collect statistics from com-
pleted tasks’ metrics. These runtime statistics, such as size-in-
bytes and row counts, o�er more accurate insights than those
obtained from traditional static cardinality estimation. With Log-
icalLinks, the statistics can be fed into logical plans as well.

Figure 2 visualizes QueryStages and LogicalLinks in the initial
physical plan for Q0 (Listing 1). Runtime statistics are obtained in
physical QueryStages and populated back to the logical plan as per
LogicalLinks.

4.2 AQE Re-Optimization Event Loop

As described in the code snippet in Listing 2, for a given query,
the core of AQE is a while-loop wherein the loop body listens
to re-optimization events, re-optimizes the uncompleted logical
plan, re-generates the physical plan for a re-optimized logical plan,
breaks down the physical plan into QueryStages, and submits new
runnable QueryStages to the scheduler. Note that line 16 in Listing 2
invokes the same static physical planner, where both planner rules
(choosing physical operators for logical operators) and physical
rewrite rules (rewriting physical plans to better ones) can be called.
Several rules applied at lines 14 and 16 in Listing 2 make their
decisions based on costs derived from runtime statistics. Typical
re-optimization events include:

• QueryStage completion: When a QueryStage completes suc-
cessfully, its dependent QueryStages may be able to start, and

Figure 2: QueryStages and LogicalLinks

accurate runtime statistics of the completed QueryStage become
available in remaining logical plans for AQE to make new opti-
mization decisions.

• QueryStage failure: When a QueryStage fails (or times out), ac-
tions need to be taken to either fail the query entirely or attempt
recovery from failure by adjusting the query plan.

• Heuristics with task metrics: In addition to metrics from com-
pleted or failed QueryStages, metrics from ongoing QueryStages
can also be valuable to AQE. AQE includes a metric evaluation
framework that monitors metrics reported for running QueryS-
tages and decides whether or when re-optimization is needed.
Once a change in such metrics is deemed promising for opti-
mizations to apply, a new re-optimization event will be o�ered
to reOptEventQueue.

The key in the event loop is the utilization of either actual
statistics observed from completed QueryStages or estimated

statistics from running QueryStages’ metrics. These statistics
serve as the foundation for re�ning critical decisions pertaining to
un�nished query plan fragments.

Let us use Q0 (Listing 1) to elaborate on the QueryStage comple-
tion event. For plans described in Figure 2, in Listing 2, lines 3-4
�rst submit the two bottom physical QueryStages to the scheduler;
when one of them completes, a re-optimization event is taken at
line 10 and currentLogicalPlan is updated with accurate, run-
time statistics at line 12 and re-optimized at line 14; �nally, new,
runnable QueryStages are submitted to the scheduler, and the loop
continues to wait for new re-optimization events.

4.3 QueryStage Cancellation and Idempotence

In the AQE event loop (Listing 2), line 21 cancels running QueryS-
tages that are no longer needed. This situation can occur either
when the corresponding logical plan is completely optimized away,
or when a running QueryStage has a semantically equivalent re-
placement in the rewritten plan that is considered superior. This
approach abstracts the cancellation implementation from the logi-
cal and physical re-optimizations invoked from lines 13 to 16, which
simpli�es rewriting logics. For instance, all the logical rewrites and
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1 // Kick off initial QueryStages.

2 LogicalPlan currentPlan = initialPhysicalPlan.logicalLink;

3 List<QueryStage> initialRunnableStages = breakDown(

initialPhysicalPlan);

4 initialRunnableStages.foreach(stage => Scheduler.submit(

stage));

5 runningStages.addAll(initialRunnableStages);

6 do {

7 // Blocking wait until new re-optimization event

8 // being added into `reOptEventQueue` by producer

9 // threads.

10 Event reOptEvent = reOptEventQueue.take();

11 // Update `runningStages` and `currentPlan`.

12 currentPlan = update(reOptEvent, runningStages,

currentPlan);

13 // Call logical rewrite rules to optimize `currentPlan`.

14 LogicalPlan reOptPlan = reOptimize(currentPlan);

15 // Convert `reOptPlan` to a physical plan.

16 PhyiscalPlan currentPhysicalPlan = plan(reOptPlan);

17 // Break down `currentPhysicalPlan` into runnable

18 // QueryStages.

19 List<QueryStage> runnableStages = breakDown(

currentPhysicalPlan);

20 // Cancel running QueryStages that are no longer needed.

21 runningStages.diff(runnableStages).foreach(stage =>

Scheduler.cancel(stage))

22 // Submit new runnable QueryStages to the scheduler.

23 List<QueryStage> runnableNewStages = runnableStages.diff(

runningStages)

24 newStagesToRun.foreach(stage => Scheduler.submit(stage));

25 runningStages.addAll(newStagesToRun);

26 } while (hasUncompletedStages());

Listing 2: A Sketch of the AQE Re-Optimization Event Loop.

planner rules outlined in Section 5 and Section 6 take advantage of
this mechanism to stop ongoing large scans, shu�es, or disk spills.
For idempotence, a completed QueryStage would not be rerun be-
cause it becomes a leaf node in the new logical and physical plans
from lines 13 to 16, while line 23 ensures that an identical, running
QueryStage would not be repetitively submitted.

5 PERFORMANCE OPTIMIZATIONS

In this section, we go over several important performance optimiza-
tions applied in AQE, including

• logical rewrites that inject Semi-Join reduction �lter variants
such like dynamic partition/�le pruning �lters (DPPs, DFPs) [23]
and Bloom �lters [14] (Section 5.1), and optimize away plan
fragments that are no longer needed (Section 5.2);

• a planner rule that revisits and changes the static planning
decision on which join algorithm to use for a logical Join operator
(Section 5.3);

• a physical rewrite that dynamically adjusts the Shu�e paral-
lelism (Section 5.4).

Figure 3: The Bloom Filter Rewrite Example

5.1 Logical Rewrite: Dynamic Join Filters

We have implemented a logical rewrite rule to inject dynamic Semi-
Join reduction �lter variants, including DPPs, DFPs, and Bloom
�lters. This rule has been added to a rule batch in the de�nition
of reOptimize, which is called at line 14 of Listing 2. It is well
known that these �lters are not free – there are overheads associ-
ated with creating, aggregating, distributing, and applying them.
Therefore, to place a �lter, the reduced disk I/O or CPU usage
must outweigh its creation overhead. With runtime statistics in
AQE, the bene�t-to-overhead analysis becomes more accurate, lead-
ing to better decision-making than the static optimizer. Let us
consider Q0 (Listing 1) to exemplify the rewrite rule. In Figure
3, suppose the QueryStage originating from the customer table
completes �rst during execution, with the actual selectivity for
c_mktsegment = 'BUILDING' AND c_acctbal > 8000.0 being
4%, and the actual output rownumber from the �lter being 16,364,191.
Meanwhile, the QueryStage from the orders table progressed 5%.
Utilizing the runtime statistics, the rewrite rule acknowledges that
(a) a Bloom �lter requires only tens of megabytes to achieve a false-
positive rate of 1%, and (b) applying the Bloom �lter on the orders
side can potentially drop numerous rows early on before the Shu�e.
Then, by comparing with the estimated statistics on the other side
of the Join, the rule determines that canceling the QueryStage from
orders and injecting a Bloom �lter is relatively cheap yet likely
worthy. Consequently, in the rewritten plan, it constructs a Bloom
�lter from the completed QueryStage and applies it to the scan
of the orders table. The actual cancellation is done at line 21 in
Listing 2 after a di�erent QueryStage from orders is generated.

5.2 Logical Rewrite: Dynamic Data Properties

Runtime statistics collected from completed QueryStages are ac-
curate in deriving actual data properties, including scenarios with
empty relations and single-row relations. Consequently, we have
implemented a rewrite rule to propagate empty relations bottom-up
within a remaining logical plan. For instance, in scenarios where
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Figure 4: The Dynamic Data Property Rewrite Example

one side of an inner Join yields no rows, the rule intelligently elim-
inates the need for further join execution and replaces it with an
empty relation, optimizing query performance. The same transfor-
mation is applied during post-order plan traversal, ensuring that
all unnecessary operators can be optimized away.

Similarly, we have another rule that applies when completed
QueryStages contain only a single row. For instance, if the un-
derlying intermediate data comprises only one row, unnecessary
operations such as Join, Aggregation, and Sort can be omitted from
the plan. Figure 4 uses Q0 (Listing 1) as a running example. Suppose
the QueryStage from the customer table has only one output row.
This rule folds the join condition with a constant, eliminates the
Join operator, cancels the running QueryStage from orders, and
pushes down the extra predicate o_custkey = 310367876. The
extra predicate pushed down to the table scan can be used to prune
�les to speed up the query.

5.3 Planner Rule: Join Algorithm Re-Selection

In the Photon query engine, there are two primary, distributed join
algorithms: Broadcast Hash Join and Shu�ed Hash Join.

• Broadcast Hash Join. When one side of a Join is small enough
to �t into the memory of an individual executor, a Broadcast
Hash Join is often preferred for its performance bene�ts. In this
approach, the smaller side (known as the build side) is broadcast
to all participating executor nodes, eliminating the need for re-
partitioning of the other side (the probe side). It is important
to note that di�erent joiner threads on the same executor node
share the same build side hash table and data, residing in memory.

• Shu�led Hash Join. In contrast to the Broadcast Hash Join,
in a Shu�ed Join, both sides undergo shu�ing before being
joined. On an individual executor, the local join algorithm is a
vectorized implementation of Hybrid Hash Join [11, 39], which
can gracefully spill to disk if necessary.

Figure 5: Join Algorithm Re-Selection Example

The static decision regarding which join algorithm to pick is
based on estimates, which can sometimes lead to suboptimal out-
comes. Situations may arise where a Join initially planned as a Shuf-
�ed Hash Join, due to estimates suggesting both sides are too large,
might actually reveal one side to be small enough for broadcasting
during execution. In such cases, AQE intervenes to dynamically
alter the execution plan, converting it to a Broadcast Hash Join.
This adjustment circumvents the costly shu�e of the large side,
thereby signi�cantly enhancing performance.

Using Q0 (Listing 1) as an example, suppose the initial physical
plan uses Shu�ed Hash Join (as shown in Figure 2) due a static se-
lectivity overestimate of predicates over the customer table, while
the QueryStage originating from the table completes �rst during
execution, with the actual output row number from the �lter being
1,364,191 and the output size in bytes being 50 megabytes. At this
point, the current logical plan is illustrated on the left-hand side
of Figure 5. Because of updated runtime statistics and the progress
of the running QueryStage, the join algorithm selection rule in
the physical planner re-chooses to use a Broadcast Hash Join, as
visualized on the right-hand side of Figure 5. Consequently, the
new QueryStage from orders does not have a Shu�e, leading to
the cancellation of the corresponding running QueryStage with a
Shu�e, as per line 21 in Listing 2.

Symmetrically, a Broadcast Hash Join may be selected by the
static planner due to an underestimation, potentially leading to high
memory pressure as well as high network bandwidth consumption
during execution. In this case, AQE re-planning can switch it to
a Shu�ed Hash Join, which improves query performance too by
avoiding sending a large build side to all executors and loading it
into memory.

5.4 Physical Rewrite: Elastic Shu�le Parallelism

In a distributed query engine, determining the number of Shu�e
partitions poses a signi�cant challenge. Some systems begin with a
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Figure 6: Coalesce Shu�le Partitions

�xed degree of Shu�e parallelism, while others rely on complex
heuristics. However, identifying the optimal number of partitions is
data-dependent, and accurate data sizes, especially those of interme-
diate stages, are often unavailable during static query optimizations,
making it particularly challenging. The decision has a critical im-
pact to query performance:

• Under-parallelism. In this scenario, each Shu�e consumer task
handles a large volume of data, which can result in unnecessary
CPU cache misses or disk spillages (e.g., for operators like Join,
Aggregation, and Sort), consequently slowing down queries.

• Over-parallelism. Conversely, in this case, there may be numer-
ous small network data fetches, leading to ine�cient network
I/O patterns. On top of that, over parallelism also causes ex-
cessive scheduling overhead, which can be another signi�cant
contributor to performance slowdowns.

To address this issue, AQE calculates a relatively large number of
Shu�e partitions based on the input data size for the Shu�eWrite
operator. Then, once the Shu�eWrite completes, the actual sizes
of each initial partition become available, and based on this infor-
mation AQE is able to merge adjacent small Shu�e partitions into
larger partitions via a physical rewrite rule. The rule modi�es the
partitioning speci�cation in the Shu�eRead operator. In our query
engine, Shu�e partitions are physically contiguous in partition
numbers, allowing the "merge" operation to be logical without ad-
ditional reads or writes of the Shu�e data. Consequently, Shu�e
consumer tasks operate on "coalesced" partitions, reducing both
concurrent network fetches and task scheduling overhead, thereby
improving overall performance. Figure 6 illustrates an example
where Shu�e consumer tasks are reduced from 5 to 3 and concur-
rent Shu�e fetches are reduced from 10 (5 × 2) to 6 (3 × 2).

6 ROBUSTNESS

Aside from performance improvements, AQE also serves as the
last line of defense to ensure the query engine’s robustness. While
stability issues are infrequent in production environments, the ca-
pability of graceful degradation without query failures or system
crashes is paramount for enterprise products. This section intro-
duces three adaptive plan remediations: Broadcast Hash Join fall-
back (Section 6.1), Shu�e elimination fallback (Section 6.2), and data
skew handling (Section 6.3). In these situations, the crucial step is
to identify signs of distress early and frame them as re-optimization
events, allowing AQE to intervene and mitigate potential issues.

6.1 Logical Rewrites: Broadcast Hash Join
Fallback

Despite the dynamic join algorithm re-selection based on actual
data sizes, edge cases may still arise where an executor may exhaust
memory resources during the execution of a Broadcast Hash Join,
in the following two cases.

-- Input query:

SELECT *

FROM customer AS c

WHERE c.c_custkey NOT IN (SELECT o_custkey FROM orders)

-- Rewritten query when orders is not empty:

-- If orders has a NULL o_custkey:

-- no customer row qualifies the NOT IN predicate;

-- otherwise:

-- a normal LEFT ANTI JOIN can work, except that

-- customer rows with c_custkey being NULL do not

-- qualify the NOT IN predicate.

SELECT * FROM (

SELECT * FROM customer AS c

WHERE NOT EXISTS (

SELECT * FROM orders WHERE o_custkey IS NULL)

AND c.c_custkey IS NOT NULL

) AS c

LEFT ANTI JOIN orders AS o ON c.c_custkey = o.o_custkey

Listing 3: A Robust Rewrite for Null-Aware Anti Join.

• Case 1: a logical Join can use a Shu�ed Hash Join implementa-
tion, but the query attempts to enforce a Broadcast Hash Join
implementation through a SQL hint. When SQL queries are tool-
generated (typically, by BI tools), users themselves can hardly
�x such hints.

• Case 2: the logical Join is a Null-aware Anti Join [12], which is
used to implement NOT IN subqueries. This can be implemented
using a Broadcast Hash Join but not by a Shu�ed Hash Join,
because the latter does not always produce correct results as per
standard SQL semantics. In addition, the build side and probe
side cannot be switched. When the right-hand side of NOT IN is
not empty, there is an expensive yet robust plan as described in
Listing 3, but the engine would prefer to optimistically use the
typically-faster Broadcast Hash Join implementation.

In both cases, the AQE metric framework can detect that the build
side of the Broadcast Hash Join is too large, and proactively raises
a re-optimization event, before executors actually run out of mem-
ory. This event encapsulates the resource issue about to happen.
Subsequently, line 12 of Listing 2 updates currentLogicalPlan
accordingly, by rewriting the logical Join operator linked from the
vulnerable Broadcast Hash Join, to a more robust plan.

• For Case 1, the rewritten logical plan drops the Join hint, and
then the planner will opt for a Shu�ed Hash Join at line 16 of
Listing 2.

• For Case 2, similarly, currentLogicalPlan is modi�ed accord-
ing to Listing 3, as the right-hand side of NOT IN has been con-
�rmed to be non-empty.
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When new QueryStages are generated for a rewritten plan, as
outlined in Section 4.3, the existing QueryStage containing the sus-
ceptible Broadcast Hash Join gets canceled. This ensures that user
queries can successfully execute instead of encountering failures.
An alternative is to resort to disk spilling in the Broadcast Hash
Join operator, however, it still is not fully robust, because it requires
broadcasting the entire Join build side to each executor and subse-
quently spilling it. For instance, a query with a very large NOT IN
right-hand side can lead to network and disk stability issues for the
entire system beyond the query itself.

6.2 Planner Rule: Shu�le Elimination Fallback

Akin to the Shu�e elimination optimizations in SCOPE [47], our
static optimizer performs cost-based Shu�e elimination too. In
most situations, fewer Shu�es tend to make a query run faster.
However, when there is an overestimate on the number of distinct
values of a partitioning column, a potential risk of this optimization
is the reduced e�ective task parallelism. One symptom of under-
parallelism is excessive disk spillage. In rare and extreme cases, it
may run out of disk quota.

SELECT R.a, R.h, S.c, SUM(R.d * S.e) AS v

FROM R, S

WHERE R.a = S.a AND R.b=S.b AND p(R.g)

GROUP BY R.a, R.h, S.c

ORDER BY v DESC

LIMIT 10

Listing 4: Q1: Example for Shu�le Elimination.

We reference Q1 from Listing 4 to illustrate this scenario. Sup-
pose there is an overestimation of the number of distinct values
on R.a after �lter predicate p(R.g). As the plan shown Figure 7(a),
this overestimation leads the static optimizer to choose to partition
by R.a and S.a for the Shu�ed Hash Join, e�ectively eliminating
the Shu�e for the subsequent Hash Aggregation by <R.a, R.h,
S.c>. However, during execution, it turns out that there are only
2 distinct values of R.a, and thus the Hash Aggregation after Join
only has two e�ective, parallel tasks across all executors, regardless
of the number of Shu�e partitions. This can cause over spillage
when the number of groups by <R.a, R.h, S.c> is excessively large,
especially if the join predicate leads to a many-to-many join. In this
case, similar to Section 6.1, the metric framework triggers an AQE
re-optimization event when it detects the under parallelism, such
that AQE re-planning disables the Shu�e elimination optimization
and produces a fallback plan like Figure 7(b). For normal cases, the
fallback plan runs slower than the initial physical plan, as it has
more Shu�es, but it saves Q1 by increasing the e�ective parallelism
from 2 to 200.

6.3 Physical Rewrite: Skew Join Handling

We have also implemented a physical rule to handle skewed join
keys. The rule is able to discover data skew on a set of join keys
in a Shu�ed Hashed Join, which manifests as a few partitions
containing signi�cantly more data than others. In such cases, the
rule can eliminate the skewness by logically splitting those large,
consumer-side partitions into smaller, more balanced partitions,

optimizing task sizes for improved performance. The core of this
rewrite is similar to literature [45] except that it is done at runtime
rather than static planning time.

Let us still use Q0 (Listing 1) to explain the rule. As visual-
ized in Figure 8, suppose the orders table is skewed on a spe-
ci�c o_custkey, meaning one customer having placed signi�cantly
more orders than other average customers. Instead of performing
the join operation for all the data containing this skewed o_custkey
in a single task (i.e., Join Task 1 in Figure 8), the rule rewrites the
partitioning speci�cation in the two Shu�eRead operators so as
to create new consumer tasks (Join Task 1.1 to 1.3) to run the
same per-task Hash Join implementation, which joins a slice of
the skewed partition from orders with the replicated (in 3-ways),
corresponding customer partition.

7 EVALUATIONS AND PRACTICES

In this section, we present TPC benchmark results (Section 7.1),
AQE re-optimization overhead (Section 7.2), and our operational
practices (Section 7.3)

7.1 Performance Improvements

We evaluate AQE performance improvements on a 16-node AWS
cluster with one driver node. Each node is an i3.2xlarge instance
with 64GB of memory and 8 vCPUs (Intel Xeon E5 2686 v4). We ran
benchmarks of TPC-H and TPC-DS, stored with the Delta format
in Amazon S3, on di�erent scale factors (1000 and 3000), with and
without pre-collected table and column statistics via the Analyze
Table command. All benchmarking runs, whether AQE-disabled
or AQE-enabled, were performed with the Photon query engine.
Figure 9 plots queries with 15%+ wall clock time reductions in
all benchmarks, in relative wall clock time numbers where the
baseline is always 1.0. Table 1 presents a summary of benchmark
results regarding individual query speedup, total speedup, and the
number of queries experiencing a reduction in latency of 15% or
more. As both TPC benchmarks feature uniformly distributed data,
the observed performance enhancements are largely attributed to
dynamic Join �lters (see Section 5.1), join algorithm re-selection
(refer to Section 5.3), and elastic degree-of-parallelism adjustments
(outlined in Section 5.4). Since all benchmarks were conducted on
clusters of the same size, it is expected that the speedup with a
scale factor of 1000 is less than with a scale factor of 3000. For
example, the di�erence in performance between a Shu�ed Join and
a Broadcast Join is typically smaller on a smaller data set.

7.2 Re-Optimization Overhead

It is important to recognize that lines 11 to 25 in Listing 2 might
not directly contribute to a query’s wall clock time. This is be-
cause the AQE event loop operates concurrently with the actual
query execution, and there could be ongoing QueryStages while
the re-optimization steps are running. Thus, in our evaluation, we
record the wall clock time spent on these lines as "re-optimization
time" when there is no running QueryStage. The last two columns
in Table 1 illustrate the P50 (median) and P95 (95 percentile) re-
optimization time percentage in query latency, across all assessed
benchmarks. In Table 1, the AQE overhead in TPC-H is lower than
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(a) Initial Physical Plan: e�ective parallelism = 2 (b) Robust, Fallback Plan: e�ective parallelism = 200

Figure 7: Shu�le Elimination Fallback Example Q1. We compare the e�ective parallelism for boxes with dashed lines.

Table 1: Benchmark Result Summary for Photon + AQE-enabled v.s. Photon + AQE-disabled.

Benchmark Maxper query

speedup

Total speedup Num queries with

15%+ latency reduc-

tions

AQE overhead

(P50)

AQE overhead

(P95)

TPC-H SF=1000 (with stats) 9× 1.56× 8 0.4% 1.4%
TPC-H SF=3000 (with stats) 12× 1.72× 11 0.1% 0.5%
TPC-DS SF=3000 (with stats) 4× 1.21× 28 1.0% 4.4%
TPC-DS SF=3000 (without stats) 25× 1.33× 29 0.9% 3.2%

Figure 8: The Skew Join Rewrite Example

in TPC-DS. It is because TPC-DS queries typically have more se-
lective WHERE predicates for �le pruning and scan less data than
TPC-H queries.

7.3 Operational Practices

To support production operations, AQE o�ers two levels of debug-
gability and observability. First, customers can access the query
plan evolution history via the query UI, allowing them to track
intermediate query plans and understand how their queries are
executed. Second, for internal teams, we log QueryStage statistics
and rule decisions during AQE, which helps to identify why an
expected optimization did not occur and highlights missed opportu-
nities. These logs are compliant with privacy standards and do not
contain any customer data or query information. New AQE features
are introduced gradually in phases into production, allowing for
signal collection and validation at each step. Notably, the improved
engine robustness (Section 6) has signi�cantly increased customer
satisfaction with our products, and hence reduced our operational
load.

8 RELATED WORK

Drawbacks of a few alternatives to AQE have been elaborated
in Section 3.3. In this section, we compare the role of our AQE
layer with related work from three angles, i.e., (a) distributed query
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(a) TPC-H (ScaleFactor=1000) with Delta with Analyze Table stats (b) TPC-H (ScaleFactor=3000) with Delta with Analyze Table stats

(c) TPC-DS (ScaleFactor=3000) with Delta with Analyze Table statistics

(d) TPC-DS (ScaleFactor=3000), with Delta without Analyze Table statistics

Figure 9: Performance Evaluations. "Baseline" is Photon with AQE-disabled, while "AQE" is Photon with AQE-enabled. For both

Baseline and AQE, an experimental cluster has 1 i3.2xlarge driver with 16 i3.2xlarge executors. All queries run sequentially. All

numbers are relative between Baseline and AQE. All numbers are the average from three replicated runs on dedicated clusters.
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engines, (b) static query optimization techniques, and (c) dynamic
query re-optimization techniques.

Distributed Query Engines. Traditional, shared-nothing data
warehouses (or databases) like GRACE [24], Gamma [22], Tera-
data [16], Vertica [30] and Redshift [27] tightly couple metadata,
storage, and compute in a single cluster. The shared-nothing ar-
chitecture was optimized for query latency, but lacks elasticity for
changing workloads and has a high software complexity due to pro-
prietary implementations of storage format, concurrency control,
and data replication. From 2000s to 2010s, MapReduce [20], and
subsequently its successor Spark [5, 46], were invented to make
large-scale data processing over data lakes simple, elastic, and scal-
able. After the rise ofMapReduce and its corresponding open-source
ecosystem Hadoop [3], a �urry of new "shared-disk" query engines
have been developed in the industry, such as SparkSQL [8], Im-
pala [29], F1 Query [37], BigQuery [13], Redshift Spectrum [15],
Presto [41], and Snow�ake [19]. The new "shared-disk" architecture
separates storage out from compute, to shared, distributed �le sys-
tems, which makes the query processing layer simple and elastic.
Although these systems were originally built to �t either a data
lake or a closed data warehouse, by addressing the challenges pre-
sented in Section 1, they can evolve to natively support Lakehouses.
For instance, the work described in this paper is a continuation of
SparkSQL and brings its performance and stability to the next level.

Static Query Optimization. System R [38] �rstly introduced a
bottom-up query optimizer with dynamic programming to select
the "best" plan for a given query, with respect to access paths, join
orders and interesting orders, according to a numeric cost model
of physical plans. As a step forward from the System R optimizer,
Cascades [25] was an optimizer framework involving top-down
dynamic programming, with key components such as a memo struc-
ture, physical data properties and requirements, search space prior-
itization, exploration rules, enforcer rules, and branch-and-bound.
Notably, in the late 1990s, SQL Server rebuilt its query optimizer
with a Cascades-style architecture [34]. To accommodate the need
of processing massive data in a data lake, SCOPE [47] extended
SQL Server’s optimizer to better exploit partitioning properties so
as to reduce unnecessary data shu�es in execution plans. When
cardinality estimation is �awless, industrial optimizers usually can
�nd reasonably good physical plans. However, it is well known
that cardinality estimation can be orders-of-magnitude o� [32],
and estimation errors can lead to either missed performance im-
provement opportunities or system stability issues. Having AQE to
complement the static optimizer, our query engine is less sensitive
to estimation errors and can robustly converge to a "good enough"
execution plan at runtime.

Dynamic Query Re-Optimization. Although dynamic query
re-optimization has not been widely adopted in industrial databases
and query engines, a number of research prototypes explored this
approach, and a couple of commercial systems productionized
some ideas. INGRES [43] was the earliest system with dynamic re-
optimization. It decomposes a join query into multiple single-table
queries, executes them �rst, stores intermediate results, collects
stats, and then optimizes and executes Joins. Several subsequent
research prototypes [28, 33, 36] convert remaining execution plans
back to SQL queries to parse, analyze and optimize again at ei-
ther a blocking operator boundary or an arti�cial materialization

point. Compared to those prototypes, our AQE framework models
uncompleted plans in a more natural way to avoid unnecessary
overhead for short-running queries, and supports a new primi-
tive to cancel running plan fragments. The Shark prototype [44]
proposed the idea of PDE (partial DAG execution), which collects
runtime statistics at stage boundaries to select better join algo-
rithms and handle data skews. AQE can be viewed as a contin-
uation, expansion and productionization of PDE, with emphasis
on system simplicity, optimization opportunities, and robustness.
Teradata IPE (incremental planning and execution) [42] and AQE
share some similarities, yet the optimizations described in the IPE
documentation are less extensive than what AQE covers. BigQuery
leverages an in-memory, blocking Shu�e implementation [2] to
dynamically adjust the degree-of-parallelism and the partitioning
function for the receiver side of a Shu�e. In contrast, the tech-
niques described Section 5.4 and Section 6.3 are logical "merge"
and "split" operations without reading or writing the shu�ed data
again and hence do not require an in-memory Shu�e implemen-
tation. Instead of re-running optimizations, literature [9, 10, 26]
proposed to deploy alternative execution plans simultaneously and
route tuples into proper operators based on information collected at
runtime. The Oracle adaptive plan [35] productionized the research
direction and the routing decision is made based on the �rst few
tuple batches. However, our re-optimizations discussed in Section 5
and Section 6 are more sophisticated than simple switches such
that require holistically rewriting logical plans and re-generating
physical plans. In addition, deploying alternative execution plans at
runtime may result in overheads and complexities in a distributed
query engine involving task scheduling. In the initial stages of the
AQE project, we took the initiative to develop and contribute our
work with several AQE primitives to the open-source Spark [5]. The
system described in this paper represents an advancement beyond
the scope of previous e�orts in the Spark community, speci�cally
tailored for the Photon [11] distributed query engine.

9 CONCLUSION

In this paper, we introduce AQE, an adaptive and robust query
execution framework featuring a suite of dynamic optimizations
that underpin Databricks Runtime, Databricks SQL, and Delta Live
Tables. The framework e�ectively tackles key challenges faced by a
static query optimizer in a Data Lakehouse environment, including
issues such as missing catalog statistics, imperfect cardinality esti-
mation, and an inaccurate cost model. We have integrated AQE into
our production environment, where it routinely processes exabytes
of data across billions of queries each day. This default deployment
has not only signi�cantly elevated the performance of our products
but has also enhanced their overall stability. To our knowledge,
AQE marks a pioneering achievement as the �rst industrial system
running full-�edged dynamic query optimizations at scale.
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