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ABSTRACT
We demonstrate MedHunter, a system for assisting the early stage
of drug development.MedHunter builds a biomedical knowledge
graph DDKG by integrating data from eleven biochemical libraries
and data banks, and aligning entities from different data sources
by means of heterogeneous entity resolution. It identifies drug-
disease associations and protein-protein interactions in DDKG by
employing graph association rules (GARs). GARs use graph pat-
terns to extract relevant entities and embed ML models as predi-
cates. MedHunter discovers GARs from DDKG and incrementally
enriches DDKG with external data; it cleans DDKG with a special
form of GARs. We demonstrate MedHunter for its (a) interfaces,
(b) data enrichment/cleaning, and (c) applications in target identifi-
cation, drug-drug interaction and protein-protein interaction.
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1 INTRODUCTION
Drug discovery is the process of new drug identification, starting
from target selection and validation, through preclinical screening,
to clinical trials [13]. It is time-consuming and costly. The develop-
ment of a new drug takes 10–15 years, costs around 2 billion US
dollars, and typically has a high risk of failure (>90%) [22].

To accelerate drug discovery, reduce the cost and increase the
success rate, machine learning (ML) models have been explored to
identify drug-disease associations (DDAs), drug-drug interactions
(DDIs), and protein-protein interactions (PPIs). However, it is costly
to train accurate deep-learning models, and ML predictions often
have false positives (FPs) and false negatives (FNs). Moreover, ML
predictions “still lack reliable explanations that are crucial to drug
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repurposing and ADR (adverse drug reaction)” [22]. Worse yet,
noise is introduced by “unavoidable inaccuracy” of the models, e.g.,
nonexistent relations and inaccurately named entities.

Canwe do better? Is it possible to develop a cost-effectivemethod
to reduce false positives and false negatives of ML predictions, and
moreover, enrich and clean the data from different data sources?

MedHunter (Section 2). In response to this, we have developed
a system to assist early drug discovery, known asMedHunter [1].
MedHunter aims to assist (1) target identification, to identify the
right biological molecules or cellular pathways that can be modu-
lated by drugs to achieve therapeutic benefits, in which PPIs are
often needed, (b) drug repurposing, to reuse existing drugs for a
new disease, and (c) ADR, to disclose undesirable impacts of drugs.

The need for these is evident. As an example, target identifica-
tion is perhaps the most crucial initial step in drug discovery, and
influences the chances of success at every step of drug development.
Traditional target identification easily takes from years to decades.
MedHunter helps select candidate targets and speed up the process.

Compared to ML models,MedHunter offers the following.
Graph association. MedHunter infers DDAs and DDIs from graphs
based on bothML predictions and logic deduction. It employs a class
of graph association rules (GARs) of the form 𝑄 [𝑥] (𝑋 → 𝑝0) [10].
Here 𝑄 is a graph pattern to extract related entities and their rela-
tionships/interactions; and 𝑋 → 𝑝0 is a dependency on the entities.
Moreover, ML models may be embedded as predicates for link/node
classification. This allows MedHunter to directly leverage existing
ML models, and enhance their predictions with logical reasoning.
Accuracy and explanation. MedHunter deduces association 𝑝0 as a
logical consequence ofGARswith certainty [12], using accumulated
ground truth, i.e., if the GARs and ground truth are correct, so is 𝑝0.
Moreover, it filters FPs and FNs of ML model M by adding logic
predicates in precondition𝑋 . A PPI deduced byMedHunter in May
2022 coincides a finding published in Nature in the samemonth [17].

In addition, if 𝑝0 is an ML model M for predicting DDIs, DDAs,
PPIs or ADR, we can discover pattern 𝑄 and conditions 𝑋 for rules
of the form 𝑄 [𝑥] (𝑋 → M) to provide rational behind the predic-
tions ofM. This is possible for GNN-based models, which are no
more expressive than two-variable first-order logic with limited
counting [6, 14]. Such interpretability is one of the key advantages
ofMedHunter. It enables researchers to get a glimpse of the inner
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workings ofM, so as to make improvement with novel insights.
A uniform KG. MedHunter builds DDKG, a drug-disease knowl-
edge graph (KG) in which it discovers GARs and deduces DDAs,
DDIs and PPIs.DDKG consists of data from eleven libraries and data
banks, e.g., CTD [3] and BioGrid [2]. It aligns entities from different
graphs [9], and incrementally enriches DDKG by external data [11].
Biomedical data cleaning. MedHunter cleans DDKG by employing
a special form of GARs [7]. It (incrementally) discovers such GARs,
detects errors and fixes the errors in DDKG with the GARs.

Demonstration (Section 3). We give a guided tour of MedHunter,
from rule discovery, rule deduction of DDAs, DDIs and PPIs, to
aligned entities in DDKG. Participants are invited to interact with
MedHunter and experience how it helps in DDAs, DDIs and PPIs.

2 AN OVERVIEW OF MEDHUNTER
This sections presents the association rules (Section 2.1), knowledge
graph (Section 2.2) and architecture (Section 2.3) ofMedHunter.

2.1 Graph Association Deduction
MedHunter employs graph association rules (GARs). Graphs are
modeled as 𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹𝐴), where 𝑉 is a finite set of vertices;
𝐸 ⊆ 𝑉 ×𝐿(𝐸) ×𝑉 is a finite set of edges (𝑣, 𝑙, 𝑣 ′) with label 𝑙 ; each 𝑣
in𝑉 is labeled with its “content” 𝐿(𝑣); and each vertex 𝑣 ∈ 𝑉 carries
a tuple 𝐹𝐴 (𝑣) = (𝐴1 = 𝑎1, . . . , 𝐴𝑛 = 𝑎𝑛) of attributes of a finite arity.

GARs. GARs are defined with a pattern and a dependency. A graph
pattern is 𝑄 [𝑥] = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 , 𝜇), where (1) 𝑉𝑄 (resp. 𝐸𝑄 ) is a
finite set of vertices (resp. edges), (2) 𝐿𝑄 assigns a label 𝐿𝑄 (𝑢)
(resp. 𝐿𝑄 (𝑒)) to each pattern vertex 𝑢 ∈ 𝑉𝑄 (resp. edge 𝑒 ∈ 𝐸𝑄 ), (3)
𝑥 is a list of distinct variables, and 𝜇 is a bijective mapping from 𝑥 to
𝑉𝑄 , i.e., it assigns a distinct variable to each vertex 𝑣 in𝑉𝑄 . For 𝑥 ∈ 𝑥 ,
we use 𝜇 (𝑥) and 𝑥 interchangeably when it is clear in the context.

A match of pattern 𝑄 [𝑥] in graph 𝐺 is a homomorphism ℎ from
𝑄 to 𝐺 such that (a) for each 𝑢 ∈ 𝑉𝑄 , 𝐿𝑄 (𝑢) = 𝐿(ℎ(𝑢)); and (b) for
each 𝑒 = (𝑢, 𝑙,𝑢′) in 𝑄 , 𝑒′ = (ℎ(𝑢), 𝑙, ℎ(𝑢′)) is an edge in 𝐺 .

A predicate of pattern 𝑄 [𝑥] is one of the following:
𝑝 ::= 𝑙 (𝑥,𝑦) | 𝑥 .𝐴 ⊗ 𝑦.𝐵 | 𝑥 .𝐴 ⊗ 𝑐 | 2WL𝐿 (𝑥,𝑦, 𝑙) | M(𝑥 .𝐴,𝑦.𝐵),

where ⊗ is one of =,≠, <, ≤, >, ≥; 𝑥 and 𝑦 are variables in 𝑥 ; 𝑐 is a
constant; 𝐴 and 𝐵 are attributes; and 𝑥 .𝐴 is a list of attributes at
“vertex” 𝑥 ; similarly for 𝑦.𝐵. We support (a) link predicate 𝑙 (𝑥,𝑦),
indicating the existence of an edge labeled 𝑙 from vertex 𝑥 to 𝑦; (b)
attribute predicates 𝑥 .𝐴⊗𝑦.𝐵 and 𝑥 .𝐴⊗𝑐 to compare attribute values;
(c) 2WL𝐿 (𝑥,𝑦, 𝑙), to check whether there is a link of “type” (label) 𝑙
from 𝑥 to 𝑦 by local 2-WL (Weisfieler-Leman) test [15] (see below);
and (d)ML predicateM(𝑥 .𝐴,𝑦.𝐵) returns true iffM predicts true at
(𝑥 .𝐴,𝑦.𝐵); hereM is an ML model that returns Boolean (e.g.,M ≥
𝜎 if the strength of theM prediction is above a predefined bound 𝜎).

A graph association rule (GAR) 𝜑 is defined as
𝑄 [𝑥] (𝑋 → 𝑝0),

where 𝑄 [𝑥] is a graph pattern, 𝑋 is a (possibly empty) conjunction
of predicates of 𝑄 [𝑥], and 𝑝0 is a predicate of 𝑄 [𝑥]. We refer to
𝑄 [𝑥] and 𝑋 → 𝑝0 as the pattern and dependency of 𝜑 , respectively,
and to 𝑋 and 𝑝0 as the precondition and consequence, respectively.

Intuitively, the pattern 𝑄 extracts related entities in a graph,
and the dependency 𝑋 → 𝑝0 is applied to the entities. Attribute

Figure 1: Graph patterns in GARs

predicates 𝑥 .𝐴 = 𝑐 and 𝑥 .𝐴 = 𝑦.𝐵 specify value associations of
attributes, and link predicates 𝑙 (𝑥,𝑦)make link associations. One can
“plug in” pre-trained ML modelsM for e.g., ER and classification.

Predicate 2WL𝐿 (𝑥,𝑦, 𝑙) is used to explain the predictions ofM.
As shown in [15], most GNN models for link prediction are based
on the 1-WL test, and are at most as expressive as local 2-WL test.
Thus with 2WL𝐿 (𝑥,𝑦, 𝑙), GARs can explain such GNN predictions.

Below we exemplify GARs discovered from real-life data.
(1) Drug repurposing. Upon the request of our biomedical partners,
MedHunterwas used to discoverGARs for repositioning of existing
drugs on a type of Parkinson disease. A GAR is 𝜑1 = 𝑄1 [𝑥] (𝑋1 →
𝑙 (𝑥0, 𝑥1)) in Figure 1. The rule is discovered from CTD [3]. Together
with 𝑄1, precondition 𝑋1 specifies the following: (1) drug 𝑥0 has a
known effect on an inborn genetic blood disease 𝑥2; (2) disease 𝑥1 is
the Parkinson; (3) drug 𝑥0 interacts with a gene 𝑥3, which shares an
effect pathway 𝑥4 with 𝑥1; (4) drug 𝑥0 can interact with a gene 𝑥5,
which has anM1-predicted relationship with 𝑥1 (the dashed arrow
in𝑄1), whereM1 is a model that predicts the associations between
genes and diseases [18, 20, 21]; and (5) drug 𝑥0 has a known effect
on a type of skin cancer 𝑥6, which shares an effect pathway with
𝑥1. The predicted link 𝑙 (𝑥0, 𝑥1) (the bold line in 𝑄1) indicates that
drug 𝑥0 may be associated to Parkinson’s disease 𝑥1 in some way.

Such GARs found five drugs for Parkinson, four with published
evidence and the remaining one is under lab investigation.
(2) Protein-protein interaction. BioGRID [2] is a popular biomedical
repository. After enriching it with external data, e.g., UniProt [5], a
GAR is𝜑2 = 𝑄2 [𝑥] (M2 (𝑥0, 𝑥0) ≥ 𝛿∧𝑋2 → 𝑙 (𝑥0, 𝑥0)), inwhichM2
is a RGCNmodel [19] for PPIs,𝑄2 is given in Figure 1 in which each
vertex (resp. edge) denotes a protein (resp. PPI); here 𝑋2 specifies
logic conditions e.g., the domains and subcellular locations. This
GAR identifies the self-interaction 𝑙 (𝑥0, 𝑥0) (the bold loop in𝑄2) on
𝑥0 by filtering the FPs of the prediction ofM2 with additional logic
conditions in 𝑋2, i.e., although the strength of theM2 prediction is
above the threshold 𝛿 , the prediction is made only if 𝑋2 holds.

A PPI identified by such GARs coincides a finding in [17].
(3) Explanation. If 𝑝0 is an ML predicate, MedHunter can discover
GARs to explain the ML prediction, e.g., 𝜑3 = 𝑄3 [𝑥] (𝑋3 → M3 (𝑥0,
𝑥4)) in Figure 1, where M3 is an ML model that predicts the in-
teraction between gene 𝑥0 and disease 𝑥4. This GAR explains why
M3 (𝑥0, 𝑥4) is true (the bold line in𝑄3) with both𝑄3 and 𝑋3, i.e., (1)
gene 𝑥0 has interacted with pathway 𝑥2; (2) gene 𝑥0 has interacted
with disease 𝑥1 that has also interacted with pathway 𝑥3; (3) gene 𝑥5
is predicted to interact with pathway 𝑥3 by 2WL𝐿 , and it has effect
on disease 𝑥4; and (4) pathway 𝑥2 has effect on diseases 𝑥1 and 𝑥4.
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Figure 2: The architecture of MedHunter Figure 3: A snapshot of the user panel of MedHunter

Algorithms.MedHunter implements (a) the algorithm of [8] for
discovering GARs, (b) an extension of [12] for deducing missing
DDIs, DDAs and PPIs; it chases a biomedical graph with a set Σ of
mined GARs by accumulating and referencing ground truth in the
process. Both algorithms are parallely scalable, i.e., they provably
guarantee to reduce runtime when given more processors [16].

2.2 Cleaning and Enriching DDKG
MedHunter maintains DDKG by enriching and cleaning its data.

Drug-Disease Knowledge Graph. DDKG integrates biomedical
libraries and data banks, by computing their join as follows.

MedHunter aligns entities across different graphs by employing
heterogeneous entity resolution (HER) [9]. For a vertex 𝑣1 in graph
𝐺1 and vertex 𝑣2 in another graph 𝐺2, it determines whether 𝑣1
and 𝑣2 refer to the same entity via parametric simulation, which
embeds ML models for similarity checking in topological matching.

Given𝐺1 = (𝑉1, 𝐸1, 𝐿1, 𝐹1) and𝐺2 = (𝑉2, 𝐸2, 𝐿2, 𝐹2),MedHunter
“joins” them as𝐺⊕ (𝐺1,𝐺2) = (𝑉⊕, 𝐸⊕, 𝐿⊕, 𝐹⊕), where𝑉⊕ (resp. 𝐸⊕ )
is a revision of the union𝑉1 ∪𝑉2 (resp. 𝐸 ∪𝐸2) such that 𝑢 and 𝑣 are
represented as the same (merged) vertex in 𝑉⊕ if (𝑢, 𝑣) is a match
by HER; and 𝐿⊕ and 𝐹⊕ inherit the label and attribute assignments
from 𝐺1 and 𝐺2. When 𝑢 and 𝑣 both carry attribute 𝐴, the merged
vertex takes the value 𝑣 .𝐴 from more reliable 𝐺𝑖 (∈ [1, 2]).

Data enrichment. To ensure that DDKG remains up-to-date and
relevant,MedHunter continuously and incrementally enriches it in
response to updates Δ𝐺 to the source graphs. Rather than adding
all data from Δ𝐺 , it employs the graph filtering method of [11]
to extract only relevant data to DDKG; it applies LSTM to pick
“important” paths ranks the paths, extracts data from top-ranked
paths, and enriches DDKG with the data. As shown in [11], graph
filtering is effective in reducing noise and the size of DDKG.

Data cleaning. MedHunter maintains the quality of DDKG via
a (human-in-the-loop) cleaning procedure, using a special case of
GARs, referred to as Graph Cleaning Rules (GCRs) [7]. AGCR has a
form Q[𝑥0, 𝑦0] (𝑋 → 𝑝0), where Q[𝑥0, 𝑦0] = ⟨𝑄𝑥 [𝑥0, 𝑥], 𝑄𝑦 [𝑦0, 𝑦]⟩,
𝑄𝑥 [𝑥0, 𝑥] is a star shape pattern with a designed 𝑥0; similarly for
𝑄𝑦 [𝑦0, 𝑦]. GCRs support all the predicates of GARs except 2WL𝐿 .

Intuitively,Q specifies two entities 𝑥0 and𝑦0 with heterogeneous
structures in a schemaless graph. The star patterns identify features
of 𝑥0 and 𝑦0. We restrict 𝑄𝑥 and 𝑄𝑦 to a star shape so that it takes
polynomial time to check matches of suchQ, and to applyGCRs [7].

MedHunter automatically discoversGCRs fromDDKG. To clean

data with certain fixes, users can selectively apply a set of GCRs
based on labeled ground-truth data; they may optionally intervene
in a prompt-and-confirm style to facilitate the cleaning process.

Algorithms.MedHunter implements (a) the algorithms of [11] for
graph join, data enrichment, and incremental discovery of GARs;
(b) the algorithms of [7] for mining GCRs and detecting errors;
and (c) an extension of the algorithm of [12] for fixing the detected
errors. All the algorithms are also parallelly scalable [16].

2.3 The Architecture of MedHunter
The architecture of MedHunter is shown in Figure 2. It consists of
the following main modules, from the bottom to the top.
◦ Data sources, which maintain raw data from various libraries and

data banks. New data can be dynamically merged with DDKG.
◦ Data enrichment. On top of the data source module,MedHunter

conducts data enrichment, by first aligning entities across differ-
ent sources and then leveraging graph join and graph filtering
techniques to construct a unified knowledge graph DDKG.

◦ Rule discovery and data cleaning. Based on the integrated DDKG,
MedHunter supports GAR/GCR discovery, cleaning and associ-
ation deduction, in both batch and incremental modes. before.

◦ Applications. The GARs discovered are then used in various
biomedical applications, for identifying DDAs, DDIs and PPIs,

3 DEMONSTRATION SETUP AND PLAN
This section proposes our plan for demonstratingMedHunter1.
Setup. We will use a single machine powered by 16GB RAM and 8
processors with Intel(R) Xeon(R) Gold 5320 CPU @2.20GH.

User interface. Participants are invited to accessMedHunter from
its Web UI. As shown in the snapshot of Figure 3, MedHunter
presents a friendly interface. The top navigation bar provides access
to three main modules ofMedHunter. Each module is task-based,
and it takes only a few clicks to get a task up and running. We
will walk users through the process of creating new tasks, where
they configure inputs and monitor its progress. The task results are
visualized and updated in real time through the dashboard.

Data enrichment. We will give a guided tour of how MedHunter
enriches DDKG from external data, e.g., PharmGKB [4]. User can
“join” data andDDKG, and take the enrichedDDKG for further anal-
ysis. The process is interactive and visualized on the Web interface.

1https://youtu.be/rhvcXBjtLhw
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Figure 4: MedHunter in DDAs

Data cleaning. We will walk users through the data cleaning pro-
cess ofMedHunter. We will guide users to configure and run rule
discovery for GCRs. The users can examine the discovered GCRs,
and pick a subset for cleaning. We will demonstrate interactive data
cleaning, using the selected GCRs. During the process,MedHunter
will visualize detected errors and the GCRs, with suggested fixes. A
user may opt to either accept a suggestion or customize a fix, which
will be taken as ground truth for subsequent GCR applications.

Applications. Participants are also invited to experience drug
discovery with MedHunter, in the following three scenarios. Each
scenario is offered as a task template under rule discovery.

Scenario 1: DDAs. Users may pick a disease 𝑦, and identify either
(a) molecule targets or (b) existing drugs that may have therapeutic
effects on the disease. It is to discover and apply GARs whose
consequence has the form 𝑙 (𝑥,𝑦), where 𝑥 is a drug or a gene. Over
DDKG, we will direct users to specify 𝑦 in the task template for
GAR discovery and monitor its execution. The discovered GARs
and their predicted DDAs are visualized and updated in real time.

A learned GAR 𝜑4 = 𝑄4 [𝑥] (𝑥2 .NVIP ≥ 3 ∧ 𝑥3 .Nanno < 125 →
𝑙 (𝑥2, 𝑥1)) is shown in the left panel of Figure 4. It suggests that a
drug 𝑥2 may be associated to disease 𝑥1, provided that (1) 𝑥2 has a
high VIP count (i.e., an active compound), and (2) 𝑥1 and 𝑥2 both
interact with a gene variant 𝑥3 that has a low annotation count
(< 125). MedHunter reports that GAR 𝜑4 has a support of 51, with
confidence over 0.95. One of its predicted DDAs is between Drug
#PA128406956 and Disease #PA445742 (shown in the right panel).

Scenario 2: DDIs. MedHunter can also disclose drug-drug interac-
tions. We will demonstrate this functionality in a procedure similar
to DDAs, except that it allows users to specify a target drug as 𝑦.

Scenario 3: PPIs. The participants will also witness howMedHunter
identifies protein-protein interactions. It is to discover and apply
link predicting GARs over the PPI network of DDKG, along with
ML models for PPI predictions, e.g., RGCN. We will guide the users
to examine the result as GARs focus on reducing the FPs and FNs.

Figure 5 shows a discovered GAR 𝜑5 = 𝑄5 [𝑥] (𝑥1 .pathway =

Metabolism_of_proteins ∧ 𝑥1 .domain = Cyclin ∧ M2 (𝑥1, 𝑥1) =

false → 𝑙 (𝑥1, 𝑥1)). The rule’s confidence is 0.993; it suggests the self-
PPI on protein𝑥1 despite the negative prediction ofM2, if (1) Cyclin-
domain 𝑥1 is involved in the pathway “Metabolism of proteins”,
and (2) 𝑥1 shares at least two common PPIs with protein 𝑥2.

0. protein3. protein

2. protein

p-p

p-p p-p

p-p

p-p 1. protein
domain: PF00134,PF02984

location: Nucleus

3. protein
domain: PF00069

location: Cytoplasm,
Nucleus

2. protein
domain: PF00653

location: Cytoplasm,Nucleus

p-p

p-p

p-p

p-
p

0. protein
domain: 

PF00069,PF00169,PF00433
location: Cytoplasm,

1. protein
pathway: Metabolism of proteins

domain: ¬(PF02752,PF00339)

p-p

Figure 5: MedHunter in PPIs

We will show thatMedHunter reduces the FPs and FNs of ML
models for these tasks, by improving the precision by 4% on average.
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