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ABSTRACT
Progressive query processing enables data scientists to efficiently
analyze and explore large datasets. Data scientists can start fur-
ther analyses earlier if the progressive result can represent the
complete results well. Most progressive processing frameworks
carefully control which parts of the input to process in order to
improve the quality of progressive results. The input control strate-
gies work well when the data are processed uniformly. However,
the progressive results will be biased towards the join keys if the
processed data are not uniform. A recently proposed input&output
framework named QPJ corrects the bias by temporarily hiding some
results. The framework dynamically estimates the distribution of
the complete result and outputs progressive results with a similar
distribution to the estimated complete result. This demo presents
QPJVis, which is a progressive query processing system designed
to inherently process the progressive queries using the QPJ frame-
work. Additionally, we also implement an input control framework,
Prism, in QPJVis so that users can compare the difference between
the input&output framework and a purely input framework.
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1 INTRODUCTION
Exploring large datasets is a time-consuming task. Due to the big
data volume and computation complexity, it usually takes minutes
or even hours to finish one query [12]. Researchers propose progres-
sive query processing to efficiently explore big data. Progressive
processing splits large datasets into small batches and processes
each data batch progressively. Each progressive computation round
takes a few seconds to keep the users engaged and active [15]. Users
take the progressive answers to start the further processing early
on without taking hours to wait for the entire computation to com-
plete on the whole dataset. Progressive processing is a popular tool
to explore and analyze large datasets on join [4, 5, 7–9, 11, 15, 16],
aggregation [4, 7, 13], and visualization [3, 6, 13].

Traditional progressive processing frameworks adopt different
input control techniques to ensure the quality of progressive re-
sults. We classify them into two categories. Frameworks in the
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first category optimize the progressive input before the query pro-
cessing: these systems [4–8, 15] control the input that goes into
query processing. They manipulate the progressive input based on
pre-defined input computation goals. The goals can be the number
of items in progressive input, data distribution of progressive input,
and preference score function. However, these frameworks always
return the progressive results directly without further optimiza-
tions, which can lead to misleading results. Poor quality progressive
results can negatively impact further analyses and mislead data
scientists to have cognitive biases [12].

Frameworks in the second category optimize results during
query processing: a process ingests and processes more input until
the output reaches a desired quality bound [3, 9, 13]. They ma-
nipulate the query processing based on result quality goals, for
example, error bound or sample strategies. These frameworks take
a longer time to process more data to reach the computation goal,
which can compromise the advantage of quick response provided
by progressive processing. Besides, they might provide approximate
answers [3, 9] instead of exact answers.

We propose a new quality-aware progressive join framework
recently [16], named QPJ, to address the limitations in existing
frameworks. QPJ employs a flexible input&output control mecha-
nism to adjust input and output individually in each progressive
computation cycle. The input control follows existing single-choice
control frameworks to batch and partition the progressive input.
The output control maximizes the progressive output rate while
preserving result quality through distribution similarity to the es-
timated complete result. QPJ temporarily hides some results in
memory from the current round and releases them in the following
rounds. Simply speaking, outputting less with better quality. QPJ
uses a flexible two-direction weighted sampling strategy. It adopts
the weighted sampling to add results into the output view when
the size of the temporary hold result is large. On the other side, it
will use reverse weighted sampling to filter out results from the
output view when the size of the temporary hold result is small.
Additionally, QPJ adopts a dynamic strategy to estimate complete
result distribution. In this work, we demonstrate QPJVis which is
a progressive processing system utilizing QPJ to process equi-join
and spatial join queries. QPJVis also contains a web interface that
allows the users to enter queries and the parameters and visualize
the progressive results of the queries.

2 QPJVIS SYSTEM OVERVIEW
QPJVis contains two parts: (1) A web interface receives user-typed
queries and parameters and visualizes the progressive results. Be-
sides, QPJVis also allows users to store the query results in disk
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Figure 1: The screenshot of QPJVis web interface.
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Figure 2: The system architecture of QPJVis.

files for further analysis. (2) A progressive query processing com-
ponent QPJ that produces the quality preserved progressive results
in multiple progressive rounds. The number of rounds is given by
the user, we call the data of each round as batch.

2.1 QPJVis Web Interface
Figure 1 shows a screenshot of the web interface of QPJVis. It
contains three panels: the search panel, the result statistics panel,
and the result panel. In the search panel, users can enter the join
query and tune query parameters. The query parameters include
the partition function, the number of partitions, the number of
progressive batches, the error bound, and the result file path. Addi-
tionally, we also allow users to enable and disable result statistics
visualization, result visualization, and quality search. Users can
click “QPJSearch” button to perform a quality-boost progressive
search by QPJ framework or click “PrismSearch” button to perform
a regular progressive search by Prism framework [4]. In the result
statistics panel, we provide three ways to visualize the result sta-
tistics which are bar chart, pie chart, and table. In the result panel,
we show the progressive output rate in a process bar and visual-
ize the progressive results. The progressive spatial join results are

shown in the map. The spatial data visualization is implemented by
OpenLayers APIs [14]. The progressive equi-join results are listed
in the table. To save space, we only show the samples of progressive
equi-join results. Additionally, users can click “next batch” button
to request the progressive results of the next batch.

2.2 Progressive Query Processing
QPJVis processes the progressive queries by a quality-aware pro-
gressive join framework QPJ [16]. QPJ consists of three components:
partitioners, join processors, and a progressive results builder. They
are drawn into different colors in Figure 2.

2.2.1 Partitioners and Join Processors. Assume user gives a join
query that join dataset 𝑆 and dataset 𝑅, the number of partitions 𝑘 ,
and the number of progressive computation rounds 𝑠 . In round 𝑖 ,
QPJ provides the progressive answer up to batch 𝑖 . QPJ computes
the batch size of each round based on the number of progressive
rounds and the size of each dataset. QPJ contains two functions to
compute the batch size: equal-size split function and balance split
function. The equal-size split function produces equal-sized batches.
The balance split function ensures each round processes the equal
size of candidate pairs, which is (𝑚1 ∗𝑚2)/𝑠 , where𝑚1 and𝑚2 are
the sizes of the two datasets and 𝑠 is the total computation round.

QPJ divides dataset 𝑆 and dataset 𝑅 into disjoint 𝑘 partitions and
collects the statistical information used for batching and result size
estimation. The system assigns 𝑘 processors (in green) to process
the data from 𝑘 partitions (in blue) and produces the progressive
results in 𝑠 rounds. QPJ adopts hashing partition for equi-join pro-
cessing and grid partition for spatial join processing. The hashing
partition [4, 8] is widely used to separate the non-spatial data based
on the joined attribute. QPJ groups the relational data based on
the joined attribute and puts them to a different partition. To pro-
cess spatial data, QPJ takes grid partition [15]. It divides the input
data space into equal-size grid cells and hashes each grid cell to a
different partition.

QPJ applies hash join algorithm [10] to process the equi-join
query and applies the Plane Sweep algorithm [2] to hand the spatial
join query. Given the input batches, QPJ runs three join steps for
each partition: (1) The new batch from dataset1 joins the new batch
from dataset2; (2) The new batch from dataset1 joins the existing
batches from dataset2; (3) The new batch from dataset2 joins the
existing batches from dataset1. In each round, QPJ computes the
query results up to the current batch.

2.2.2 Progressive Results Builder. QPJ controls the input and out-
put of the progressive computation through the progressive results
builder. In Figure 2, circle black symbols represent the input control
and output control gates. In each round, the partitioners (in blue)
and processors (in green) send the statistical information through
input control gates to the progressive results builder (in orange).
The statistical information includes input batch size and progressive
results size. The progressive results builder estimates the complete
result size and computes the output progressive result size of each
partition for the current round. Progressive results builder sends
progressive output result sizes of all partitions and their statistical
information through the output control gates to processors. Pro-
cessors release the progressive results based on the output results
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size. The rest of the results are buffered in memory temporarily
and will be released together with the progressive results of the
following rounds. Compared with purely input control frameworks,
QPJ outputs a few results so that the partitioned data distribution
of the outputted progressive results is closer to the partitioned data
distribution of complete results.

Ground Truth Estimation. To better estimate the ground truth,
progressive results builder adopts multiple estimation methods and
combines them dynamically by different importance factors. The
estimated ground truth result size 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 as follows:

𝑛𝐺𝑇𝑖, 𝑗ˆ = 𝐸𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
𝑖

𝑠
𝐸 𝑗𝑜𝑖𝑛𝑖 +

𝑠 − 𝑖

𝑠
𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, (1)

where 𝑖/𝑠 and (𝑠 − 𝑖)/𝑠 are importance factors. 𝑠 is the total number
of progressive rounds and 𝑖 represents the current round. 𝐸 𝑗𝑜𝑖𝑛𝑖 is
the sampling estimation of round 𝑖 and 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is the estima-
tion computed by applying selectivity estimation. The sampling
estimation 𝐸 𝑗𝑜𝑖𝑛𝑖 considers the current result as samples of the
complete result. 𝐸 𝑗𝑜𝑖𝑛𝑖 is computed by dividing the current result
size by 𝑥𝑖 ∗ 𝑦𝑖 , where 𝑥𝑖 and 𝑦𝑖 are the fractions of processed data
size from the two joining datasets. QPJ provides different selec-
tivity estimation methods for spatial join and equi-join. We apply
the method in [10] to compute equi-join selectivity estimation and
apply Geometric Histograms [1] to compute spatial join selectiv-
ity estimation. The selectivity estimation 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 will only be
computed once and 𝐸 𝑗𝑜𝑖𝑛𝑖 will be recomputed with the new join
results in each round. The first round estimated ground truth is 𝐺1̂
= 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 and the last round estimated ground truth𝐺�̂� = 𝐸 𝑗𝑜𝑖𝑛𝑠 .
The importance factor of 𝐸𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 is larger than the importance
factor of 𝐸 𝑗𝑜𝑖𝑛 in the beginning. 𝐸 𝑗𝑜𝑖𝑛 ’s importance factor becomes
larger with more and more data being processed.

Progressive Output Rate Computation. Result distribution
is a widely used metric to evaluate the quality of progressive re-
sults [8, 12, 13, 15]. The progressive results can represent the final
results well if they have similar result distribution to the complete
results [15]. The goal of progressive results builder is to produce
progressive results with a similar distribution ratio to the final re-
sults. In Theorem 1 [16], we proved that when all partitions have the
same result rate, the progressive answer has the best quality. The
progressive results builder aims to let each partition have roughly
the same estimated output rate 𝜌𝑖 . 𝜌𝑖 is the ratio of the current
result size 𝑛𝑂𝑖 (result update to batch 𝑖) to the estimated ground
truth 𝑛𝐺𝑇ˆ , where 𝜌𝑖 = 𝑛𝑂𝑖/𝑛𝐺𝑇ˆ . The optimal 𝜌 is the minimum
ratio among all partitions, ensuring that each partition has the same
output result ratio. However, a partition with a small ratio might
block other partitions. To guarantee users receive enough amount
of results, the progressive results builder allows every partition to
not strictly follow the exact same 𝜌𝑖 . It uses a greedy algorithm [16]
to compute the boost output rate 𝜌∗:

𝜌∗ =
𝜌𝑖, 𝑗 + ... + 𝜌𝑖, 𝑗

𝑗 − 𝑘𝜀
, (2)

where 𝑘 is number of partition, 𝜀 ≥ 0 is the error bound, and 𝜌𝑖, 𝑗
represents the true output rate of partition 𝑗 up to batch 𝑖 .

Progressive Output Selection. With the boost output progres-
sive rate 𝜌∗ and estimated ground truth, QPJ computes the size of
output results and outputs the progressive results based on com-
puted size. QPJ adopts a two-level sampling method to achieve a

Figure 3: Running a progressive equi-join query.
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Figure 4: Comparing data distribution of progressive results
and complete results: QPJ versus baseline method Prism.

finer control for picking results to output. It first partitions data into
big partitions which are called coarser-level partitions. Then it fur-
ther splits each big partition into small partitions which are called
finer-level partitions. The progressive rate and output result size are
computed based on the coarser-level partition following Equation 1
and Equation 2. In each coarser-level partition, we further compute
the result ratio of each finer-level partition.

QPJ performs weighted without replacement sampling strategy.
If the output results size is close to the join results size, we apply the
sampling method to pick the join results that are temporary hold.
If the output results size is small, we apply the sampling method to
pick the output results. A more detailed design is introduced in our
previous work [16] (Section 5.2).

3 DEMONSTRATION SCENARIOS
In this section, we use a progressive equi-join example to demon-
strate how to use QPJVis and compare the progressive results com-
puted by different frameworks. We also provide other spatial and
non-spatial datasets to enable users to perform progressive spatial
join and equi-join queries.
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3.1 Running Equi-join Example
Assume a user wants to know how many tweets are posted in each
state. The user can apply the following join query with GROUP
BY aggregation on the state:“ SELECT COUNT(*) FROM Tweets,
CityState WHERE Tweets.city = CityState.city GROUP BY CityS-
tate.state”. In Figure 3, we show the screenshots of the search panel.
Users can refer to Figure 3 (a) to enter the input query. In this ex-
ample, we assume the number of partitions equals 4 and choose
the hash partition as the partition function. We set the number
of progressive batches to 10. QPJVis will process this query into
10 batches and return 10 progressive results. Additionally, we can
assign the error bound for boosting the output rate and assign the
result file path. Users can refer to Figure 3 (b) to assign these pa-
rameters. If we click QPJSearch, QPJVis will apply QPJ framework
to process the given query. Clicking PrismSearch, QPJVis will apply
Prism framework to process the given query. The Prism framework
is an input control framework. It partitions the input datasets based
on the join key and ensures that the input data of each partition
follows the same input processed rate. Prism framework returns all
the progressive results to the user. Users can refer to Figure 3 (c)
to adjust the visualization parameters and choose the progressive
processing framework. If users assign an ”Error Bound“ 𝜀, QPJVis
will compute boost output rate 𝜌∗ to produce more output results.
Assume we want to visualize the result statistics by pie charts.

3.2 Different Frameworks Comparison
In the search panel, users can process progressive queries by QPJ
or baseline method Prism. To compare the quality of the progres-
sive results, we compute the partitioned result distributions of the
complete result and progressive results of the two frameworks in
Figure 4. We further visualize the result statistics in pie charts. The
complete result contains 546 tweets from Arizona state, 360 tweets
from Connecticut state, 288 tweets from Kentucky state, and 246
tweets from Oregon state. The total number of results is 1440. In
this example, there are four states and the user assigns four par-
titions so that each partition contains one state. The partitioned
result distribution is the result ratio of Arizona = 546/1440 = 0.38
(in yellow), the result ratio of Connecticut = 360/1440 = 0.25 (in
blue), the result ratio of Kentucky = 288/1440 = 0.20 (in orange),
and the result ratio of Oregon = 246/1440 = 0.17 (in grey).

In the first round, Prism solution gets 63 tweets from Arizona,
17 tweets from Connecticut, 9 tweets from Kentucky, and 11 tweets
from Oregon. It returns all the results to the user. Let’s use 𝑟𝑠𝑡𝑎𝑡𝑒
to represent the result ratio of a state. The output result distribu-
tion is 𝑟𝐴𝑟𝑖𝑧𝑜𝑛𝑎 = 63/100 = 0.63, 𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑐𝑢𝑡 = 17/100 = 0.17.
𝑟𝐾𝑒𝑛𝑡𝑢𝑐𝑘𝑦 = 9/100 = 0.09, and 𝑟𝐴𝑟𝑖𝑧𝑜𝑛𝑎 = 11/100 = 0.11. QPJ solu-
tion returns 6 tweets from Arizona, 7 tweets from Connecticut, 9
tweets from Kentucky, and 6 tweets from Oregon. The output result
distribution is 𝑟𝐴𝑟𝑖𝑧𝑜𝑛𝑎 = 6/28 = 0.22, 𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑐𝑢𝑡 = 7/28 = 0.24.
𝑟𝐾𝑒𝑛𝑡𝑢𝑐𝑘𝑦 = 9/28 = 0.32, and 𝑟𝐴𝑟𝑖𝑧𝑜𝑛𝑎 = 6/28 = 0.22.

We can compute the mean absolute percentage error (MAPE)
of the two progressive results and use the MAPE error to reflect
the quality of the progressive results. The MAPE error computes
as follows: MAPE =

∑︁𝑘
𝑖=1

|︁|︁|︁ 𝑟𝐺−𝑟𝑜
𝑟𝐺

|︁|︁|︁ /𝑘 , where 𝑟𝐺 is ground truth
result distribution, 𝑟𝑜 is the progressive result distribution, and 𝑘
is the number of partitions. The MAPE of the Prism is ( 0.63−0.380.38 +

0.17−0.25
0.25 + 0.09−0.20

0.20 + 0.11−0.17
0.17 )/4 = 0.12. The MAPE of the QPJ

is ( 0.22−0.380.38 + 0.24−0.25
0.25 + 0.32−0.20

0.20 + 0.22−0.17
0.17 )/4 = 0.09. The error

of QPJ results is smaller than the error of Prism result so that the
quality of the QPJ results is better than the quality of Prism result.
By clicking the “Next Batch” button in the result panel (shown in
Figure 1), the user can access the progressive results of the following
rounds. The partitioned result distribution of the progressive results
will become closer to the complete results as the system processes
more and more data.

In progressive query processing, the main caveat is that progres-
sive results may not accurately reflect the complete result. Poor
quality progressive results can negatively impact further analyses
and mislead data scientists to have cognitive biases [12]. In this
example. if the user does not have prior knowledge, she or he will
draw a wrong conclusion by Prism’s progressive results. The user
might consider that Arizona state has more results than the sum of
other states. On the other side, if the user has prior knowledge, she
or he will spend more time waiting for accurate results. In contrast,
QPJ does not mislead users like Prism. Progressive results produced
by QPJ more closely resemble the complete result than pie charts
produced by Prism.

In addition to relational datasets and equi-join query processing,
QPJVis also includes spatial datasets to enable users to execute
spatial join queries. The following example is a spatial join query:“
SELECT obj.range FROM Park, Water WHERE Park.range over-
lap Water.range”. If QPJVis detects the keyword “overlap” in the
WHERE clause, the system will perform spatial data processing.
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