
Cardinality Estimation for Having-Clauses
Guido Moerkotte

University of Mannheim
Mannheim, Germany

moerkotte@uni-mannheim.de

ABSTRACT
We present several methods for estimating the result cardinality
of single table queries with a having clause. More specifically, we
provide cardinality estimates for predicates using the aggregate
functions count(*), sum(B), avg(B), min(B), and max(B). We do
so for queries with and without a where-clause. Finally, we show
how to handle conjunctions and disjunctions in the having-clause.

PVLDB Reference Format:
Guido Moerkotte. Cardinality Estimation for Having-Clauses. PVLDB,
18(1): 28 - 41, 2024.
doi:10.14778/3696435.3696438

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
github.com/moerkotte/having.

1 INTRODUCTION
The goal is to discuss methods to estimate the result cardinality
of group-by-having (GBH) queries. More specifically, we consider
cardinality estimates for the following GBH-query pattern:

select A,...
from R
[where p]
group by A
having aggr(B) [= b | between l and u]

Predicates of the form aggr(𝐵)𝜃𝑏 for 𝜃 ∈ {≠, <, ≤, >, ≥} can be
reduced to equality for ≠ and to between queries for the other 𝜃 .

The relevance of considering cardinality estimation for GBH-
queries becomes clear if we consider them occurring nested in some
larger query. Examples thereof are TPC-H Q18 [67] and TPC-DS
Q8, Q14, Q23, Q44, and Q64 [68]. Some of these contain one or
more GBH-queries nested in the from-clause together with other
relations. In these cases, the optimal join order and the choice of the
optimal join implementation highly depends on the cardinality of
the GBH-queries. Besides these benchmark queries, we assure the
reader that real customer queries with nested GBH-queries exist1.

In their seminal paper Selinger et al. introduced what we call
the simple profile (SP) [63]. The main idea of the simple profile is to
store only a few numbers per relation and per attribute thereof and

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 18, No. 1 ISSN 2150-8097.
doi:10.14778/3696435.3696438

1There even are blogposts on it: oracle-randolf.blogspot.com/2013/01/having-
cardinality.html [last accessed 01.09.24]

Table 1: Supported SQL-Constructs

White Fent+ here
count + + +
sum/avg + +
min/max (+) +
and/or +
where +

use the uniform distribution assumption and the independence as-
sumption to come up with cardinality estimates. Here, we introduce
the extended simple profile (eSP) by adding a few more numbers to
the simple profile and discuss existing and new methods to produce
estimates for the result cardinality of GBH-queries. The eSP-based
estimation methods assume a uniform distribution of the values in
attributes 𝐴 and 𝐵. The estimates produced by eSP can be seen as a
default in the lack of better alternatives (which mostly have to be
developed in the future).

Note that almost nothing has been published on estimating the
selectivity of having clauses. In fact, during a literature and an
internet seach we only found two descriptions of cardinality es-
timation methods for having clauses. The first is a blog entry by
White describing the selectivity estimation in SQL-Server for hav-
ing predicates in count(*) [74]. The second is a paper by Fent and
Neumann [21]. We will discuss both methods in detail. Table 1 gives
an overview of supported SQL-constructs. Fent and Neumann’s
approach only supports min/max for numerical attributes.

Since the main focus is on uniformly distributed values of 𝐴
and 𝐵, we use the data from the TPC-H benchmark [67] (with scale
factor SF=1) and modifications of Query 18 to illustrate the different
approaches.

The rest of the paper is organized as follows. Section 2 provides
a superset of the statistics required for all approaches. It also con-
tains SQL-queries to derive these statistics. Further, the according
numbers for the TPC-H Lineitem table are provided for further
reference. Section 3 deals with predicates in count(*). Section 4
deals with predicates in sum(B) and avg(B). Section 5 deals with
predicates in min(B) and max(B). The problem of multiple predi-
cates in the having-clause either conjunctively or discjunctively
connected is handled in Section 6. So far, all methods discussed
have ignored a possible where-clause with an according selection
predicate. Therefor, Section 7 discusses estimation methods in case
the query contains a where-clause. Section 8 contains related work.
Section 9 concludes the paper.

2 PRELIMINARIES
Table 2 contains the notation used in the paper. We assume a re-
lation 𝑅 with attributes 𝐴 and 𝐵 is given. In our query pattern,

28

https://doi.org/10.14778/3696435.3696438
github.com/moerkotte/having
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3696435.3696438
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Table 2: Notation

relations and attributes
𝑅 relation in the from clause
𝐴 attribute(s) of 𝑅 in the group by clause
𝐵 (derived) attribute of 𝑅 in some aggregate function

in the having clause
𝐶 defined as count(*) as C (see Query 𝑄𝐸)

standard statistics for 𝑋 ∈ {𝐴, 𝐵}
𝜇𝑋 mean of attribute 𝑋
𝜎𝑋 standard deviation of attribute 𝑋
𝛾𝑋 skewness of attribute 𝑋

simple profile for 𝑅, 𝑋 ∈ {𝐴, 𝐵}
|𝑅 | cardinality of relation 𝑅

min𝑋 minimum value of attribute 𝑋
max𝑋 maximum value of attribute 𝑋
𝑑𝑋 number of distinct values of attribute 𝑋

extension
min𝐶 minimum value of count(*)
max𝐶 maximum value of count(*)
𝑑𝐶 number of distinct values for count(*)
𝜇𝐶 mean of count(*)
𝜎𝐶 standard deviation of count(*)
𝛾𝐶 skewness of count(*)

𝐴 is the grouping attribute and 𝐵 is the argument of some aggre-
gate function. The parameters used throughout are clustered into
three parts. The first part contains standard statistics for numerical
columns, like mean, standard deviation, and skewness. The simple
profile stores the cardinality of relation 𝑅. Further, for all attributes
the minimum and maximum value as well as the number of distinct
values is stored. The idea then is to use the uniform distribution
assumption and the independence assumption to derive cardinality
estimates [63]. The simple profile is also described in detail in [50,
Sec. 24.3]. Typically, the standard statistics is not part of the simple
profile. The extension part contains some numbers on count(*)
values. The eSP then contains the SP numbers as well as the first
three numbers in the extension part. The numbers in the extension
part can be calculated via Query 𝑄𝐸 (e.g. using DuckDB [61]):

select min(C), max(C), count(distinct C),
mean(C), stddev(C), skewness(C)

from (select count(*) as C
from R
group by A)

Under certain assumptions, some of these numbers can be deter-
mined without evaluating𝑄𝐸 , as we will see later. It is important to
note that not all approaches presented will rely on all the numbers
contained in Table 2. Thus, for some approaches Table 2 contains a
strict superset of their required input. Table 3 contains the details
about the usage of the numbers for different estimation methods
presented below. An 𝑥 means that the number must be available.
A 𝑑 means that the value is derived from the inputs marked by 𝑥 .
An 𝑜 (optional) means that the value is used if it is avaible and a
default value is used otherwise.

Table 3: Numbers for TPC-H (SF1)

standard statistics used by
White Fent+ 𝛽-D eSP

𝜇l_orderkey 3’000’279.60 x d
𝜎l_orderkey 1’732’187.87 x d
𝛾l_orderkey -0.000’178’9 o
𝜇l_quantity 25.508 x x d
𝜎l_quantity 14.426 x x d
𝛾l_quantity -0.001 x

simple profile
|Lineitem| 6’001’215 x x x
minl_orderkey 1 x x
maxl_orderkey 6’000’000 x x
𝑑l_orderkey 1’500’000 x x x
minl_quantity 1 x x
maxl_quantity 50 x x
𝑑l_quantity 50 x

extension
min𝐶 1 x x
max𝐶 7 x x
𝑑𝐶 7 x
𝜇𝐶 4.00 d d x d
𝜎𝐶 2.00 d d x d
𝛾𝐶 0.00 d
x: used as input; d: derived; o: optional, default if unavailable

For our examples, we use the data of TPC-H (SF=1) [67] and the
following query pattern, which covers the nested query block of
Query 18:

select l_orderkey,...
from Lineitem
[where p]
group by l_orderkey
having aggr(l_quantity) [= b | between l and u]

The according numbers for 𝑅 = Lineitem, 𝐴 = l_orderkey, 𝐵 =

l_quantity are given in Table 3.
For completeness, Figure 1 contains Query 18 of the TPCH-H

benchmark [67]. We see that the optimal query plan depends on
the result cardinality of the nested query block. The runtimes of
different plan alternatives for different cardinalities of the nested
query block have been investigated by Fent and Neumann [21].

Finally, in all our evaluations, we use the q-error [53]. If 𝑥 ≥ 0 is
some number and 𝑒 ≥ 0 is an estimate thereof, the q-error(e,x) is
defined as

q-error(𝑒, 𝑥) =
⎧⎪⎪⎨⎪⎪⎩

1 if 𝑒 = 0 ∧ 𝑥 = 0
max(𝑥/𝑒, 𝑒/𝑥) if 𝑒 ≠ 0 ∧ 𝑥 ≠ 0
∞ else

3 PREDICATES IN COUNT
The query pattern we consider in this section is

select . . .
from R
group by A
having count(*) [= b | between l and u]

29

select c_name, c_custkey, o_orderkey, o_orderdate,
o_totalprice, sum(l_quantity)

from customer, orders, lineitem
where o_orderkey in (select l_orderkey

from lineitem
group by l_orderkey

having sum(l_quantity) > PARAM)
and c_custkey = o_custkey
and o_orderkey = l_orderkey

group by c_name, c_custkey, o_orderkey,
o_orderdate, o_totalprice

order by o_totalprice desc, o_orderdate

Figure 1: Query 18 of TPC-H

First note that the value of count(*) is always an integer and that
1 is a lower bound. This even holds if R is empty, as then there is
no tuple which could violate the lower bound. The upper bound
can, in general, be quite large but is of course bounded by |𝑅 |, a
case which occurs if there is only a single value in 𝐴.

3.1 Data Analysis
The true numbers for count(*) for Lineitem can be derived by
the following SQL query, which returns the different number of
lineitems per l_orderkey (C) and the frequency (𝐹𝑐) of their occur-
rence:

Query 𝑄𝑐 Result of 𝑄𝑐

select C, count(*) as 𝐹𝑐
from (select count(*) as C

from Lineitem
group by l_orderkey)

group by C
order by C

C 𝐹𝑐

1 214’172
2 214’434
3 214’379
4 213’728
5 214’217
6 214’449
7 214’621

We observe that
• the values of 𝐶 are all in [1, 7], and
• the values of 𝐹𝑐 are all about equal.

An estimate for 𝐹𝑐 is denoted by 𝐹𝑐 . If we assume the counts 𝐶 to
be uniformly distributed, then all 𝐹𝑐 (𝐹𝑐) are equal, we use 𝐹 (𝐹) to
denote that number.

3.2 The Alternatives
The following enumeration lists alternative approaches to deal with
the different values for count(*) aka 𝐶:

(1) Guess some distribution for 𝐶 and its moments without
looking at the result of Query 𝑄𝑐 (Sec. 3.3 and 3.4).

(2) Take a look at the result of Query 𝑄𝐶 and store minimum,
maximum, number of distinct values of 𝐶 and assume a
uniform distribution (Sec. 3.5).

(3) Compactify the result of Query 𝑄𝑐 using
(a) a histogram,
(b) some standard approximation techniques, or
(c) some parameterized distribution (preferable: finite sup-

port, discrete) (Sec. 3.6)

(4) Completely store the result of 𝑄𝑐 , if it is as small as it is for
l_orderkey.

Note that all but the first solution require evaluating𝑄𝑐 . We discuss
two existing approaches of Alternative 1 in Sections 3.3 and 3.4.
A new approach for Alternative 2 is presented in Section 3.5. A
new approach for Alternative 3 is discussed in Sec. 3.6. Concern-
ing Alternative 4, observe that the result size of 𝑄𝑐 is less than
min(

√︁
2|𝑅 |, 𝑑𝐴), which should make it a viable approach in many

cases. However, since this approach is trivial (and precise), we will
not discuss it any further.

3.3 Normal Distribution (White: Alt. 1)
White describes the SQL-Server approach[74]. In short, a normal
distribution for the values of count(*) is assumed. Define 𝑑𝐴 as
the number of distinct values contained in attribute A. By using a
single scan over the relation, 𝑑𝐴 can either be determined precisely
or approximated using a sketch [8, 20, 22]. Remember that using
sampling to determine the number of distinct values is not a good
idea [13].

By using 𝑑𝐴 , we can determine the mean

𝜇𝐶 =
|R|
𝑑𝐴

[= 6′001′215
1′500′000

≈ 4] .

where the numbers in brackets are for Lineitem and l_orderkey.
Looking at Table 3 for the true value of 𝜇𝐶 , we can see that the
above estimate is precise. This is of course no surprise, as the values
in l_orderkey are uniformly distributed.

Since nothing is known about the standard deviation, a standard
deviation of

𝜎𝐶 =
√
𝜇𝐶 [≈ 2]

is pretty arbitrarily assumed. Again, the number in brackets is
for l_orderkey. Comparing this number with the precise value
𝜎𝐶 = 2.00 from Table 3, we see that it matches.

Then, the cumulative distribution function Φ of the normal dis-
tribution is used to calculate the estimate. The estimated selectivity
for count(*) = c is

𝑠 (𝑐) =
{︄

Φ𝜇′
𝐶
,
√
𝜇𝐶 (1.5) − Φ𝜇′

𝐶
,
√
𝜇𝐶 (1) if 𝑐 = 1

Φ𝜇′
𝐶
,
√
𝜇𝐶 (𝑐 + 0.5) − Φ𝜇′

𝐶
,
√
𝜇𝐶 (𝑐 − 0.5) else (1)

where 𝜇′
𝐶
= ((𝑑𝐴 − 1)/𝑑𝐴)𝜇𝐶 . The final cardinality estimate is then

produced by
�̂�𝑁 [𝑐𝑛𝑡] (𝑐) = 𝑠 (𝑐)𝑑𝐴 (2)

For count(*) between l and u, the selectivity is estimated as

𝑠 (𝑙, 𝑢) =
{︄

Φ𝜇′
𝐶
,
√
𝜇𝐶 (𝑢 + 0.5) − Φ𝜇′

𝐶
,
√
𝜇𝐶 (1) if 𝑙 = 1

Φ𝜇′
𝐶
,
√
𝜇𝐶 (𝑢 + 0.5) − Φ𝜇′

𝐶
,
√
𝜇𝐶 (𝑙 − 0.5) else (3)

The final cardinality estimate is then produced by

�̂�𝑁 [𝑐𝑛𝑡] (𝑙, 𝑢) = 𝑠 (𝑙, 𝑢)𝑑𝐴 (4)

Using the SQL Server method to estimate the cardinality for
having count(*) = c, we get for different 𝑐 in Table 4. We observe
that

• the maximal q-error of �̂� (SQL Server’s estimate) is∞ for
𝑐 > 7 and 3.68 for 𝑐 = 1

Although this does not look too bad for this example, there comes
a couple of obvious deficiencies with this approach:

30

Table 4: SQL-Server q-Errors

𝑐 true cardinality �̂�𝑁 [𝑐𝑛𝑡] (𝑐) q-error
1 214’172 58’237 3.68
2 214’434 181’394 1.18
3 214’379 261’928 1.22
4 213’728 296’090 1.39
5 214’217 262’032 1.22
6 214’449 181’538 1.18
7 214’621 98’456 2.18
8 0 41’797 inf

(1) the counts may not be normally distributed,
(2) the arbitrary guess for the standard deviation may be good

or bad, and
(3) the normal distribution is open ended to ±∞, whereas the

values of count 𝐶 definitely have a lower bound of 1 and
an upper bound |𝑅 | − 𝑑𝐴 + 1.

3.4 Skew-Normal Distribution (Fent: Alt. 1)
In the approach of Fent and Neumann[21], the mean 𝜇𝐶 is calcu-
lated the same way as in the SQL-Server approach. The standard
deviation is assumed to be

𝜎𝐶 =
√︁
|𝑅 | ∗ 𝑝𝐴 ∗ (1 − 𝑝𝐴) (5)

where 𝑝𝐴 = 1/𝑑𝐴 . For 𝐴 = l_orderkey, this formula results in
an estimate of

√︁
6001215 ∗ (1/1500000) ∗ (1 − (1/1500000)) ≈ 2

which is almost equal to the true value of 2.00 (see Table 3). Note
that these numbers are the same as in the SQL-Server approach
discussed in the previous subsection.

Finally, Fent and Neumann calculate the skewness 𝛾𝐶 by the
following formula:

𝛾𝐶 =

{︃
𝛾𝐴 if known
0 else (6)

For 𝐴 = l_orderkey, 𝛾𝐶 is estimated as 𝛾l_orderkey ≈ 0 (see Table 3)
in both cases. This perfectly matches the true value of 𝛾𝐶 = 0.

With these three parameters, a skew-normal distribution [6]
SN(𝜇𝐶 , 𝜎𝐶 , 𝛾𝐶) is used to produce the estimates, which we also call
SN𝐶 (𝜇𝐶 , 𝜎𝐶 , 𝛾𝐶) for further reference. Note that this is a slight abuse
of notation to which we stick for simplicity. In reality, the skew-
normal distribution has three parameters 𝜉 , 𝜂, 𝜆 [6], which must
be calculated from 𝜇𝐶 , 𝜎𝐶 , and 𝛾𝐶 using the method of moments
[29, 59, 62]. For convenience, Appendix C contains the necessary
formulas.

LetΦSN(𝜇𝐶 ,𝜎𝐶 ,𝛾𝐶) be the cumulative distribution function of SN𝐶 .
Since the description [21] lacks any details, we can assume that we
calculate the estimates the same way as SQL-Server (using Eqns. 1
to 4), except that ΦSN(𝜇𝐶 ,𝜎𝐶 ,𝛾𝐶) is used instead of Φ𝜇′

𝐶
,
√
𝜇𝐶 .

3.5 Uniform Distribution (eSP: Alt. 2)
We now extend the simple profile by three numbers: 𝑑𝐶 ,min𝐶 , and
max𝐶 .

Since the counts are always integers, the simple profile applies
the discrete uniform distribution. The estimates for the number of

result tuples of our query template for having count(*) = c or
having count(*) between l and u are then produced by

�̂� [cnt] (𝑐) = 𝑑𝐴

max𝐶 −min𝐶 + 1
// independent of 𝑐 (7)

We introduce the following abbreviation:

𝐹𝑘 = �̂� [cnt] (𝑘) (8)

Since for the uniform distribution, �̂� [cnt] (𝑘) are all equal, we use
simply 𝐹 in this case, which of course is the same 𝐹 as in Sec. 3.1.
Then, for range queries we have

�̂� [cnt] (𝑙, 𝑢) =
𝑢∑︂
𝑘=𝑙

�̂� [cnt] (𝑘) = (𝑢 − 𝑙 + 1)𝐹 . (9)

As a side remark observe that for the discrete uniform distribu-
tion on some interval [𝑎, 𝑏] we have that

𝜇 =
𝑎 + 𝑏
2

(10)

𝜎 =

√︃
(𝑏 − 𝑎 + 1)2 − 1

12
(11)

𝛾 = 0 (12)

When using these formulas we see that 𝜇𝐶 = 4, 𝜎𝐶 = 2, and 𝛾𝐶 = 0
are pretty close to the true values in Table 3.

Note that contrary to the original simple profile, where only the
schema determines which numbers are stored (for each relation and
attribute), the queries of interest now determine what information
we have to calculate and store. That is, for every attribute combina-
tion occurring in the group by clause of some query of interest, we
need to calculate and store min𝐶 , max𝐶 , and if we cannot assume
the counts to be dense we also need to calculate and store 𝑑𝐶 . The
latter can of course be approximated by some sketch [8, 20, 22].

Sampling can be used to calculate an approximation of the result
of 𝑄𝑐 in order to reduce the amount of data to be scanned or to be
processed in order to evaluate 𝑄𝑐 . However, we must be careful to
make sure that for any orderkey all the lineitems belonging to it are
really counted. If there is an index on Lineitem.l_orderkey, the
index can be sampled for a sample of l_orderkey values. If there
is no index, a complete scan is required. The amount of storage to
be scanned can possibly be reduced by using small materialized
aggregates (SMAs) if they exist [49]. The amount of storage used
during the query evaluation can be reduced via sampling only a
fraction of the l_orderkey values by, e.g., applying some selection
predicate on the hash values of l_orderkey.

3.6 Beta-Distribution (Alt. 3)
The 𝛽-distribution has a finite support and is quite flexible. Thus,
although it is a continous distribution, it fits quite well in case
the counts 𝐶 are not uniformly distributed. From the values min𝐶 ,
max𝐶 , 𝜇𝐶 , 𝜎𝐶 the parameters 𝛼 and 𝛽 of the 𝛽-distribution can again
be derived using the method of moments. Then, the estimation
procedure is exactly the same as in Eqns. 1 to 4 except that the
cumulative distribution function of the 𝛽-distribution is used.

3.7 Evaluation
The q-errors for different values of 𝑐 are given in the following
table:

31

having count(*) = c

c White Fent 𝛽-D eSP
Sec. 3.3 Sec. 3.4 Sec. 3.6 Sec. 3.5

0 inf inf 1 1
1 3.678 3.677 1.389 1.001
2 1.182 1.182 1.001 1.001
3 1.222 1.222 1.321 1
4 1.385 1.385 1.407 1.003
5 1.223 1.223 1.320 1
6 1.181 1.181 1.001 1.001
7 2.180 2.180 1.386 1.002
8 inf inf 1 1

We observe that there is virtually no difference between the estima-
tion method of SQL-Server as described by White [74] and the one
proposed by Fent and Neumann [21]. This comes as no surprise
as the mean and standard deviation calculated by both approaches
coincide and the skewness is calculated to be zero by the approach
of Fent and Neumann, in which case there is no difference between
the normal and the skew-normal distribution. Apart from that, the
𝛽-distribution is slightly better and the clear winner is the simple
profile.

It should be obvious that the more the real distribution deviates
from the assumed distribution, the larger the q-error becomes. To
illustrate this, we generated a relation with 106 tuples where the
values of the grouping attribute 𝐴 are Zipf distributed in [1, 1000]
with 𝑧 = 0 . . . 1. A Zipf distribution with parameter 𝑧 = 0 corre-
sponds to a uniform distribution and for 𝑧 = 1 the distribution is
highly skewed. As the having predicate we use count(*) > 1000.
The resulting q-errors are

z White Fent 𝛽-D eSP
0 1 1 1 1.1

0.2 1.5 1.5 1.2 2.6
0.4 1.7 1.6 1.1 3.3
0.6 2.1 1.9 1.1 4.1
0.8 2.7 2.3 1.4 5.4
1 3.7 3 1.8 7.5

4 PREDICATES IN SUM(B) AND AVG(B)
Some estimation procedures require to sum up partial estimates
over the possible count(*) values. For these, we define for all
aggregate functions agg ∈ {sum, avg,min,max}

�̂� [agg] (𝑏) =

max𝐶∑︂
𝑘=min𝐶

�̂�𝑘 [agg] (𝑏) (13)

�̂� [agg] (𝑙, 𝑢) =

max𝐶∑︂
𝑘=min𝐶

�̂�𝑘 [agg] (𝑙, 𝑢) (14)

where the first case covers having agg(B) = b and the second
case having agg(B) between l and u.

In this section, we start with agg = sum. Thus, our query pattern
becomes

select ...
from R
group by A
having sum(B) [= b | between l and u]

We illustrate the approach using the following query, which we
call 𝑄 ′

18 as it corresponds to the nested query block of Query 18
(see Fig. 1) of the TPC-H benchmark:

select l_orderkey,...
from Lineitem
group by l_orderkey
having sum(l_quantity) [= b | between l and u]

This section is organized as follows. First we perform some data
analysis where we investigate the distributions of l_quantity
and sum(l_quantity) (Sec. 4.1). Then we discuss the approach
of Fent and Neumann [21], who propose to use a skew-normal
distribution for sum(B) (Sec. 4.2). Next, we discuss the use of the 𝛽-
distribution for sum(B) (Sec. 4.3). Then, we make a short excursion
to 𝑘-compositions for an integer 𝑛 and estimation methods using
it (Sec. 4.4). Next, we present another new estimation procedure
for the extended simple profile, which uses a normal distribution
for sum(B) (Sec. 4.5). Finally, we show how to apply the estimation
procedures for sum(B) to avg(B) (Sec. 4.6).

4.1 Data Analysis
4.1.1 Distribution of l-quantity. We first take a look at the distinct
values of l_quantity and their frequencies, which are derived by
Query 𝑄𝑞 :

Query 𝑄𝑞 Result of 𝑄𝑞

select l_quantity,
count(*)

from Lineitem
group by l_quantity
order by l_quantity

l_quantity count(*)

1 120’401
2 119’460
3 120’047

.
48 120’191
49 119’624
50 119’846

We observe that the values of l_quantity are all in [1, 50]. Further,
they are uniformly distributed.

4.1.2 Distribution of sum(l_quantity). Let us turn to the distribu-
tion of sum(l_quantity). The minimal theoretically possible value
of sum(B) can be determined asmin𝐶 ∗min𝐵 . The maximal theoret-
ically possible value of sum(B) can be determined as max𝐶 ∗max𝐵 .
From the above and the result of query 𝑄𝑐 , we can conclude that

• the minimum possible value for sum(l_quantity) is 1 (=
1 ∗ 1) and

• the maximum possible value of the sum is 350 (= 7 ∗ 50).
The minimum value of 1 really occurs, the actual maximum value
is 328.

What we are interested in now is the distribution of the values for
sum(l_quantity). This distribution can be calculated via Query
𝑄𝑑 :

select C, sum_quant, count(*) as cnt
from (select l_orderkey,

count(*) as C,
sum(l_quantity) as sum_quant

from Lineitem
group by l_orderkey)

group by C, sum_quant
order by C, sum_quant;

32

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 50 100 150 200 250 300 350

C=1
C=2
C=3
C=4
C=5
C=6
C=7

cn
t

sum_quant

Figure 2: Distribution of frequencies of sum(l_quantity) val-
ues

Fig. 2 shows the resulting distributions. The x-axis represents
sum_quant and the y-axis cnt. There is one curve for every possible
value for 𝐶 ∈ [1, 7].

We observe the following:

• for 𝐶 = 1, the data is uniformly distributed between 1 and
50.

• for 𝐶 = 2, the curve can be approximated by two lines.
• for𝐶 > 2, an approximation via a normal distribution seems

feasible.

Further, since there are very few values in the result of Query 𝑄𝑑
(only 1247 values), it could be materialized or approximated, e.g.,
via histograms [17] or some approximation technique with error
guarantees [64].

4.2 Skew-Normal Distribution (Fent)
Again, Fent and Neumann propose to use the skew-normal distribu-
tion for having-predicates in sum(B) [21]. To derive this distribu-
tion, first the distribution of the values of 𝐵 is modelled via a skew-
normal distribution SN𝐵 = SN(𝜇𝐵, 𝜎𝐵, 𝛾𝐵). Then, SN𝐶 (𝜇𝐶 , 𝜎𝐶 , 𝛾𝐶)
from Sec. 3.4, is used to get the distribution SNsum = SN(𝜇𝑠 , 𝜎𝑠 , 𝛾𝑠) =
SN𝐶 ∗ SN𝐵 , which approximates the distribution of sum(B). If in-
dependence is assumed between 𝐶 and 𝐵, the parameters of this
product of two distributions can be determined by the usual multi-
plication rule.

For convenience, we provide the multiplication rule (extended
by some boundary checks):

𝜇𝑠 = 𝜇𝐶 ∗ 𝜇𝐵 (15)

𝜎𝑠 =
√︁
max(0,𝑚2,𝑠 − 𝜇𝑠) (16)

𝛾𝑠 =

{︄
0 if 𝜎𝑠 ≤ 0.001
𝑚3,𝐶∗𝑚3,𝐵−3𝜇𝑠∗𝜎𝑠+2∗𝜇3𝑠

𝜎3
𝑠

else (17)

where

𝑚2,𝐶 = 𝜎2𝐶 + 𝜇2𝐶
𝑚2,𝐵 = 𝜎2𝐵 + 𝜇2𝐵
𝑚2,𝑠 = 𝑚2,𝐶 ∗𝑚2,𝐵

𝑚3,𝐶 = 𝛾𝐶 ∗ 𝜎3
𝐶
− 2𝜇3

𝐶
+ 3𝜇𝐶 ∗𝑚2,𝐶

𝑚3,𝐵 = 𝛾𝐵 ∗ 𝜎3
𝐵
− 2𝜇3

𝐵
+ 3𝜇𝐵 ∗𝑚2,𝐵

Let us denote by ΦSN the cumulative distribution function of
the thus derived skew-normal distribution. Then, estimates are
produced as follows:

𝐸SN [𝑠𝑢𝑚] (𝑏) = 𝑑𝐴 ∗ (ΦSN (𝑏 + 0.5) − ΦSN (𝑏 − 0.5)) (18)
𝐸SN [𝑠𝑢𝑚] (𝑙, 𝑢) = 𝑑𝐴 ∗ (ΦSN (𝑢) − ΦSN (𝑙)) (19)

4.3 Beta-Distribution (Beta-D)
This approach works exactly the same way as in the approach in
the previous section. First, the distribution parameters 𝜇𝑠 , 𝜎𝑠 , and𝛾𝑠
for

∑︁(𝐵) are calculated. Then, the cumulative distribution function
of the 𝛽-distribution is used in Eqns. 18 and 19.

4.4 Integer B: Counting Integer Compositions
(IC)

Next, we discuss another possible approach relying on counting
integer compositions. The reason is that for small group sizes 𝐶 ,
it would be nice to have a more precise approximation than the
normal distribution. In this section, we assume that the attribute
𝐵 is of type integer. Remember that l_quantity is also of type
integer.

We start with the case 𝐶 = 1. Thus, we consider all groups with
exactly one tuple. Then, the distribution of the sum(𝐵) values is the
same as the distribution of the 𝐵 value themselves. Let us consider
the estimate �̂�1 [𝑠𝑢𝑚] (𝑏). Clearly, sum(l_quantity) is equal to the
value of l_quantity in this single tuple. Thus, we can conclude
that for any 𝑏 the estimate is �̂�1 = (1/50)𝐹 1, or in general

�̂�1 [𝑠𝑢𝑚] (𝑏) = (1/𝑑𝐵)𝐹 1 . (20)

under the uniform distribution assumption for 𝐵. This estimate can
be used independently of the type of 𝐵. Further, if more specific
information about 𝐵 is available (e.g., histograms), we can use it to
add precision to this estimate in case the uniformity assumption
does not hold.

Next is the case 𝐶 = 2, that is, we consider groups of size 2 and
here the integers come into play. We start with illustrating our ap-
proach with the very specific having predicate sum(l_quantity) =
77. Since we consider the special case 𝐶 = 2, we must have two
quantities 𝑎1 and 𝑎2 which sum up to 77. Thus, we have the follow-
ing possibilities for 𝑎1 and 𝑎2 both ≥ 1:

77 = 1 + 76 = 2 + 75 = 3 + 74 = . . . = 76 + 1

Since in our case 𝑎1, 𝑎2 ∈ [1, 50], we assign the probability of
P(𝑎𝑖 = 𝑧), 𝑧 ∉ [1, 50] to zero. The probability that 𝑎1 + 𝑎2 = 77 can
thus be calculated as

P(𝑎1 + 𝑎2 = 77) =
50∑︂
𝑖=1

P(𝑎1 = 𝑖) ∗ P(𝑎2 = 77 − 𝑖) .

33

If we assume a uniform distribution for the 𝑎𝑖 values, then for all
𝑥,𝑦 ∈ [1, 50] we have that P(𝑎1 = 𝑥) = P(𝑎2 = 𝑦), and we know
from 𝑄𝑞 that this probability is 𝑝 = 1/50. Using this, the above
becomes

P(𝑎1 + 𝑎2 = 77) =

50∑︂
𝑖=27

P(𝑎1 = 𝑖) ∗ P(𝑎2 = 77 − 𝑖)

=

50∑︂
𝑖=27

𝑝 ∗ 𝑝

= 𝑝 ∗ 𝑝 ∗
50∑︂
𝑖=27

1

= 𝑝 ∗ 𝑝 ∗ 24.
The estimate is then (1/50) ∗ (1/50) ∗ 24 ∗ 𝐹2 = (1/50) ∗ (1/50) ∗
24 ∗ 214434 = 2058. The true value is 1979. The scheme here is that
we have to count the number of possibilites we can compose the
number 𝑛 (here it was 77) from two numbers 𝑎1 and 𝑎2 and then
multiply with the probabilities.

In general, we need to calculate the number of integer composi-
tions. For a positive integer 𝑛 > 0, a tuple (𝑎1, . . . , 𝑎𝑘) of positive
integers 𝑎𝑖 > 0 with

𝑘∑︂
𝑖=1

𝑎𝑖 = 𝑛

is called a 𝑘-composition of 𝑛 [65, p. 14]. Every 𝑎𝑖 is called a part.
The number of 𝑘-compositions is(︃

𝑛 − 1
𝑘 − 1

)︃
(21)

and the total number of compositions is 2𝑛−1 (for all possible 𝑘)
(see [65, p. 14]). In this definition, the parts 𝑎𝑖 can be arbitrarily
large, only bounded by 𝑛. Unfortunately, this is not the case in our
estimation task: the parts 𝑎𝑖 must be in [1, 50]. Denote by𝑚 the
maximum possible value for any 𝑎𝑖 . Then, we can apply the above
formula (Formula 21) to count the number of compositions if and
only if the condition

𝑛 ≤ 𝑚 (22)
holds. The reason is that Formula 21 counts all possibilities. Given
𝑛 = 77 and𝑚 = 50, it would count, e.g., the possibilites

77 = 76 + 1 = 75 + 2 = 74 + 3 . . .

which cannot occur since 76, 75, 74 > 50 =𝑚.
An 𝑆-restricted𝑘-composition requires𝑎𝑖 ∈ 𝑆 for some set of pos-

itive integers 𝑆 . Providing a closed form expression for the number
of 𝑆-restricted 𝑘-compositions is not possible [79]. However, some
special cases (especially 𝑘 = 1, 2, 3) still result in closed formulas
(see Appendix A).

We resume producing cardinality estimates for our query pattern.
Denote by 𝐹𝑘 an estimate of the count frequencies (cf. query 𝑄𝑐),
𝑝𝐵 = 1/𝑑𝐵 for 𝑑𝐵 equals the number of distinct values of attribute
𝐵, and by 𝑁 (𝑘, [min𝐵,max𝐵], 𝑛) the number of 𝑘-compositions of
a positive integer 𝑛 where each part 𝑎𝑖 satisfiesmin𝐵 ≤ 𝑎𝑖 ≤ max𝐵 .
Then, the estimate for having sum(B) = b is

�̂�IC [𝑠𝑢𝑚] (𝑏) =
max𝐶∑︂
𝑘=1

𝑝𝑘𝐵𝑁 (𝑘, [min𝐵,max𝐵], 𝑏)𝐹𝑘 (23)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 50 100 150 200 250 300 350

k=2
k=3
k=4
k=5
k=6
k=7

re
la

tiv
e

fr
eq

ue
nc

y

sum(l_quantity)

Figure 3: Relative frequency distribution of different
sum(l_quantity) values and their approximation via normal
distributions

For having sum(B) between l and u

�̂�IC [𝑠𝑢𝑚] (𝑙, 𝑢) =
𝑢∑︂
𝑏=𝑙

max𝐶∑︂
𝑘=1

𝑝𝑘𝐵𝑁 (𝑘, [min𝐵,max𝐵], 𝑏)𝐹𝑘 (24)

4.5 Normal Distribution (eSP)
In this subsection, we extend the simple profile.

4.5.1 Introduction. Since we already know that for a group size
of 𝑘 = 1, we have a uniform distribution (or in general, the same
distribution as the 𝐵 itself), we treat this case as in the previous
section. For 𝑘 > 1, an approximation of the probability distribution
via the normal distribution is not too far off. In fact, the central
limit theorem gives us the following (e.g. [25, Chap. 7], [29, p. 207]):
If 𝑋1, . . . , 𝑋𝑛 are random variables with any (!) fixed distribution,
then for 𝑘 → ∞ the sum 𝑋1 + . . . +𝑋𝑛 is normally distributed with
its mean being 𝑘 times the mean of the 𝑋𝑖 and its variance being
𝑘 times the variance of the 𝑋𝑖 . The question is, how large must 𝑘
be for the normal distribution to become a viable approximation of
𝑋1 + . . . + 𝑋𝑛 .

Fig. 3 illustrates the approximation of the distribution for the sum
of 𝑘 l_quantitys for different 𝑘 ∈ [2, 7]. Again, the x-axis shows
the different possibilities for sum(l_quantity). The y-axis shows
the measured frequencies divided by the total frequency and the
approximation via a normal distribution. The mean and standard
deviation needed as parameters for the normal distribution were
calculated using the result of query 𝑄𝑑 . We see that for 𝑘 = 2, 3,
the approximation is not too good. For 𝑘 > 3, using the cumula-
tive distribution function of the normal distribution for cardinality
estimation (similar to Sec. 3.3) seems a viable way.

4.5.2 Extending the Simple Profile. We extend the simple profile
by min𝐶 , max𝐶 , 𝜇𝐵 , 𝜎𝐵 , 𝛾𝐵 . The latter three numbers can either be
determined from the data or, if the discrete uniform distribution is
assumed, be calculated using Equations 10 to 12. If we do so, we get
the estimates 𝜇𝐵 = 25.5, 𝜎𝐵 = 14.4309, 𝛾𝐵 = 0 for 𝐵 = l_quantity,
which are very close to the true values in Table 3.

We abbreviate the cumulative distribution function (cdf) of the
normal distribution by Φ𝜇,𝜎 , where 𝜇 is the mean and 𝜎 is the

34

standard deviation. For our purpose, the mean and the standard
deviation depend on the length 𝑘 of our sums (which equals the
count values). According to the central limit theorem, we define

Φ𝑘 = Φ
𝑘𝜇𝐵 ,

√︂
𝑘𝜎2

𝐵

(25)

Then, we define the estimators for the equality case as follows:

�̂�1 [sum] (𝑏) = 𝑝𝐵 𝐹 1 (26)
�̂�2 [sum] (𝑏) = 𝑝2𝐵 𝑁 (2, [min𝐵,max𝐵], 𝑏) 𝐹 2 (27)

�̂�3 [sum] (𝑏) = 𝑝3𝐵 𝑁 (3, [min𝐵,max𝐵], 𝑏) 𝐹 3 (28)

�̂�𝑘 [sum] (𝑏) = 𝑝𝑘𝐵 (Φ𝑘 (𝑏 + 0.4) − Φ𝑘 (𝑏 − 0.4))𝐹𝑘 (29)

where 𝑝𝐵 = 1/𝑑𝐵 . The equations for �̂�1 and the general procedure
for �̂�𝑘 do not contain any reference to 𝑁 (𝑘, [𝑎, 𝑏] .𝑛) and can thus
serve as fallback if no implementation of it is available or if 𝐵
contains floating point numbers.

The estimators for the between case are:

�̂�1 [sum] (𝑙, 𝑢) =
𝑢 − 𝑙

max𝐵 −min𝐵
𝐹 1 (30)

�̂�𝑘 [sum] (𝑙, 𝑢) = (Φ𝑘 (𝑢 + 0.4) − Φ𝑘 (𝑙 − 0.4))𝐹𝑘 (31)

(Remember 𝐹𝑘 from Eq. 8.) In both cases we used 0.4 instead of 0.5
since this gave slighly better estimates. Again, in case 𝐵 is a floating
point number, the above equations for 𝑘 = 1 and general 𝑘 can be
used.

The following table contains the maximum q-error for having
sum(l_quantity) = b occurring within different ranges for 𝑏.
The rows for the simple profile contains the estimates produced by
limiting the special cases: eSP(1) applies Eqns. 26 and 29, eSP(2) ad-
ditionally uses Eqn. 27. The row IC denotes the estimates produced
by Eq. 23.

having sum(B) = b
maximum q-error for 𝑏-ranges

𝑏-range Fent+ 𝛽-D eSP(1) eSP(2) IC
[1, 200] 1.53 6.02 1.30 1.30 1.04
[200, 249] 2.96 4.03 1.36 1.29 1.07
[250, 300] 104.6 179.9 2.33 2.33 1.96

We make the following observations:
(1) The 𝛽-Distribution is the worst estimator.
(2) The Fent-Estimator is second but still not satisfactory.
(3) The other estimators are almost en par.
(4) IC is the most precise estimator.

4.6 Predicates in avg(B)
The estimation of predicates in avg(B) can be reduced to sum(B).
If 𝐵 does not contain any NULL values, we have that

avg(𝐵) = sum(𝐵)
count(B)

and, thus,

avg(𝐵) = sum(𝐵)
count(B)

= 𝑏

implies
sum(𝐵) = count(B) ∗ 𝑏.

In the presence of NULL values, we have to use countNN (𝐵) instead
of count(B), which only counts non NULL values of 𝐵.

The estimators are

�̂�𝑘 [avg] (𝑏) = �̂�𝑘 [sum] (𝑘 ∗ 𝑏) (32)
�̂�𝑘 [avg] (𝑙, 𝑢) = �̂�𝑘 [sum] (𝑘 ∗ 𝑙, 𝑘 ∗ 𝑢) (33)

5 PREDICATES IN MIN(B) AND MAX(B)
We propose a new estimation method for having predicates in
min(𝐵) and max(𝐵) which are applicable for all types of 𝐵.

5.1 Estimation
Fent and Neumann suggest using the extreme value distribution,
which they then approximate by the skew-normal distribution [21].
This implies that their approach is only applicable in case 𝐵 is a
number. However, 𝐵 could also be of type varchar. Consequently,
our estimation method does not depend on the type of 𝐵.

Let us first consider having min(B) = b. Two conditions must
be fulfilled at the same time:

(1) One of the 𝐵 values must be equal to 𝑏.
(2) All the other 𝐵 values must be ≥ 𝑏.

Accordingly, we define 𝑝 to be the selectivity of 𝐵 = 𝑏 and 𝑞 to be
the selectivity of 𝐵 ≥ 𝑏. For numbers and under the uniform distri-
bution assumption, we can use 𝑝 = 𝑝𝐵 = 1/𝑑𝐵 and 𝑞 =

max𝐵−𝑏
max𝐵−min𝐵 .

In either case, the estimate can then be produced by

�̂�𝑘 [min] (𝑏) =

{︃
𝑝𝐹1 𝑘 = 1
𝑘𝑝𝑞𝑘−1𝐹𝑘 𝑘 > 1 (34)

For having max(B) = b we can keep 𝑝 but have to redefine 𝑞
to be the selectivity of 𝐵 ≤ 𝑏. In case of numbers and under the
uniform distribution assumption we can use 𝑞 =

𝑏−min𝐵
max𝐵−min𝐵 . Then,

the estimate can be produced by

�̂�𝑘 [max] (𝑏) =

{︃
𝑝𝐹1 𝑘 = 1
𝑘𝑝𝑞𝑘−1𝐹𝑘 𝑘 > 1 (35)

For having min(B) between l and u, we define 𝑝 to be the
selectivity of B between l and u and 𝑞 to be the selectivity
of B between min𝐵 and l. For numbers and under the uniform
distribution assumption, we can use

𝑝 =
𝑢 − 𝑙 + 𝛿
𝛿𝑑𝐵

𝑞 =
𝑢 −min𝐵 + 𝛿

𝛿𝑑𝐵

where 𝛿 = (max𝐵 −min𝐵)/(𝑑𝐵 −1) is the average distance between
two 𝐵 values. In any case, the estimate is produced by

�̂�𝑘 [min] (𝑙, 𝑢) =
{︃
𝑝𝐹𝑘 𝑘 = 1
𝑘𝑝 (1 − 𝑞)𝑘−1𝐹𝑘 𝑘 > 1 (36)

For having max(B) between l and u, we just need to redefine
𝑞 to the selectivity of B between u and max𝐵 , which for numbers
under the uniform distribution assumption becomes

𝑞 =
max𝐵 − 𝑢 + 𝛿

𝛿𝑑𝐵

Then,

�̂�𝑘 [max] (𝑙, 𝑢) =
{︃
𝑝𝐹𝑘 𝑘 = 1
𝑘𝑝 (1 − 𝑞)𝑘−1𝐹𝑘 𝑘 > 1 (37)

35

5.2 Evaluation
The following table contains the q-errors for min(l_quantity) =
b for different 𝑏:

b eSP Umbra
10 1.021 1.041
20 1.011 1.249
30 1.002 1.641
40 1.002 9.591
50 1.036 296.067

Since Fent and Neumann [21] do not provide sufficient details for a
reimplementation, we give the Umbra estimates as we know that
their approach has been integrated into it.

6 CONJUNCTIONS AND DISJUNCTIONS IN
THE HAVING-CLAUSE

Conjunctions and disjunctions can be handled using the indepen-
dence assumption. However, in case the having-clause contains an
additional restriction on count(*), special care is required.

6.1 Conjunctions
Obviously, any predicate in some aggregate function, no matter
whether it is sum, avg, min, or max is correlated with any addi-
tional restriction on count(*). Thus, applying the independence
assumption is bound to fail. The following example illustrates this:

select count(*)
from (select l_orderkey

from Lineitem
group by l_orderkey

having sum(l_quantity) < 20 and count(*) >= 4)

yields 134, whereas
select count(*)
from (select l_orderkey

from Lineitem
group by l_orderkey

having sum(l_quantity) < 20 and count(*) <= 4)

yields 98021.
Thus, it is preferable not to use the independence assumption:

Remember that all counts are in [1, 7], count(*) ≥ 4 comprises the
counts 1,2,3,4 and count(*) ≤ 4 comprises the counts 4,5,6,7. The
selectivity of sum(l_quantity) < 20 is 0.06536. For both queries,
the estimate would be 1500000 ∗ 0.06535 ∗ (4/7) ≈ 56014. Thus,
treating the predicate on count(*) as an independent predicate
with a selectivity 4/7 will result in very bad estimates.

Fortunately, our estimation procedure (see Eqs. 13 and 14) already
contains a sum over the possible count values. Thus, restricting this
sum to the range specified by the predicate on count(*) does the
job. We only discuss the case having agg(B) ... and count(*)
between c and d. Define 𝐾 = [𝑐, 𝑑] ∩ [min𝐶 ,max𝐶]. Then, we
adapt Eqs. 13 and 14 to

�̂� [agg] (𝑏, 𝐾) =
∑︂
𝑘∈𝐾

�̂�𝑘 [agg] (𝑏) (38)

�̂� [agg] (𝑙, 𝑢, 𝐾) =
∑︂
𝑘∈𝐾

�̂�𝑘 [agg] (𝑙, 𝑢) (39)

The produced estimates are

c true eSP Umbra
[1, 4] 98’021 98’524 171’000
[4, 7] 134 466 174’000

where we added the estimates of Umbra [56], since Fent and Neu-
mann did not discuss conjunctions in their paper.

If there are multiple conjunctively connected predicates in ag-
gregates agg(𝐵𝑖) and there is a restriction on count, we assume
conditional independence [18]

𝑝 (𝑥𝑖 , 𝑥 𝑗 |𝑧) = 𝑝 (𝑥𝑖 |𝑧)𝑝 (𝑥 𝑗 |𝑧) (40)

where the conditions on the agg(𝐵𝑖) are expressed as 𝑥𝑖 and the
restriction on count as 𝑧. If there is no restriction on count, inde-
pendence is assumed.

6.2 Disjunctions
The query

select count(*)
from (select l_orderkey

from Lineitem
group by l_orderkey

having sum(l_quantity) < 20 or count(*) >= 4)

yields 954907 and
select count(*)
from (select l_orderkey

from Lineitem
group by l_orderkey

having sum(l_quantity) < 20 or count(*) <= 4)

yields 856718.
To produce an estimate for

agg(B) ... or count(*) between c and d

we first estimate the number of result tuples for the count case.
Then, we add to this number the number of result tuples where
we restrict the sum over the possible counts to the complement of
the count restriction. Thus, after calculating the set of remaining
counts

𝐾 = [min𝐶 ,max𝐶] \ [𝑐, 𝑑]
we apply Eqns. 38 and 39.

The estimates for the above two queries are
c true eSP Umbra
[1, 4] 856’718 857’229 173’000
[4, 7] 954’907 949’247 814’000

where we added the estimates of Umbra [56], since Fent and Neu-
mann did not discuss disjunctions in their paper.

7 ADDING AWHERE-CLAUSE
We split our discussion in one part treating restrictions on count(*)
and another for the remaining aggregate functions.

7.1 count(*)
Let us consider

select ..
from R
where p
group by A

36

having count(*) = c

Let 𝑠 be the selectivity of 𝑝 . Then

�̂� [𝑐𝑛𝑡] (𝑐, 𝑠) =
max𝐶∑︂
𝑘=𝑐

(︃
𝑘

𝑐

)︃
(1 − 𝑠)𝑘−𝑐𝑠𝑐 𝐹𝑐 (41)

where we can replace the sum by a closed form expression (see
Appendix B). The start index of the sum follows from the fact
that any group with less than 𝑐 elements without the where-clause
can not qualify with the where-clause. Thus, consider a group of
size 𝑘 with 𝑘 ≥ 𝑐 and a fixed subset with 𝑐 elements thereof. The
probability that exactly these 𝑐 elements survive and the other 𝑘 −𝑐
elements are eliminated is (1 − 𝑠)𝑘−𝑐𝑠𝑐 . Since there are exactly

(︁𝑘
𝑐

)︁
such subsets the claim follows.

For having count(*) between l and u, we simply have

�̂� [𝑐𝑛𝑡] (𝑙, 𝑢, 𝑠) =
𝑢∑︂
𝑐=𝑙

max𝐶∑︂
𝑘=𝑐

(︃
𝑘

𝑐

)︃
(1 − 𝑠)𝑘−𝑐𝑠𝑐 𝐹𝑐 (42)

Again, the inner sum can be replaced by a closed form expression.
The q-errors produced for the equality case and the predicate

l_suppkey modulo X = 0 for two different group sizes 𝑐 are
contained in the following table:

where l_suppkey % X = 0
having count(*) = c

c X eSP Umbra
1 2 1.000 1.402
1 4 1.001 1.016
1 10 1.002 1.777
4 2 1.000 1.201
4 4 1.009 1.288
4 10 1.009 6.860

Since Fent and Neumann [21] do not discuss where-clauses, we
added the q-errors of Umbra.

7.2 Other Aggregate Functions
In this section we collectively treat the aggregate functions sum,
avg, min, and max. However, before we do so let us have a look at
some example queries, once without and once with a where-clause.
Our example query without a where-clause is

select count(*)
from (select l_orderkey

from Lineitem
group by l_orderkey
having sum(l_quantity) < 50)

and it yields 351’209, whereas the same query with an added where-
clause

select count(*)
from (select l_orderkey

from Lineitem
where l_suppkey % 2 = 0
group by l_orderkey
having sum(l_quantity) < 50)

yields 623’204. We see that additional selection predicates can in-
crease the result size. Clearly, using the predicate’s selectivity (0.5)
and multiplying the 351’209 of the first query without the where-
clause with the selectivity 0.5 will go in the wrong direction.

Let us also consider another example query with and without a
where-clause, but this time a more lucky one. The query without a
where-clause

select count(*)
from (select l_orderkey

from Lineitem
group by l_orderkey
having sum(l_quantity) > 50)

yields 1’137’386 and the same query with an added where-clause
select count(*)
from (select l_orderkey

from Lineitem
where l_suppkey % 2 = 0
group by l_orderkey
having sum(l_quantity) > 50)

yields 645’251. Accidentally, a multiplication of 1’137’386 by 0.5
does give a pretty good estimate.

We now come to our proposal for an estimation procedure
for queries exhibiting a where-clause. For any aggregate function
agg ∈ {sum, avg,min,max} and selectivity 𝑠 of the predicate 𝑝 in
the where clause, we have that

�̂�𝑘 [agg] (𝑏, 𝑠) =

𝑘∑︂
𝑗=1

(︃
𝑘

𝑗

)︃
(1 − 𝑠)𝑘− 𝑗𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)

(43)

�̂�𝑘 [agg] (𝑙, 𝑢, 𝑠) =

𝑘∑︂
𝑗=1

(︃
𝑘

𝑗

)︃
(1 − 𝑠)𝑘− 𝑗𝑠 𝑗 �̂� 𝑗 [agg] (𝑙, 𝑢)

(44)

To see this, consider a group with 𝑘 elements. The probability
that exactly a fixed subset of 𝑗 elements of this group survives
is (1 − 𝑠)𝑘− 𝑗𝑠 𝑗 . Further, there are exactly

(︁𝑘
𝑗

)︁
such subsets. The

equations follow. Since Eqns. 13 and 14 add another sum, this results
in an unfortunate double sum. However, this can be eliminated (see
Appendix B).

The following table provides the q-errors for the proposed esti-
mation formula using the where-clause l_suppkey % 10 = 0:

having eSP Umbra
sum(l_quantity) < 50 1.010 1.333
sum(l_quantity) > 50 1.004 2.899

8 RELATEDWORK
There exists a huge body of work on cardinality estimation. Stan-
dard techniques (including histograms [3, 7, 30–36, 38, 40, 41, 51,
54, 55, 60], wavelets [12, 23, 48, 71], sampling [15, 16, 26, 27, 45,
52, 54, 57, 70, 77], and sketches [1, 2, 8, 20, 22]) are reviewed by
Cormode, Garofalakis, Haas, and Jermaine [17]). Other interest-
ing approaches use the discrete cosine transform [42, 43], Baysian
statistics [24, 69, 75] (from these, we borrowed the idea of using
conditional independence), or learning techniques [19, 28, 39, 46,
66, 73, 76, 78]. None of these techniques have yet been applied to
estimate the cardinality of GBH-queries.

Another interesting line of research is approximate query pro-
cessing (e.g. [14, 47, 58] for an overview see [44]). So far, these

37

techniques have not yet been applied to estimate the cardinality of
GBH-queries.

If more complex expressions than simple arithmetic expressions
in attributes are used in aggregate functions, statistical views may
prove helpful [4, 9, 10, 72].

9 CONCLUSION
We conclude that implementing eSP as the default for cardinality
estimation for GBH-queries into a DBMS is the right choice for
several reasons:

(1) eSp uses only a minimal amount of storage.
(2) eSp is universally applicable.
(3) eSp fits into the context of the simple profile.

The latter is important since the simple profile has been imple-
mented as the default into many systems. Further, the simple profile
assumes a uniform distribution of attribute values. If the estimation
procedures for GBH-queries would assume a different distribution,
there would be a chasm in the default estimation procedure.

Finally, assuming a uniform distribution is not always correct
and can lead to high estimation errors (see Sec. 3.7), which means
that other methods have to be developed and applied for cases
where the uniform distribution assumption results in unacceptably
large q-errors.

A NUMBER OF POSITIVE INTEGER
COMPOSITIONS

For integers 0 ≤ 𝑙 ≤ 𝑚, 𝑘 > 0 and 𝑛 > 0, let 𝑁 (𝑘, [𝑙,𝑚], 𝑛) be the
number of 𝑘-compositions (𝑎1, . . . , 𝑎𝑘) of integers 𝑎𝑖 ∈ [𝑙,𝑚] of 𝑛:

𝑁 (𝑘, [𝑙,𝑚], 𝑛) = |{(𝑎1, . . . , 𝑎𝑘) | 𝑎𝑖 ∈ [𝑙,𝑚],
𝑘∑︂
𝑖=1

𝑎𝑖 = 𝑛}|. (45)

Note that 𝑁 (𝑘, [𝑙,𝑚], 𝑛) = 0 if 𝑛 < 𝑘𝑙 or 𝑛 > 𝑘𝑚.
If the lower bound for 𝑎𝑖 is larger than 1, i.e., 𝑙 > 1, then

𝑁 (𝑘, [𝑙,𝑚], 𝑛) = 𝑁 (𝑘, [1,𝑚 − (𝑙 − 1)], 𝑛 − 𝑘 (𝑙 − 1)) (46)

Thus, it suffices to consider the cases 𝑙 = 1 and 𝑙 = 0.
For 𝑘 ≤ 𝑛 ≤ 𝑚,

𝑁 (𝑘, [1,𝑚], 𝑛) =
(︃
𝑛 − 1
𝑘 − 1

)︃
. (47)

If the lower bound 𝑙 = 0, the problem is called weak 𝑘-composition.
For 𝑘 ≤ 𝑛 ≤ 𝑚,

𝑁 (𝑘, [0,𝑚], 𝑛) =
(︃
𝑛 + 𝑘 − 1
𝑘 − 1

)︃
(48)

(see [5], [65, p14], for 𝑎𝑖 ∈ [0,𝑚] see [11]).
𝑁 (𝑘, [𝑙,𝑚], 𝑛) can also be calculated using the following recur-

rence

𝑁 (𝑘, [𝑙,𝑚], 𝑛] =
min(𝑚,𝑛)∑︂

𝑖=𝑙

𝑁 (𝑘 − 1, [𝑙,𝑚], 𝑛 − 𝑖), (49)

but this is not a viable approach as it is highly compute intense.
It becomes feasible, if the implementation considers the different
cases for which a closed form expression exists.

We now consider the problematic case 𝑛 > 𝑚, where we stick
to the case 𝑙 = 1. We want to derive simple formulas for the cases

𝑘 = 2 and 𝑘 = 3. For 𝑘 = 2, we have that 𝑁 (2, [1,𝑚], 𝑛) = 0 if 𝑛 < 2
or 2𝑚 < 𝑛. In case 𝑛 > 𝑚, 𝑁 (2, [1,𝑚], 𝑛) = (𝑚 − (𝑛 −𝑚) + 1) holds.
This follows from the fact that 𝑎1+𝑎2 = 𝑛 and𝑛−𝑚 ≤ 𝑎1 ≤ 𝑚, since
𝑎2 can be at most𝑚, 𝑎1 must be at least 𝑛 −𝑚. Further, it cannot be
larger than𝑚. Summarizing, for 𝑘 = 2, we have in general that

𝑁 (2, [1,𝑚], 𝑛) =
⎧⎪⎪⎨⎪⎪⎩

0 2𝑚 < 𝑛 ∨ 𝑛 < 2
𝑛 − 1 𝑛 ≤ 𝑚,𝑛 ≥ 2
2𝑚 − 𝑛 + 1 𝑚 < 𝑛 ≤ 2𝑚,𝑛 ≥ 2

(50)

where the case 𝑛 ≤ 𝑚 follows from Eqn. 47.
For 𝑘 = 3, we have the following;

𝑁 (3, [1,𝑚], 𝑛) =
𝑚∑︂
𝑖=1

𝑁 (2, [1,𝑚], 𝑛 − 𝑖) (51)

Clearly, 𝑁 (3, [1,𝑚], 𝑛) = 0 if either 𝑛 < 3 or 3𝑚 < 𝑛. Thus, in the
following we assume 3 ≤ 𝑛 ≤ 3𝑚.

Since some of the summands in Eqn. 51 are zero, we can refine
the range for 𝑖:

𝑎 =

{︃
𝑛 − 2𝑚 𝑛 > 2𝑚
1 𝑒𝑙𝑠𝑒

𝑏 = min(𝑚,𝑛 − 2)

𝑁 (3, [1,𝑚], 𝑛) =

𝑏∑︂
𝑖=𝑎

𝑁 (2, [1,𝑚], 𝑛 − 𝑖)

To see this, abbreviate 𝑛′ = 𝑛 − 𝑖 . For the lower bound 𝑎, consider
the case 𝑛 > 2𝑚. Since we must have that 𝑛′ = 𝑛 − 𝑖 ≤ 2𝑚 for
𝑁 (2, [1,𝑚], 𝑛′) ≠ 0, thus

𝑛 − 𝑖 ≤ 2𝑚
𝑛 − 2𝑚 ≤ 𝑖

𝑖 ≥ 𝑛 − 2𝑚

For the upper bound𝑏, consider Eqn. 50. We see that𝑁 (2, [1,𝑚], 𝑛′)
is 0 if 2 > 𝑛′ and thus

2 ≤ 𝑛′

⇐⇒ 2 ≤ 𝑛 − 𝑖
⇐⇒ 𝑖 ≤ 𝑛 − 2

Remember that we must have that 𝑛 ≥ 2 for 𝑁 (2, [1,𝑚], 𝑛) ≠ 0.
Now 𝑛′ is in

[𝑛 − 𝑏, 𝑛 − 𝑎]
= [𝑛 −min(𝑚,𝑛 − 2), 𝑛 −max(1, 𝑛 − 2𝑚)]
= [max(𝑛 −𝑚,𝑛 − (𝑛 − 2)),min(𝑛 − 1, 𝑛 − (𝑛 − 2𝑚))]
= [max(𝑛 −𝑚,𝑛 − 𝑛 + 2),min(𝑛 − 1, 𝑛 − 𝑛 + 2𝑚)]
= [max(𝑛 −𝑚, 2),min(𝑛 − 1, 2𝑚)]
=: [𝑑, 𝑒]

Next, we check the conditions under which the range is non-empty.
We always have that 𝑛−𝑚 ≤ 𝑛−1 and 2 ≤ 2𝑚 since𝑚 ≥ 1. Further
2 ≤ 𝑛 − 1 ⇐⇒ 3 ≤ 𝑛 and 𝑛 −𝑚 ≤ 2𝑚 ⇐⇒ 𝑛 ≤ 3𝑚. Thus, the
conditions for 𝑁 (3, [1,𝑚], 𝑛) ≠ 0mentioned at the beginning of the
case 𝑘 = 3 guarantee a non-empty range. Since 𝑁 (𝑘, [1, 1], 𝑛) = 1
if 𝑘 = 𝑛 and 𝑁 (𝑘, [1, 1], 𝑛) = 0 else, we assume𝑚 > 1.

Next, we see that according to Eqn. 50, we have to distinguish
two non-zero cases. One for 𝑛′ ≤ 𝑚 (Case 1) and one for 𝑛′ > 𝑚
(Case 2).

38

If𝑚 ≥ 𝑒 , we are always in Case 1. Thus

𝑁 (3, [1,𝑚], 𝑛) = 𝑓1 (𝑚, [𝑑, 𝑒], 𝑛)

with

𝑓1 (𝑚, [𝑑, 𝑒], 𝑛) =

𝑒∑︂
𝑛′=𝑑

𝑛′ − 1

= 𝑔(𝑒) − 𝑔(𝑑 − 1) − (𝑒 − 𝑑 + 1)

where 𝑔(𝑥) = 𝑥 (𝑥 + 1)/2.
If𝑚 < 𝑑 , we are always in Case 2. Thus

𝑁 (3, [1,𝑚], 𝑛) = 𝑓2 (𝑚, [𝑑, 𝑒], 𝑛)

with

𝑓2 (𝑚, [𝑑, 𝑒], 𝑛) =

𝑒∑︂
𝑛′=𝑑

2𝑚 − 𝑛′ + 1

= (𝑒 − 𝑑 + 1) (2𝑚 + 1) − (𝑔(𝑒) − 𝑔(𝑑 − 1))
= (𝑒 − 𝑑 + 1) (2𝑚 + 1) − 𝑔(𝑒) + 𝑔(𝑑 − 1)

In case 𝑚 ∈ [𝑑, 𝑒], we only have to split the range [𝑑, 𝑒] into
[𝑑,𝑚] and [𝑚 + 1, 𝑒]:

𝑁 (3, [1,𝑚], 𝑛) = 𝑓2 (𝑚, [𝑑,𝑚], 𝑛) + 𝑓1 (𝑚, [𝑚 + 1, 𝑒], 𝑛) (52)

B USING THE HYPERGEOMETRIC FUNCTION
Denote by 2F1 the Gauss hypergeometric function [37, p17]. We
will use the identity

𝑛∑︂
𝑘=1

(1 − 𝑠)𝑘−1
(︃
𝑘 +𝑚 − 1

𝑚

)︃
= 𝑠−𝑚−1 − (1 − 𝑠)𝑛

(︃
𝑚 + 𝑛
𝑚

)︃
2F1(1,𝑚 + 𝑛 + 1, 𝑛 + 1, 1 − 𝑠)

For some given 𝑠 , we define 𝐻 (𝑚, 𝑁)

=

𝑁∑︂
𝑘=𝑚

(︃
𝑘

𝑚

)︃
(1 − 𝑠)𝑘−𝑚

=

𝑁−𝑚+1∑︂
𝑘=1

(︃
𝑘 + (𝑚 − 1)

𝑚

)︃
(1 − 𝑠) (𝑘+(𝑚−1)−𝑚)

=

𝑁−𝑚+1∑︂
𝑘=1

(︃
𝑘 +𝑚 − 1

𝑚

)︃
(1 − 𝑠)𝑘−1

= 𝑠−𝑚−1 − (1 − 𝑠)𝑛
(︃
𝑚 + 𝑛
𝑚

)︃
2F1(1,𝑚 + 𝑛 + 1, 𝑛 + 1, 1 − 𝑠)

where 𝑛 = 𝑁 −𝑚 + 1.
Concerning Eqns. 41 and 42 note that

max𝐶∑︂
𝑘=𝑐

(︃
𝑘

𝑐

)︃
(1 − 𝑠)𝑘−𝑐𝑠𝑐 𝐹𝑐 = 𝑠𝑐 𝐹𝑐𝐻 (𝑐,max𝐶) (53)

For Eqn. 43, we get using 𝑎 = min𝐶 and 𝑏 = max𝐶 :

�̂� [𝑎𝑔𝑔] (𝑏, 𝑠) =

𝑏∑︂
𝑘=𝑎

�̂�𝑘 [agg] (𝑏, 𝑠)

=

𝑏∑︂
𝑘=𝑎

𝑘∑︂
𝑗=1

(︃
𝑘

𝑗

)︃
(1 − 𝑠)𝑘− 𝑗𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)

=

𝑏∑︂
𝑗=1

𝑏∑︂
𝑘=𝑗

(︃
𝑘

𝑗

)︃
(1 − 𝑠)𝑘− 𝑗𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)

−
𝑎−1∑︂
𝑗=1

𝑎−1∑︂
𝑘=𝑗

(︃
𝑘

𝑗

)︃
(1 − 𝑠)𝑘− 𝑗𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)

=

𝑏∑︂
𝑗=1

𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)
𝑏∑︂
𝑘=𝑗

(︃
𝑘

𝑗

)︃
(1 − 𝑠)𝑘− 𝑗

−
𝑎−1∑︂
𝑗=1

𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)
𝑎−1∑︂
𝑘=𝑗

(︃
𝑘

𝑗

)︃
(1 − 𝑠)𝑘− 𝑗

=

𝑏∑︂
𝑗=1

𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)𝐻 (𝑗, 𝑏)

−
𝑎−1∑︂
𝑗=1

𝑠 𝑗 �̂� 𝑗 [agg] (𝑏)𝐻 (𝑗, 𝑎 − 1)

Eqn. 44 is handled the same way.

C SKEW-NORMAL DISTRIBUTION
Azzalini [6] introduced the skew-normal distribution SN(𝜉, 𝜂, 𝜆)
where

• 𝜉 is the location parameter
• 𝜂 > 0 is the scale parameter
• 𝜆 is the skewness parameter

For given mean 𝜇, standard deviation 𝜎 and skewness 𝛾 , we can
derive these parameters [59] by first defining

𝑎 = (2|𝛾 |
4 − 𝜋)

1
3 (54)

𝑏 =
𝑎

√
1 + 𝑎2

(55)

𝛿 =

√︃
𝜋

2
𝑏 (56)

Then, we must check whether 𝛿 ∈ [−0.99527, +0.99527]. If it is
outside, we set 𝛿 to the closest boundary of the interval. After that,
we finally get

𝜂 =

√︃
𝜎2

1 − 𝑏2
(57)

𝜉 = 𝜇 − 𝜂𝑏 (58)

𝜆 =
𝛿

√
1 − 𝛿2

(59)

ACKNOWLEDGMENTS
We thank Simone Kehrberg, Daniel Flachs, Nazanin Rashedi, and
the reviewers for their comments. All of them helped to greatly
improve the paper.

39

REFERENCES
[1] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. 2002. Tracking Join and Self-Join

Sizes in Limited Storage. J. Comput System Sciences 35, 4 (2002), 391–432.
[2] N. Alon, Y. Matias, and M. Szegedy. 1999. The Space Complexity of Approxi-

mating the Frequency Moments. J. of Computer and System Sciences 58, 1 (1999),
137–147.

[3] K. Alway and A. Nica. 2016. Constructing Join Histograms from Histograms
with q-error Guarantees. In Proc. of the ACM SIGMOD Conf. on Management of
Data. 2245–2246.

[4] C. Zuzarte an X. Yu. 2006. Fast Approximate Computation of Statistics on Views.
In Proc. of the ACM SIGMOD Conf. on Management of Data. 724.

[5] G. Andrews. 1984. The Theory of Partitions. Cambridge University Press.
[6] A. Azzalini. 1985. A Class of Distributions which Includes the Normal Ones.

Scand. J. Statist 12 (1985), 171–178.
[7] L. Baltrunas, A. Mazeika, and M Böhlen. 2006. Multidimensional Histograms

with Tight Bounds for the Error. In IDEAS. 105–112.
[8] K. Beyer, P. Haas, B. Reinwald, Y. Sismanis, and R. Gemulla. 2007. On Synopses

for Distinct-Value Estimation Under Multiset Operations. In Proc. of the ACM
SIGMOD Conf. on Management of Data. 199–210.

[9] N. Bruno and S. Chaudhuri. 2002. Exploiting Statistics on Intermediate Tables
for Query Optimization. In Proc. of the ACM SIGMOD Conf. on Management of
Data. 263–274.

[10] N. Bruno and S. Chaudhuri. 2004. Condidional Selectivity Estimation for Statistics
on Query Expressions. In Proc. of the ACM SIGMOD Conf. on Management of
Data. 311–322.

[11] C. Caiado and P. Rathie. 2007. Polynomial Coefficients and Distributions of the
Sum of Discrete Uniform Variables. In Eighth Annual Conference of the Society of
Special Functions and Their Applications.

[12] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. 2001. Approximate
Query Processing Using Wavelets. The VLDB Journal 10, 2-3 (2001), 199–223.

[13] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. 2000. Towards Es-
timation Error Guarantees for Distinct Values. In Proc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS). 268–279.

[14] S. Chaudhuri, B. Ding, and S. Kandula. 2017. Approximate Query Processing:
No Silver Bullet. In Proc. of the ACM SIGMOD Conf. on Management of Data.
511–519.

[15] Y. Chen and K. Yi. 2017. Two-Level Sampling for Join Size Estimation. In Proc. of
the ACM SIGMOD Conf. on Management of Data. 759–774.

[16] S. Christodoulakis. 1983. Estimating Block Transfers and Join Sizes. In Proc. of
the ACM SIGMOD Conf. on Management of Data. 40–54.

[17] G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine. 2012. Synopses for Massive
Data: Samples, Histograms, Wavelets, Sketches. NOW Press.

[18] A. Dawid. 1979. Conditional Independence in Statistical Theorey. J. of the Royal
Statistical Society: Series B (Methodological) 41, 1 (1979), 1–15.

[19] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri. 2019.
Selectivity Estimation for Range Predicates using Lightweight Models. In Proc.
Int. Conf. on Very Large Data Bases (VLDB). 1044–1057.

[20] O. Ertl. 2017. New Cardinality Estimation Algorithms for HyperLogLog Sketches.
arXiv 1702.01284v2 (2017).

[21] P. Fent and T. Neumann. 2021. A Practical Approach to Groupjoin and Nested
Aggregates. Proc. of the VLDB Endowment (PVLDB) 14, 1 (2021).

[22] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. 2007. HyperLogLog: the
analysis of a near-optimal cardinality estimation algorithm. In Conf. on Analysis
of Algorithms (AofA). Discrete Mathematics and Theoretical Computer Science.
127–146.

[23] M. Garofalakis and P. Gibbons. 2002. Wavelet synopses with error guarantees.
In Proc. of the ACM SIGMOD Conf. on Management of Data. 476–487.

[24] L. Getoor, B. Taskar, and D. Koller. 2001. Selectivity Estimation Using Probabilistic
Models. In Proc. of the ACM SIGMOD Conf. on Management of Data. 461–472.

[25] A. Gut. 2005. Probability: A Graduate Course. Springer.
[26] P. Haas, J. Naughton, S. Seshadri, and A. Swami. 1996. Selectivity and Cost

Estimation for Joins Based on Random Sampling. J. Comput. System Sci. 52
(1996), 550–569.

[27] P. Haas, J. Naughton, and A. Swami. 1994. On the Relative Cost of Sampling for
Join Selectivity Estimation. In Proc. of the ACM SIGMOD Conf. on Management
of Data. 14–24.

[28] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2019.
DeepDB: Learn from Data, not from Queries! CoRR (2019). http://arxiv.org/abs/
1909.00607

[29] R. Hogg, E. Tanis, and L. Zimmerman. 2015. Probability and Statistical Inference.
Pearson.

[30] Y. Ioannidis. 1993. Universality of Serial Histograms. In Proc. Int. Conf. on Very
Large Data Bases (VLDB). 256–267.

[31] Y. Ioannidis. 2003. The History of Histograms (abridged). In Proc. Int. Conf. on
Very Large Data Bases (VLDB). 19–30.

[32] Y. Ioannidis and S. Christodoulakis. 1993. Optimal Histograms for LimitingWorst-
Case Error Propagation in the Size of Join Results. ACM Trans. on Database

Systems 18, 4 (1993), 709–748.
[33] Y. Ioannidis and V. Poosala. 1999. Histogram-based Approximation of Set-Valued

Query Answers. In Proc. Int. Conf. on Very Large Data Bases (VLDB). 174–185.
[34] Y. Ioannidis and V. Poosola. 1995. Balancing Histogram Optimality and Practi-

cality for Query Result Size Estimation. In Proc. of the ACM SIGMOD Conf. on
Management of Data. 233–244.

[35] Y. Ioannidis and V. Poosola. 1995. Histogram-Based Solutions to Diverse Database
Estimation Problems. IEEE Data Engineering Bulletin 18, 3 (Sept 1995), 10–18.

[36] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel.
1998. Optimal Histograms with Quality Guarantees. In Proc. Int. Conf. on Very
Large Data Bases (VLDB). 275–286.

[37] N. Johnson, S. Kotz, and A. Kemp. 1992. Univariate Discrete Distributions. Wiley.
[38] C.-C. Kanne and G. Moerkotte. 2010. Histograms reloaded: the merits of bucket

diversity. In SIGMOD. 663–674.
[39] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. 2018. Learned

Cardinalities: Estimating Correlated Joins with Deep Learning. arXiv preprint
arXiv:1809.00677 (2018).

[40] A. König and G. Weikum. 1999. Combining Histograms and Parametric Curve
Fitting for Feedback-Driven Query Result-Size Estimation. In Proc. Int. Conf. on
Very Large Data Bases (VLDB). 423–434.

[41] N. Koudas, S. Muthukrishnan, and D. Srivastava. 2000. Optimal Histograms for
Hierarchical Range Queries. In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of
Database Syst. (PODS). 196–204.

[42] J.-H. Lee, D.-H. Kim, and C.-W Chung. 1998. Multi-dimensional Selectivity Estima-
tion Using Compressed Histogram Information. Technical Report CS/TR-98-131.
KAIST.

[43] J.-H. Lee, D.-H. Kim, and C.-W Chung. 1999. Multi-dimensional Selectivity Esti-
mation Using Compressed Histogram Information. In Proc. of the ACM SIGMOD
Conf. on Management of Data. 205–214.

[44] Kaiju Li and Guoliang Li. 2018. Approximate Query Processing: What is New
and Where to Go? Data Science and Engineering 3 (2018), 379–397.

[45] R. Lipton, J. Naughton, and D. Schneider. 1990. Practical Selectivity Estimation
through Adaptive Sampling. In Proc. of the ACM SIGMOD Conf. on Management
of Data. 1–11.

[46] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. 2015. Cardinality estimation
using neural networks. In CASCON. 53–59.

[47] Q. Ma and P. Triantafillou. 2019. DBEst: Revisiting Approximate Query Process-
ing Engines with Machine Learning Models. In Proc. of the ACM SIGMOD Conf.
on Management of Data. 1553–1570.

[48] Y. Matias, J. Vitter, and M. Wang. 1998. Wavelet-Based Histograms for Selectivity
Estimation. In Proc. of the ACM SIGMOD Conf. on Management of Data. 37–48.

[49] G. Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index Struc-
ture for Data Warehousing. In Proc. Int. Conf. on Very Large Data Bases (VLDB).
476–487.

[50] G. Moerkotte. 2024. Building Query Compilers. (2024). pi3.informatik.uni-
mannheim.de/ moer/querycompiler.pdf.

[51] G. Moerkotte, D. DeHaan, N. May, A. Nica, and A. Böhm. 2014. Exploiting ordered
dictionaries to efficiently construct histograms with q-error guarantees in SAP
HANA. In Proc. of the ACM SIGMOD Conf. on Management of Data. 361–372.

[52] G. Moerkotte and A. Hertzschuch. 2020. 𝛼 to 𝜔 : The G(r)eek Alphabet of
Sampling. In CIDR.

[53] G.Moerkotte, T. Neumann, and G. Steidl. 2009. Preventing Bad Plans by Bounding
the Impact of Cardinality Estimation Errors. Proc. of the VLDB Endowment
(PVLDB) 2, 1 (2009), 982–993.

[54] M. Müller, G. Moerkotte, and O. Kolb. 2016. Improved Selectivity Estimation
by Combining Knowledge from Sampling and Synopses. Proc. of the VLDB
Endowment (PVLDB) 11 (2016), 1016–1028.

[55] M. Muralikrishna and D.J. DeWitt. 1987. Equi-Depth Multi-Dimensional His-
tograms. Technical Report 733. Univ. Wisconsin.

[56] T. Neumann and M. Freitag. 2020. Umbra: a Disk-Based System with In-Memory
Performance. In Proc. Biennial Conference on Innovative Data Systems Research
(CIDR). 29.

[57] F. Olken andD. Rotem. 1986. Simple Random Sampling fromRelational Databases.
In Proc. Int. Conf. on Very Large Data Bases (VLDB).

[58] Y. Park, B. Mozafari, J. Sorenson, and J.Wang. 2018. VerdictDB: Universalizing Ap-
proximate Query Processing. In Proc. of the ACM SIGMOD Conf. on Management
of Data. 1461–1476.

[59] A. Pewsey. 2000. Problems of Inference for Azzalini’s skew-normal distribution.
J. of Applied Statistics 27, 7 (2000), 859–870.

[60] V. Poosala and Y. Ioannidis. 1997. Selectivity Estimation Without the Attribute
Value Independence Assumption. In Proc. Int. Conf. on Very Large Data Bases
(VLDB). 486–495.

[61] M. Raasveldt and H. Mühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proc. of the ACM SIGMOD Conf. on Management of Data. 1981–1984.

[62] V. Rohatgi. 1976. An Introduction to Probability Theory and Mathematical Statistics.
Wiley.

[63] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. 1979. Access
Path Selection in a Relational Database Management System. In Proc. of the ACM

40

http://arxiv.org/abs/1909.00607
http://arxiv.org/abs/1909.00607

SIGMOD Conf. on Management of Data. 23–34.
[64] S. Setzer, G. Steidl, T. Teuber, and G. Moerkotte. 2010. Approximation related to

quotient functionals. Journal of Approximation Theory 162, 3 (2010), 545–558.
[65] R. Stanley. 1997. Enumerative Combinatorics, Volume I. Cambridge Studies in

Advanced Mathematics, Vol. 49. Cambridge University Press.
[66] W. Tan, M. Alhamid, M. Kalil, R. Yang, V. Corvinelli, C. Zuzarte, and L. Finnie.

2021. Query Predicate Selectivity Using Machine Learning in DB2. In CASCON.
[67] Transaction Processing Council (TPC). 1993-2022. TPC Benchmark H (Standard

Specification, Revision 3.0.1). (1993-2022). http://www.tpc.org/tpch.
[68] Transaction Processing Council (TPC). 2021. TPC Benchmark DS (Standard

Specification, Revision 3.2.0). (2021). http://www.tpc.org/tpcds.
[69] K. Tzoumas, A. Deshpande, and C. Jensen. 2013. Efficiently Adapting Graphical

Models for Selectivity Estimation. Proc. Int. Conf. on Very Large Data Bases
(VLDB) 22 (2013), 3–27.

[70] D. Vengerov, A. Menck, M. Zait, and S. Chakkappen. 2015. Join Size Estimation
Subject to Filter Conditions. Proc. of the VLDB Endowment (PVLDB) 8, 12 (2015),
1530–1541.

[71] J. Vitter and M. Wang. 1999. Approximate Computation of Multidimensional
Aggregates of Sparse Data Using Wavelets. In Proc. of the ACM SIGMOD Conf.
on Management of Data. 193–204.

[72] F. Waas, C. Galindo-Legaria, M.-C. Wu, and M. Joshi. 2003. Statistics on Views.
In Proc. Int. Conf. on Very Large Data Bases (VLDB). 952–962.

[73] J. Wang, C. Chai, J. Liu, and G. Li. 2024. Cardinality Estimation Using Normalizing
Flow. VLDB Journal 33 (2024), 323–348.

[74] P. White. 2017. Cardinality Estimation for a Predicate on a COUNT Expression.
(2017). https://sqlperformance.com/2017/04/sql-optimizer/cardinality-count
[01.09.24].

[75] Ziniu Wu and Amir Shaikhha. 2020. BayesCard: A Unified Bayesian Framework
for Cardinality Estimation. CoRR (2020). https://arxiv.org/abs/2012.14743

[76] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. Hellerstein,
S. Krishnan, and I. Stoica. 2019. Deep Unsupervised Cardinality Estimation. Proc.
of the VLDB Endowment (PVLDB) 13, 3 (2019), 279–292.

[77] F. Yu,W.-C. Hou, C. Luo, D. Che, andM. Zhu. 2013. CS2: ANewDatabase Synopsis
for Query Estimation. In Proc. of the ACM SIGMOD Conf. on Management of Data.
469–480.

[78] R. Zhu, Z. Wu, Y. Han, K. Zeng, A. Pfadler, Z. Qiang, J. Zhou, and B. Cui. 2020.
FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation. arXiv
preprint arXiv:2011.09022 (2020).

[79] B. Zolfaghari, M. Fallah, and M. Sedighi. 2017. S-Restricted Compositions Revis-
ited. Discrete Mathematics and Theoretical Computer Science 19 (2017).

41

https://arxiv.org/abs/2012.14743

	Abstract
	1 Introduction
	2 Preliminaries
	3 CXY
	3.1 CDH
	3.2 CDF
	3.3 CDJ
	3.4 CDK
	3.5 CDL
	3.6 CDG
	3.7 CDI

	4 DA
	4.1 DB
	4.2 DF
	4.3 DG
	4.4 DX
	4.5 DY
	4.6 Predicates in avg(B)

	5 Predicates in min(B) and max(B)
	5.1 Estimation
	5.2 Evaluation

	6 Conjunctions and Disjunctions in the having-Clause
	6.1 Conjunctions
	6.2 Disjunctions

	7 Adding a where-Clause
	7.1 count(*)
	7.2 Other Aggregate Functions

	8 Related Work
	9 Conclusion
	A Number of Positive Integer Compositions
	B Using the hypergeometric function
	C Skew-Normal Distribution
	Acknowledgments
	References

