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Abstract—It has previously been shown that ensembles of
terminated protograph-based low-density parity-check (LDPC)
convolutional codes have a typical minimum distance that grows .
linearly with block length and that they are capable of achieving 10 ¢
capacity approaching iterative decoding thresholds on the binary
erasure channel (BEC). In this paper, we review a recent
result that the dramatic threshold improvement obtained by
terminating LDPC convolutional codes extends to the additive
white Gaussian noise (AWGN) channel. Also, using a (3,6)-
regular protograph-based LDPC convolutional code ensemble as
an example, we perform an asymptotic trapping set analysis of
terminated LDPC convolutional code ensembles. In addition to
capacity approaching iterative decoding thresholds and linearly 107
growing minimum distance, we find that the smallest non-empty
trapping set of a terminated ensemble grows linearly with block
length.
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Ensembles of low-density parity-check (LDPC) block code Ey/No
can be obtained by terminating LDPC convolutional code
ensembles [1], [2]. The slight irregularity resulting frame Fig. 1: AWGN channel performance of terminated (3,6)-
termination of the convolutional codes has been shown fegular and (4,8)-regular LDPC convolutional codes witt li
lead to substantially better belief propagation (BP) déupd ing factor N = 6000 and ratelz = 0.49. For comparion, (3,6)-
thresholds compared to corresponding block code ensemblégular LDPC block codes wittV' = 6000 and N = 200000
More recently, it has been proven analytically for the bjnarare also shown.
erasure channel (BEC) that the BP decoding thresholds of
some slightly modified regular LDPC convolutional codélecoding methods are employed, there are other factors that
ensembles approach the maximum a posteriori probabilajfect the performance of a code. For example, it has been
(MAP) decoding thresholds of the corresponding LDPC blockhown that so-called ‘trapping sets’ are a significant facto
code ensembles [3]. Figure 1 displays the simulated perf@ifecting decoding failures of LDPC codes over the AWGN
mance of terminated3, 6)-regular and(4,8)-regular LDPC channel with iterative message-passing decoding. Tragppin
convolutional codes over the additive white Gaussian noisets, graphical sub-structures existing in the Tannerhgaip
(AWGN) channel and serves as a demonstration of the capabiPPC codes, were first studied in [5]. Known initially as
ities of these codes and as motivation for the results ptedennear-codewordsthey were used to analyse the performance
in this paper. Here, the termination length has been chos®nLDPC codes in the error floor, or high signal-to-noise
such that the code rate iB = 0.49. We note in particular ratio (SNR) region, of the bit error rate (BER) curve. In
that asJ increases, the thresholds and corresponding waterf@], Richardson developed these concepts and proposed a
performance of the simulated codes improves. two-stage technique to predict the error floor performarfce o

In addition to this excellent threshold performance, it calkDPC codes based on trapping sets, and asymptotic results on
also be shown that the minimum distance typical of mogverage trapping set distributions for both regular aredjistar
members of these terminated LDPC convolutional code ellPPC block code ensembles appeared in [7].
sembles grows linearly with the block length as the block In this paper, we perform an AWGN channel analysis of
length tends to infinity, i.e., they aesymptotically goof¥]. A terminated LDPC convolutional codes. We begin in Sectibn Il
large minimum distance growth rate indicates that codesmraby briefly reviewing a recent result that the dramatic thodgh
from the ensemble should have a low error floor under maixaprovement obtained by terminating LDPC convolutional
imum likelihood (ML) decoding. However, when sub-optimatodes on the BEC also extends to the AWGN channel. This



result is demonstrated for a variety of asymptotically gogate edges from each variable node in the base mad&imamong

R =1/2 (J,2J)-regular LDPC convolutional code ensembles:; + 1 component base matricd3;, : = 0,...,mg, such

and for a rateR = 1/2 irregular LDPC convolutional code that the conditionBy + By + --- + B,,,, = B is satisfied.
ensemble based on the accumulate-repeat-jagged-ac¢amulais ensures that the computation trees of the convolutiona
(ARJA) block protograph [8]. In Section IV, using a (3,6)-code ensemble are equal to those of the original block code
regular protograph-based LDPC convolutional code ensemkhsemble defined b$B. An ensemble of (in general) time-
as an example, we perform an asymptotic trapping set asalygrying LDPC convolutional codes can then be formed from
of terminated LDPC convolutional code ensembles. HerB,_ . using the protograph construction method based on
using techniques developed by Abu-Surra, Ryan, and Divsals x N permutation matrices described above.

[9], asymptotic methods are used to calculate a lower boundFor example, a (3,6)-regular LDPC convolutional ensemble
on the trapping set numbers of terminat8d6)-regular LDPC with m, = 2 can be formed from the block base matBx=
convolutional code ensembles. These trapping set numbss 3 ] by defining the component base matrices

define the size of the smallest, non-empty trapping sets in Bicll 11-B.-B 5

an ensemble. Concluding remarks are given in Section V. 0=[1 1]=B1=By, 2)

with corresponding convolutional base matrix
II. CONSTRUCTING PROTOGRAPHBASED LDPC P 9

CONVOLUTIONAL CODES .
A protograph [10] is a small bipartite grapgh = (V, C, E) 1 1

1 1
that connects a set of, variable node$” = {vg,..., vy, 1} Bl o] = 11 1 1 1 1
to a set ofn. check node<” = {cg,...,c,.—1} by a set of ’ 1111 1 1

edgesE. The protograph can be represented by a parity-check

or basebiadjacency matrix3, where 3, ,, is taken to be the

number of edges connecting variable nageto check node B. Terminated LDPC convolutional code ensembles

¢z- The parity-check matrbH of a protograph-based LDPC . Suppose that we start the convolutional code with parity-

block code can be created by replacing each non-zero entry. i,k matrix defined in1) at time ¢ — 0 and terminate it

B by a sum off3;. , permutatlon.matrlces O.f Siz% and a ZEI0 after L time instants. The resulting finite-length base matrix
entry by theN x N all-zero matrix. In graphical terms, this CaNs then given by

be viewed as taking aiv-fold graph cover [11] or “lifting” of
the protograph. It is an important feature of this constanct By
that each lifted code inherits the degree distribution anagblg :
neigbourhood structure of the protograph. The ensemble of
protograph-based LDPC codes with block length= Nn,,

is defined by the set of matricdd that can be derived from :
a given protograph by all possible combinationséfx N B,
permutation matrices.

Bio,.-1] = | Bun. By )

(L+ms)be X Lby,

The matrix By ;) can be considered as the base matrix
A. Convolutional protographs of a terminated protograph-based LDPC convolutional code
An ensemble of unterminated LDPC convolutional codddlsemble. Termination in this fashion results in a rate. loss

can be described by means otanvolutional protograpH1] Without puncturing, the design rafe; of the terminated code
with base matrix ensemble is equal to

r 7 L+ mg\ b, L+ mg
e e Rp=1- ) L =1- *J1-R
. . L ( L ) bv L ( )7
BmS e BO ’
B B ] ) B where R = 1 — Nb./Nb, = 1 — b./b, is the rate of
[—00,00] = K K ’ the unterminated convolutional code ensemble. Note thsat, a
B, -+ Bo the termination factorL increases, the rate increases and
approaches the rate of the unterminated convolutional code
B - ensemble.
where m, denotes the syndrome former memory of the
convolutional codes and tHe x b, component base matrices !ll. | TERATIVE DECODING THRESHOLDS AND MINIMUM

B, i = 0,...,m,, represent the edge connections from DISTANCE GROWTH RATES OF TERMINATED ENSEMBLES
1y b 3ty S

the b, variable nodes at timé to the b. check nodes at Terminated LDPC convolutional code ensembles have been
time ¢ + 4. Starting from the base matriB of a block observed to display BP thresholds that approach the MAP
code ensemble, one can construct LDPC convolutional codiecoding threshold of the corresponding block code enssnbl
ensembles that maintain the same degree distribution dnd the BEC as the termination factat tends to infinity
structure as the original ensemble. This is achieved by Hi, [12], and recently this has been proven analytically fo
edge spreadingrocedure (see [1] for details) that divides thé.J, K')-regular ensembles [3]. In this section, we review a more
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Fig. 2: AWGN thresholds and typical minimum distance growtttes for families of terminated., 2.J)-regular LDPC
convolutional code ensembles, terminated ARJA LDPC cariaial code ensembles, and associated LDPC block code
ensembles.

recent result that the dramatic threshold improvementilodéda variable node associated with colurshould be punctured.

by terminating LDPC convolutional codes also extends t0\ye see for the terminated convolutional ensembles that, as
the AWGN channel [13], [14]. Since exact density evolution jncreases, the ensemble design rate increases (approach-
is far more complex for the AWGN channel than fqr th,?ng R = 1/2 asymptotically) and the thresholds approach
BEC, we make use of the reciprocal channel approximatighe Shannon limit. However, for increasing, the asymp-

(RCA) technique introduced in [15], which has been succegsiic minimum distance growth rate&™), of the ensembles
fully applied to the analysis of protograph ensembles in [8}o rease. This presents the code designer with a trade-off

With this approach, the calculation of approximate AWGN o een distance growth rate and threshold, along with a
channel thresholds for large protographs becomes feagittie variety of achieveable code ratds;. We observe that the

reasonable accuracy. Typical minimum distance growthsrate; o ;) reqular block code ensemble thresholds worsen as we

for protograph-based terminated LDPC convolutional coge. csge.7. Figure 2 shows that this is also the case for

ensembles can be calculated using the techniques preseﬂ‘i%%erminatedj,2J)-regu|ar convolutional code families for
by Dlvsalar [1_6]' small termination factord.. Thus, by increasing (and hence

Figure 2 displays the calculated AWGN thresholds angh qging complexity), we obtain a more pronounced trade-
minimum distance growth rates for the terminated LDPGg ponyeen distance growth rates and threshold for small
convolutional code ensembles and the corresponding LDEG a5 of 7, However, as the termination factdr increases,
block co_de ensembles. T_Hg’ QJ)'regP'af terminated LDPC ¢ 5pserve that the threshold of the termingtéd.J)-regular
convolutional base matrices are given by (3), where the;pc conyolutional code families converge to a value close
be X by = 1 x 2 component submatriceB; = [1 1], {5 canacity and that this value improves as we increasenis
i=0,...,ms andm, = J—1. The terminated convolutional i, jicates that, for large, both the distance growth rates and
ARJA (TARJA) component submatricéB, and B, of size the thresholds improve with increasing complexity. We wioul
be x by = 3 x 5 are given as follows: expect this trend to continue as we further increase thalviari

1 2 0 0 0 00 0 0 0 node degree/, although the improvement will diminish with
Bp=|0 1 1 1 0]andB;=|0 2 0 0 1 |, increasing/.
0010 2 01 110 Now consider choosing. such that the ensemble design
where we note that rate is R = 0.49. In this region, the threshold values of the
1 200 0 (J, 2J)—r§gular ensembles improve with The thresholds of
Bi+B,=|03 11 1]|-B the terminated3, 6)-regular and(4, 8)-regular ensembles are
0 ! 01 2 1 o : displayed in Fig. 1, along with the simulated performance of

randomly chosen codes from the associated ensembles with

the block base matrix of the ARJA ensemble, and that tlpermutation matrix sizeéV = 6000. A standard LDPC block

o



decoder employing the BP decoding algorithm is used. Vilged gaps to capacity, we see that this ordering changes, and
observe that the waterfall performance is relatively clase the reverse ordering holds for large gaps to capacity.
the threshold and we expect this gap to decrease for larger,
permutation matrix sizev. By choosingL larger, the rate CONVOLUTIONAL CODE ENSEMBLES
increases (approachingy/2) and the thresholds move to the _ . .
left. The corresponding waterfall performance of codesseno !N [5], MacKay and Postol discovered a “weakness” in
from these ensembles will also move to the left. As a findf€ Structure of the Margulis construction of(2, 6)-regular
observation, we note that for all achieveable rates the FaAR$allager code. Described asear-codewords these small
ensembles have better thresholds than the termin@tet- graphical sub-structures existing in the Tanner graph dPCD
regular ensembles. This is expected, since the ARJA engenfiffdes cause the iterative decoding algorithm to get trapped
has been optimised to have a good iterative decoding thre§FFOr Patterns. These weaknesses were shown to contribute
old. However, we also observe that, for large the (4, 8)- S|gr_1|f|cantly to the performa_nce of the code in the grror floor
and (5,10)-regular terminated ensembles have comparatﬂ%g'on of the I_3ER curve. Richardson deyeloped this concept
thresholds to the TARJA ensemble, demonstrating the ben&if6], and defined these structuresteapping sets
that derives from terminating th/, 2.J)-regular convolutional _D€finition 1: An (a, b) general trapping set, ;, of a bipar-
structure. tite graph is a set of variable nodes of sizevhich induce
Figure 3 plots the typical minimum distance growth rate® Subgraph with exactly odd-degree check nodes (and an
against the threshold gap to capacity (the difference tetwe'Pitrary number of even-degree check nodes). _
the calculated AWGN channel thresholé,(No) of an en- In order to calculate ensemble average general trapping set

semble and capacity for the ensemble design rate) for tﬁréumerators for terminated LDPC convolutional codes, vee us

terminated(.J, 2.J)-regular convolutional ensembles with ter{'® combinatorial arguments previously presented in [8F T

mination factorsl, — m. + 1 16.20.50. 100. the TARJA technique involves considering a two-part ensemble agerag
ensembles with termination factofs— ’27 o 10, the ARJA weight enumerator for a modified protograph with the propert

block code ensemble, and the correspondidgR.J)-regular that any (a,b) trapping set in the original protograph is a
block code ensembles. codeword in the modified protograph.

IV. TRAPPING SET ANALYSIS OF TERMINATEDLDPC

. A. Trapping set growth rates

——Term. (3,6)—-regular The two-part normalized logarithmiasymptotic trapping
3.5/ —— Term. (4,8)-regular set spectral shape functioof a code ensemble can be writ-
——Term. (5,10)-regular ten asr(o, ) = limsup,,_,. m(a, 3), wherer,(a, ) =
__ 3T TARJA 1 D) ' — a/n, B =b/n, a andb are Hamming weights;
< . (AJI’??;\?_‘J(I)W is the block length, andl,, , is the two-part ensemble average
2257 ] weight distribution. Suppose now we are interested in tkie ra
§ of b to a for a general(a,b) trapping set enumerator. Let
s 2r 1 A =b/a=p/a, A € [0,00). As proposed in [9], we may
=] classify the trapping sets ag = {7,|b = Aa}. For eachA,
§1'5’ 1 we defined;s(A) to be the A-trapping set numberwhich
is the size of the smallest, non-empty trapping setrin
r | _ ‘ | Now consider fixingA and plotting the normalized weight
059 = .ncreasuhg r_a eﬁ « against the two-part asymptotic spectral shape function
' Increasing termination r(a, ) = r(a,Aa). Supposex > 0 and the first zero-
e=0 DN factor crossing of-(a, 3) occurs aty = d;,(A). If 7(«, B) is negative

% 002 o004 o006 098 01 012 014 016 018 in the range0 < a < d0;5(A), then the first zero-crossing
min d:s(A) is called theA-trapping set growth rateof the code
Fig. 3: Typical minimum distance growth rate vs. thresholdnsemble. 1f5,,(A) exists we can say with high probability
gap to capacity. that a randomly chosen code from the ensemble hds- a
) ) ) ] trapping set number that is at least as large@&s(A), i.e., the
~We observe that, in particular, intermediate value$ @ro- A _rapping set number increases linearly with block length
vide thresholds with a small gap to capacity while maintni 9] This implies that, for sufficiently large, a typical member
a small typical minimum distance growth rate with only @rihe ensemble has no small trapping sets.
slight loss in code rate. We also note that, for a fixed gap to

capacity close to zero, the largest minimum distance growkh Trapping set analysis of terminated, 6)-regular LDPC
rate is obtained by choosing the terminated2./) ensemble convolutional codes

with the largestJ, and that the TARJA ensemble falls in As an example, we will consider the terminatésl 6)-
between the terminate(8, 6)- and (4, 8)-regular ensembles. regular LDPC convolutional code ensemble described in Sec-
(In this region, with the gap to capacity close to zero, th#on II-A. For each termination factok, we analyse the two-
rates are approximately equal and cloself@.) For larger part asymptotic spectral shape function described in &ecti



IV-A with A > 0 to see if a positive trapping set growth ratén addition, the terminated ensembles display linear mini-
5§f)(A) exists. Note that settings = 3/a = b/a = 0 corre- mum distance growth for any finite termination factr An
sponds to the minimum distance growth rate problem, whereasymptotic trapping set analysis was performed on a fantfily o
and 3 are the weights andb normalised by the block length terminated(3, 6)-regular LDPC convolutional code ensembles
n. Thus,ég‘)(o) = 6" wheres'™ is the minimum distance and it was shown that they possess the property that the

min’ min

growth rate of the terminated ensemble as reported in [4]. Agallest non-empty trapping set grows linearly with thecklo
A ranges fromD to oo, the points(éff)(A), A(st(SL)(A)) trace length. These properties indicate that codes chosen freseth
out the so-calledzero-contour curvefor a protograph-based ensembles should have excel_lent performance in both the
code ensemble [9]. The zero-contour curves for terminatég@terfall and the error-floor region of the BER curve.

(3,6)-regular LDPC convolutional code ensembles are shown
in Fig. 4 forL =3,...,12.
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Fig. 4: Zero contour curves for terminatétl 6)-regular LDPC [5]

convolutional code ensembles.
6

For all A > 0, we observezSt(sL)(A) > 0, indicating that, o
for each class ofa,b) general trapping set, the size of thel
smallest non-empty trapping set typical of most members of
the ensemble is growing linearly with block length. Codel8]
ensembles with largé-trapping set number ff)(A) are the
most interesting, since small trapping sets dominatetiera [9]
decoding performance in the error floor [6]. Thus we want
the A-trapping set growth ratét(f)(A) to exist and to be [
as large as possible for each value Af We observe in
Fig. 4 that5t(SLl)(A) < 5§52)(A) for any Ly > L. This is
analogous to the decrease in the minimum distance grov{/]tflw]
rate with increasingl (and rateR) observed in [4]. These [12]
results suggest that for larger valuesIafwhere it becomes
problematic to calculate the trapping set growth rates nu-
merically, we will observe positive zero-contour curveghwi [13]
§§f)(0) = 67(3” > 0, the minimum distance growth rate of
the terminated ensemble. This promises, for sufficientigda
block lengthn, good error-floor performance for terminated
(3,6)-regular LDPC convolutional code ensembles in additidh™
to the capacity approaching thresholds discussed earlier.

V. CONCLUSIONS [15]

In this paper we saw that the capacity approaching thresh-
olds of terminated LDPC convolutional codes, recently egs6]
tablished for the BEC, also extend to the AWGN channel.
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