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Abstract— It has previously been shown that ensembles of
terminated protograph-based low-density parity-check (LDPC)
convolutional codes have a typical minimum distance that grows
linearly with block length and that they are capable of achieving
capacity approaching iterative decoding thresholds on the binary
erasure channel (BEC). In this paper, we review a recent
result that the dramatic threshold improvement obtained by
terminating LDPC convolutional codes extends to the additive
white Gaussian noise (AWGN) channel. Also, using a (3,6)-
regular protograph-based LDPC convolutional code ensemble as
an example, we perform an asymptotic trapping set analysis of
terminated LDPC convolutional code ensembles. In addition to
capacity approaching iterative decoding thresholds and linearly
growing minimum distance, we find that the smallest non-empty
trapping set of a terminated ensemble grows linearly with block
length.

I. I NTRODUCTION

Ensembles of low-density parity-check (LDPC) block codes
can be obtained by terminating LDPC convolutional code
ensembles [1], [2]. The slight irregularity resulting fromthe
termination of the convolutional codes has been shown to
lead to substantially better belief propagation (BP) decoding
thresholds compared to corresponding block code ensembles.
More recently, it has been proven analytically for the binary
erasure channel (BEC) that the BP decoding thresholds of
some slightly modified regular LDPC convolutional code
ensembles approach the maximum a posteriori probability
(MAP) decoding thresholds of the corresponding LDPC block
code ensembles [3]. Figure 1 displays the simulated perfor-
mance of terminated(3, 6)-regular and(4, 8)-regular LDPC
convolutional codes over the additive white Gaussian noise
(AWGN) channel and serves as a demonstration of the capabil-
ities of these codes and as motivation for the results presented
in this paper. Here, the termination length has been chosen
such that the code rate isR = 0.49. We note in particular
that asJ increases, the thresholds and corresponding waterfall
performance of the simulated codes improves.

In addition to this excellent threshold performance, it can
also be shown that the minimum distance typical of most
members of these terminated LDPC convolutional code en-
sembles grows linearly with the block length as the block
length tends to infinity, i.e., they areasymptotically good[4]. A
large minimum distance growth rate indicates that codes drawn
from the ensemble should have a low error floor under max-
imum likelihood (ML) decoding. However, when sub-optimal
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Fig. 1: AWGN channel performance of terminated (3,6)-
regular and (4,8)-regular LDPC convolutional codes with lift-
ing factorN = 6000 and rateR = 0.49. For comparion, (3,6)-
regular LDPC block codes withN = 6000 andN = 200000
are also shown.

decoding methods are employed, there are other factors that
affect the performance of a code. For example, it has been
shown that so-called ‘trapping sets’ are a significant factor
affecting decoding failures of LDPC codes over the AWGN
channel with iterative message-passing decoding. Trapping
sets, graphical sub-structures existing in the Tanner graph of
LDPC codes, were first studied in [5]. Known initially as
near-codewords, they were used to analyse the performance
of LDPC codes in the error floor, or high signal-to-noise
ratio (SNR) region, of the bit error rate (BER) curve. In
[6], Richardson developed these concepts and proposed a
two-stage technique to predict the error floor performance of
LDPC codes based on trapping sets, and asymptotic results on
average trapping set distributions for both regular and irregular
LDPC block code ensembles appeared in [7].

In this paper, we perform an AWGN channel analysis of
terminated LDPC convolutional codes. We begin in Section III
by briefly reviewing a recent result that the dramatic threshold
improvement obtained by terminating LDPC convolutional
codes on the BEC also extends to the AWGN channel. This



result is demonstrated for a variety of asymptotically good, rate
R = 1/2 (J, 2J)-regular LDPC convolutional code ensembles
and for a rateR = 1/2 irregular LDPC convolutional code
ensemble based on the accumulate-repeat-jagged-accumulate
(ARJA) block protograph [8]. In Section IV, using a (3,6)-
regular protograph-based LDPC convolutional code ensemble
as an example, we perform an asymptotic trapping set analysis
of terminated LDPC convolutional code ensembles. Here,
using techniques developed by Abu-Surra, Ryan, and Divsalar
[9], asymptotic methods are used to calculate a lower bound
on the trapping set numbers of terminated(3, 6)-regular LDPC
convolutional code ensembles. These trapping set numbers
define the size of the smallest, non-empty trapping sets in
an ensemble. Concluding remarks are given in Section V.

II. CONSTRUCTING PROTOGRAPH-BASED LDPC
CONVOLUTIONAL CODES

A protograph [10] is a small bipartite graphB = (V,C,E)
that connects a set ofnv variable nodesV = {v0, . . . , vnv−1}
to a set ofnc check nodesC = {c0, . . . , cnc−1} by a set of
edgesE. The protograph can be represented by a parity-check
or basebiadjacency matrixB, whereBx,y is taken to be the
number of edges connecting variable nodevy to check node
cx. The parity-check matrixH of a protograph-based LDPC
block code can be created by replacing each non-zero entry in
B by a sum ofBx,y permutation matrices of sizeN and a zero
entry by theN×N all-zero matrix. In graphical terms, this can
be viewed as taking anN -fold graph cover [11] or “lifting” of
the protograph. It is an important feature of this construction
that each lifted code inherits the degree distribution and graph
neigbourhood structure of the protograph. The ensemble of
protograph-based LDPC codes with block lengthn = Nnv

is defined by the set of matricesH that can be derived from
a given protograph by all possible combinations ofN × N
permutation matrices.

A. Convolutional protographs

An ensemble of unterminated LDPC convolutional codes
can be described by means of aconvolutional protograph[1]
with base matrix

B[−∞,∞] =
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where ms denotes the syndrome former memory of the
convolutional codes and thebc × bv component base matrices
Bi, i = 0, . . . ,ms, represent the edge connections from
the bv variable nodes at timet to the bc check nodes at
time t + i. Starting from the base matrixB of a block
code ensemble, one can construct LDPC convolutional code
ensembles that maintain the same degree distribution and
structure as the original ensemble. This is achieved by an
edge spreadingprocedure (see [1] for details) that divides the

edges from each variable node in the base matrixB among
ms + 1 component base matricesBi, i = 0, . . . ,ms, such
that the conditionB0 + B1 + · · · + Bms

= B is satisfied.
This ensures that the computation trees of the convolutional
code ensemble are equal to those of the original block code
ensemble defined byB. An ensemble of (in general) time-
varying LDPC convolutional codes can then be formed from
B[−∞,∞] using the protograph construction method based on
N ×N permutation matrices described above.

For example, a (3,6)-regular LDPC convolutional ensemble
with ms = 2 can be formed from the block base matrixB =
[ 3 3 ] by defining the component base matrices

B0 =
[

1 1
]

= B1 = B2 , (2)

with corresponding convolutional base matrix

B[−∞,∞] =
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B. Terminated LDPC convolutional code ensembles

Suppose that we start the convolutional code with parity-
check matrix defined in(1) at time t = 0 and terminate it
after L time instants. The resulting finite-length base matrix
is then given by

B[0,L−1] =
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. (3)

The matrix B[0,L−1] can be considered as the base matrix
of a terminated protograph-based LDPC convolutional code
ensemble. Termination in this fashion results in a rate loss.
Without puncturing, the design rateRL of the terminated code
ensemble is equal to

RL = 1−

(

L+ms

L

)

bc
bv

= 1−

(

L+ms

L

)

(1−R) ,

where R = 1 − Nbc/Nbv = 1 − bc/bv is the rate of
the unterminated convolutional code ensemble. Note that, as
the termination factorL increases, the rate increases and
approaches the rate of the unterminated convolutional code
ensemble.

III. I TERATIVE DECODING THRESHOLDS AND MINIMUM

DISTANCE GROWTH RATES OF TERMINATED ENSEMBLES

Terminated LDPC convolutional code ensembles have been
observed to display BP thresholds that approach the MAP
decoding threshold of the corresponding block code ensembles
for the BEC as the termination factorL tends to infinity
[1], [12], and recently this has been proven analytically for
(J,K)-regular ensembles [3]. In this section, we review a more
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Fig. 2: AWGN thresholds and typical minimum distance growth rates for families of terminated(J, 2J)-regular LDPC
convolutional code ensembles, terminated ARJA LDPC convolutional code ensembles, and associated LDPC block code
ensembles.

recent result that the dramatic threshold improvement obtained
by terminating LDPC convolutional codes also extends to
the AWGN channel [13], [14]. Since exact density evolution
is far more complex for the AWGN channel than for the
BEC, we make use of the reciprocal channel approximation
(RCA) technique introduced in [15], which has been succes-
fully applied to the analysis of protograph ensembles in [8].
With this approach, the calculation of approximate AWGN
channel thresholds for large protographs becomes feasiblewith
reasonable accuracy. Typical minimum distance growth rates
for protograph-based terminated LDPC convolutional code
ensembles can be calculated using the techniques presented
by Divsalar [16].

Figure 2 displays the calculated AWGN thresholds and
minimum distance growth rates for the terminated LDPC
convolutional code ensembles and the corresponding LDPC
block code ensembles. The(J, 2J)-regular terminated LDPC
convolutional base matrices are given by (3), where the
bc × bv = 1 × 2 component submatricesBi = [ 1 1 ],
i = 0, . . . ,ms, andms = J−1. The terminated convolutional
ARJA (TARJA) component submatricesB0 and B1 of size
bc × bv = 3× 5 are given as follows:

B0 =





1 2 0 0 0
0 1 1 1 0
0 0 1 0 2



 andB1 =





0 0 0 0 0
0 2 0 0 1
0 1 1 1 0



,

where we note that

B0 +B1 =





1 2 0 0 0
0 3 1 1 1
0 1 2 1 2



 = B,

the block base matrix of the ARJA ensemble, and that the

variable node associated with column2 should be punctured.

We see for the terminated convolutional ensembles that, as
L increases, the ensemble design rate increases (approach-
ing R = 1/2 asymptotically) and the thresholds approach
the Shannon limit. However, for increasingL, the asymp-
totic minimum distance growth ratesδ(L)

min of the ensembles
decrease. This presents the code designer with a trade-off
between distance growth rate and threshold, along with a
variety of achieveable code ratesRL. We observe that the
(J, 2J)-regular block code ensemble thresholds worsen as we
increaseJ . Figure 2 shows that this is also the case for
the terminated(J, 2J)-regular convolutional code families for
small termination factorsL. Thus, by increasingJ (and hence
decoding complexity), we obtain a more pronounced trade-
off between distance growth rates and threshold for small
values ofL. However, as the termination factorL increases,
we observe that the threshold of the terminated(J, 2J)-regular
LDPC convolutional code families converge to a value close
to capacity and that this value improves as we increaseJ . This
indicates that, for largeL, both the distance growth rates and
the thresholds improve with increasing complexity. We would
expect this trend to continue as we further increase the variable
node degreeJ , although the improvement will diminish with
increasingJ .

Now consider choosingL such that the ensemble design
rate isR = 0.49. In this region, the threshold values of the
(J, 2J)-regular ensembles improve withJ . The thresholds of
the terminated(3, 6)-regular and(4, 8)-regular ensembles are
displayed in Fig. 1, along with the simulated performance of
randomly chosen codes from the associated ensembles with
permutation matrix sizeN = 6000. A standard LDPC block



decoder employing the BP decoding algorithm is used. We
observe that the waterfall performance is relatively closeto
the threshold and we expect this gap to decrease for larger
permutation matrix sizesN . By choosingL larger, the rate
increases (approaching1/2) and the thresholds move to the
left. The corresponding waterfall performance of codes chosen
from these ensembles will also move to the left. As a final
observation, we note that for all achieveable rates the TARJA
ensembles have better thresholds than the terminated(3, 6)-
regular ensembles. This is expected, since the ARJA ensemble
has been optimised to have a good iterative decoding thresh-
old. However, we also observe that, for largeL, the (4, 8)-
and (5, 10)-regular terminated ensembles have comparable
thresholds to the TARJA ensemble, demonstrating the benefit
that derives from terminating the(J, 2J)-regular convolutional
structure.

Figure 3 plots the typical minimum distance growth rates
against the threshold gap to capacity (the difference between
the calculated AWGN channel threshold (Eb/N0) of an en-
semble and capacity for the ensemble design rate) for the
terminated(J, 2J)-regular convolutional ensembles with ter-
mination factorsL = ms + 1, . . . , 16, 20, 50, 100, the TARJA
ensembles with termination factorsL = 2, . . . , 10, the ARJA
block code ensemble, and the corresponding(J, 2J)-regular
block code ensembles.
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Fig. 3: Typical minimum distance growth rate vs. threshold
gap to capacity.

We observe that, in particular, intermediate values ofL pro-
vide thresholds with a small gap to capacity while maintaining
a small typical minimum distance growth rate with only a
slight loss in code rate. We also note that, for a fixed gap to
capacity close to zero, the largest minimum distance growth
rate is obtained by choosing the terminated(J, 2J) ensemble
with the largestJ , and that the TARJA ensemble falls in
between the terminated(3, 6)- and (4, 8)-regular ensembles.
(In this region, with the gap to capacity close to zero, the
rates are approximately equal and close to1/2.) For larger

fixed gaps to capacity, we see that this ordering changes, and
the reverse ordering holds for large gaps to capacity.

IV. T RAPPING SET ANALYSIS OF TERMINATEDLDPC
CONVOLUTIONAL CODE ENSEMBLES

In [5], MacKay and Postol discovered a “weakness” in
the structure of the Margulis construction of a(3, 6)-regular
Gallager code. Described asnear-codewords, these small
graphical sub-structures existing in the Tanner graph of LDPC
codes cause the iterative decoding algorithm to get trappedin
error patterns. These weaknesses were shown to contribute
significantly to the performance of the code in the error floor
region of the BER curve. Richardson developed this concept
in [6], and defined these structures astrapping sets.

Definition 1: An (a, b) general trapping setτa,b of a bipar-
tite graph is a set of variable nodes of sizea which induce
a subgraph with exactlyb odd-degree check nodes (and an
arbitrary number of even-degree check nodes).

In order to calculate ensemble average general trapping set
enumerators for terminated LDPC convolutional codes, we use
the combinatorial arguments previously presented in [9]. The
technique involves considering a two-part ensemble average
weight enumerator for a modified protograph with the property
that any (a, b) trapping set in the original protograph is a
codeword in the modified protograph.

A. Trapping set growth rates

The two-part normalized logarithmicasymptotic trapping
set spectral shape functionof a code ensemble can be writ-
ten asr(α, β) = lim supn→∞ rn(α, β), where rn(α, β) =
ln(Aa,b)

n
, α = a/n, β = b/n, a andb are Hamming weights,n

is the block length, andAa,b is the two-part ensemble average
weight distribution. Suppose now we are interested in the ratio
of b to a for a general(a, b) trapping set enumerator. Let
∆ = b/a = β/α, ∆ ∈ [0,∞). As proposed in [9], we may
classify the trapping sets asτ∆ = {τa,b|b = ∆a}. For each∆,
we definedts(∆) to be the∆-trapping set number, which
is the size of the smallest, non-empty trapping set inτ∆.
Now consider fixing∆ and plotting the normalized weight
α against the two-part asymptotic spectral shape function
r(α, β) = r(α,∆α). Supposeα > 0 and the first zero-
crossing ofr(α, β) occurs atα = δts(∆). If r(α, β) is negative
in the range0 < α < δts(∆), then the first zero-crossing
δts(∆) is called the∆-trapping set growth rateof the code
ensemble. Ifδts(∆) exists we can say with high probability
that a randomly chosen code from the ensemble has a∆-
trapping set number that is at least as large asnδts(∆), i.e., the
∆-trapping set number increases linearly with block lengthn
[9]. This implies that, for sufficiently largen, a typical member
of the ensemble has no small trapping sets.

B. Trapping set analysis of terminated(3, 6)-regular LDPC
convolutional codes

As an example, we will consider the terminated(3, 6)-
regular LDPC convolutional code ensemble described in Sec-
tion II-A. For each termination factorL, we analyse the two-
part asymptotic spectral shape function described in Section



IV-A with ∆ ≥ 0 to see if a positive trapping set growth rate
δ
(L)
ts (∆) exists. Note that setting∆ = β/α = b/a = 0 corre-

sponds to the minimum distance growth rate problem, whereα
andβ are the weightsa andb normalised by the block length
n. Thus,δ(L)

ts (0) = δ
(L)
min, whereδ(L)

min is the minimum distance
growth rate of the terminated ensemble as reported in [4]. As
∆ ranges from0 to ∞, the points(δ(L)

ts (∆),∆δ
(L)
ts (∆)) trace

out the so-calledzero-contour curvefor a protograph-based
code ensemble [9]. The zero-contour curves for terminated
(3, 6)-regular LDPC convolutional code ensembles are shown
in Fig. 4 for L = 3, . . . , 12.
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For all ∆ ≥ 0, we observeδ(L)
ts (∆) > 0, indicating that,

for each class of(a, b) general trapping set, the size of the
smallest non-empty trapping set typical of most members of
the ensemble is growing linearly with block length. Code
ensembles with large∆-trapping set numbersd(L)

ts (∆) are the
most interesting, since small trapping sets dominate iterative
decoding performance in the error floor [6]. Thus we want
the ∆-trapping set growth rateδ(L)

ts (∆) to exist and to be
as large as possible for each value of∆. We observe in
Fig. 4 thatδ(L1)

ts (∆) ≤ δ
(L2)
ts (∆) for any L1 > L2. This is

analogous to the decrease in the minimum distance growth
rate with increasingL (and rateR) observed in [4]. These
results suggest that for larger values ofL, where it becomes
problematic to calculate the trapping set growth rates nu-
merically, we will observe positive zero-contour curves with
δ
(L)
ts (0) = δ

(L)
min > 0, the minimum distance growth rate of

the terminated ensemble. This promises, for sufficiently large
block lengthn, good error-floor performance for terminated
(3, 6)-regular LDPC convolutional code ensembles in addition
to the capacity approaching thresholds discussed earlier.

V. CONCLUSIONS

In this paper we saw that the capacity approaching thresh-
olds of terminated LDPC convolutional codes, recently es-
tablished for the BEC, also extend to the AWGN channel.

In addition, the terminated ensembles display linear mini-
mum distance growth for any finite termination factorL. An
asymptotic trapping set analysis was performed on a family of
terminated(3, 6)-regular LDPC convolutional code ensembles
and it was shown that they possess the property that the
smallest non-empty trapping set grows linearly with the block
length. These properties indicate that codes chosen from these
ensembles should have excellent performance in both the
waterfall and the error-floor region of the BER curve.
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