Spatially-Coupled Nearly-Regular LDPC Code
Ensembles for Rate-flexible Code Design

Walter Nitzold, Gerhard P. Fettweis
Vodafone Chair Mobile Communications Systems
TU Dresden, Germany
Email: {walter.nitzold,gerhard.fettweis } @tu-dresden.de

Abstract—Spatially coupled regular LDPC code ensembles
have outstanding performance with belief propagation decoding
and can perform close to the Shannon limit. In this paper
we investigate the suitability of coupled regular LDPC code
ensembles with respect to rate-flexibility. Regular ensembles with
good performance and low complexity exist for a variety of
specific code rates. On the other hand it can be observed that
outside this set of favorable rational rates the complexity and
performance penalty become unreasonably high. We therefore
propose ensembles with slight irregularity that allow us to
smoothly cover the complete range of rational rates. Qur simple
construction allows a performance with negligible gap to the
Shannon limit while maintaining complexity as low as for the
best regular code ensembles. At the same time the construction
guarantees that asymptotically the minimum distance grows
linearly with the length of the coupled blocks.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are widely used
as they exhibit outstanding performance with the belief prop-
agation decoding algorithm. While the BP decoder is subopti-
mal compared to the optimal maximum a-posteriori (MAP)
decoder in terms of bit error probability, its complexity is
greatly reduced compared to the optimal one. With the in-
troduction of spatially coupled LDPC codes, also known as
LDPC convolutional codes [1], this sub-optimality can be
overcome due to a phenomenon called threshold saturation.
The remarkable threshold improvement of spatially coupled
ensembles was first investigated in [2][3]. In [4] it was shown
for the BEC by Kudekar et al. that the BP threshold of a
coupled regular LDPC ensemble actually converges to the
MAP threshold of the corresponding uncoupled ensemble.
More recently, potential functions have been identified as a
powerful tool for characterizing the connection between MAP
thresholds and BP thresholds [5][6]. Since the discovery of
this threshold saturation phenomenon the concept of spatial
coupling has been applied to several other fields such as
compressed sensing [7], multiuser communication [8], relay
channels [9] and wiretap channels [10].

In order to provably obtain capacity achieving perfor-
mance for a family of rate-compatible codes, a code con-
struction based on the extension of the parity-check matrices
of spatially-coupled regular LDPC codes was introduced in
[11]. Although this method was able to cover the whole
rate region R € [0, 1], at some rates the variable and check
degrees become very high which is disadvantageous for im-
plementation. In [12], a rate compatible ensemble based on
irregular protograph-based LDPC codes was considered, that
significantly lowered the complexity of implementation while
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Fig. 1. A chain of L regular (3,6) LDPC block codes at different time
instants ¢ (top) is uniformly interconnected over w time instants to form a
LDPC convolutional code (bottom). Note that the two check nodes at the
lower right are responsible for the rate loss but needed to cover this uniform
edge spreading

keeping the good performance of spatial coupling. Spatially
coupled rateless codes were investigated in [13]. In this work,
motivated by the ideas of [11][12], we propose a simple
method to overcome the complexity issues of rate-flexible
regular codes. A code designer might ask how to construct
a code for a given rate or a family of rates with good
performance as well as low decoding complexity. This paper
describes a simple approach and guideline to obtain such
codes. The key is to allow for a slight irregularity in the
code graph to add a degree of freedom that can be used
for supporting arbitrary rational rates in [0, 1] as accurate as
needed while keeping the check and variable degrees as low
as possible. The good performance can then be achieved by
spatial coupling of the constructed nearly-regular LDPC code
ensembles. The paper is organized as follows. In Section II, we
shortly review the concept of spatial coupling and introduce
the terminology and some tools for later evaluation. Section
IIT analyses the complexity and performance of a simple rate-
flexible LDPC code construction with regular LDPC codes
and unveils the complexity issues for unfavorable rates. In
Section IV, we then introduce a new approach to the code
construction of rate-flexible LDPC codes via mixing favorable
regular LDPC codes into a slightly irregular ensemble. This
is followed by a detailed discussion of the results in terms of
complexity and performance in Section V. The paper is finally
concluded.

II. CouprLED LDPC CODE ENSEMBLES

Consider the transmission of a sequence of codewords
vy with ¢ = 1...L using an LDPC block code with rate
R=1- % The fundamental difference between an LDPC



block code and its convolutional version is that, in the lat-
ter case, individual codewords of different time instants are
coupled together. This coupling is done over w time instants
yielding a chain of length L where codewords v; to viiq—1
are connected. The procedure is depicted in Fig. 1.

We consider in the following the coupled regular LDPC
code ensembles as defined in [4]. At every position ¢ € [0, L —
1], N € N variable nodes and M = N % check nodes are
placed, where J and K denote the variable and check degree,
respectively. We assume that all of the J edges emanating from
a variable node at time instant ¢ will be connected uniformly
and independently at random to check nodes at positions ¢ €
[t,t+w —1]. In this sense, the edge connections between time
instants are randomized. In the same manner, the K edges from
check nodes at position ¢ are connected to variable nodes in
the range [t — w + 1,¢]. Thus, a (J, K, L,w) coupled regular
LDPC code ensemble is defined. Due to the termination of the
coupled code chain, the convolutional ensemble exhibits a rate
loss in the finite L regime. If L — oo, the rate converges to
the design rate of the underlying regular ensemble.

We further assume that transmission takes place over the
binary erasure channel (BEC). The asymptotic behavior for
infinite block length is then described by the following density
evolution (DE) equations.

Definition II.1 (DE for (J, K, L, w) LDPC code ensembles).
Assuming transmission over the BEC with erasure probability
€, the erasure probability of variable nodes at position ¢ after
[ iterations is given by
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fort € [0,L —1). We set z; =0 for ¢t ¢ [0, L — 1].

Using DE, a unique decoding threshold for belief propaga-
tion (BP) decoding can be obtained and is defined as follows.

Definition II.2 (BP Threshold). The BP threshold of a
(J, K, L,w) LDPC ensemble is defined as

PP = supfe € [0,1]|2{®)(e) = 0;Vt € [0,L — 1]} (2

The optimal decoding strategy is MAP decoding, for which
a similar threshold can be defined. The MAP threshold 4
is defined as the maximum erasure probability e under which
the decoding error probability is equal to zero. By applying
the aforementioned coupling procedure, the BP threshold of
the coupled code ensemble is improved in comparison to
the threshold of the uncoupled block ensemble [2][3]. This
improvement can be explained by the specific structure at the
boundaries of the convolutional code chain. Stronger check
nodes imply a higher threshold and the iterative nature of the
BP decoder propagates this influence from the boundaries into
the graph. In fact, the BP threshold of the coupled ensemble
converges to the MAP threshold of the uncoupled ensemble.
Additionally, when the degree J increases while the ratio J/K
is kept constant, ¢4” converges to the Shannon limit 5"
For uncoupled LDPC ensembles a BP decoding performance
close to capacity requires the introduction of irregular graphs.
In the case of coupled LDPC codes, the threshold saturation
behavior stems purely from the structural properties of the code

which induces the use of simple regular LDPC codes that are
easy to implement.

III. REGULAR LDPC CODES
A. Rate-Flexibility of Regular LDPC Codes

A regular (J, K) LDPC code ensemble is defined via its
variable degree J and its check degree K. The design rate of
such an ensemble is defined as

J

R=1 7 3)
Given the above definition, regular LDPC code ensembles can
achieve every rational rate R € Q with R € [0,1]. The
rate is only determined by the variable and check degree.
To yield a tuple (J, K) for a given rate R, the solution to
the equation K(1 — R) = J needs to be determined. The
solution to this equation is not unique, so a given rate R can
be achieved by an infinite number of tuples (J, K). Due to
the sparse nature of their parity-check matrix, regular LDPC
codes are predestined for decoding with the BP decoder, whose
complexity is determined by the number of edges in the
decoding graph. This stems from the fact, that a BP update
operation has to be done per edge. The complexity in terms
of average operations per bit is then given as follows.

Definition III.1 (Complexity of an LDPC code ensemble).
The complexity C of an LDPC code ensemble with average
variable node degree J and rate R is defined as

C= “

:U_\ i

Achieving low complexity for a wide range of code rates is
a central goal throughout the remainder of this paper. Therefore
in the following we discuss a simple construction of regular
rate-flexible LDPC code ensembles with bounded complexity.

Assume a given rate R whose decimal representation has
a bounded number of digits ¢ after the radix point. Then
the accuracy of the rate is A = 107* with ¢ = 1,2,....
An achievable check degree K can be found by K = 1/A.
Accordingly J is then given by J = (1 — R)K. Not all rates
R € [0,1] with R € Q can be achieved with this procedure
as the simple counterexample R = 1/3 shows. Omitting the
rates with unbounded complexity, we can state the following

Proposition IIL.2. Given a code rate R with i decimal digits,
i < oo, and accuracy A = 107", the degrees of a regular
(J,K) code ensemble can be upper bounded by

1
A
JMaz = (1 - R)K]\laa:-

A degree tuple (J, K) can always be found, that suffices J <
J]Waa; and K < KMa7;~

K]Wax =

While Proposition II1.2 states that one can always achieve
a check degree Ky, or lower, given a rate R with accuracy
A, still smaller values can be found for various J and K. This
is summarized in the following

Proposition IIL3. If for given (J,K) with rate R,
ged(J,K) = 1, then Jypin = J and Ky = K are the
smallest degrees for given rate R.
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Fig. 2. Complexity C of regular LDPC code ensemble tuples (Jazin, Karin)
from set S for A = 0.01. Blue squares show LDPC code ensembles with
J=3.

Given a set R of rates R with accuracy A, the code
ensemble set S is built by all tuples (J, K') for all rates R € R.
Proposition II1.2 and III.3 define upper and lower bounds on
the achievable variable and check degrees within the set S .
Note that without further restriction Proposition II1.2 and IIL.3
permit variable degrees J < 2. As the decoding process does
not benefit from such variable nodes we require J > 3 for the
remainder of the paper.

Recapitulating the definition of decoder complexity, the
design goal of a low complexity code requires the use of the
smallest variable degree possible. Therefore, ensembles with
lowest complexity are the ones with (Jarin, Karin ). Using the
above described simple construction for the exemplary rate
interval R € [0.1,0.9] with rate accuracy A = 0.01 we get the
set R = {0.1,0.11,0.12,...,0.89,0.9} of possible rates and
the accompanying set S of tuples (J, K). The complexity of
all tuples (Jazin, Karin) from S is shown in Fig. 2. Certain
ensembles do exhibit very high complexity. Especially those
where Jyrin = Jprae and Karin = Kpjee- In fact, the lower
gcd(Jaraz, Knraz) 18, the higher becomes the complexity of
the regular code ensemble. Additionally note, that the jumps of
complexity do not scale proportionally with the rate, although
lower rates in general have higher complexity. The lowest
possible complexity Cpsin, would be accomplished with a
variable node degree of J = 3 which forms a lower bound
on the complexity for LDPC code ensembles. The construction
also gives an upper bound Cjz,, on the complexity of the code
ensembles which is additionally shown in Fig. 2. It is given
by
11-R
A R )

C]\/[az =

B. Thresholds of Coupled Regular Codes

Using spatial coupling of regular codes, the Shannon limit
can be achieved with increasing degrees. In contradiction to
this stands the need for low complexity that is connected to low
node degrees. We investigate the performance of the LDPC
code ensembles with (Jazin, Kprin) from the set S when
spatial coupling is applied. The smoothing parameter w of the
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Fig. 3. Density evolution thresholds ¢ % for regular LDPC convolutional

code ensemble set S¢ with Jpri, and R € [0.1,0.9]. The smoothing
parameter is varied: w € {3,10}; Shannon limit ¢5". Blue squares show
LDPC code ensembles with J = 3.

spatially coupled LDPC code ensemble is of additional impor-
tance as the complexity of a possible windowed BP decoder
is directly proportional to w. Using a windowed BP decoder
is the natural choice for spatially coupled LDPC codes [14].
Therefore, we seek for codes with low variable degree, small
smoothing parameter w and BP thresholds close to Shannon
limit ¢°". The DE thresholds ¢B” of the investigated code
ensembles with A = 0.01, w € {3,10} and rates R € [0.1,0.9]
using always the tuples (Jazin, Karin) are shown in Fig. 3. It
can be seen, that many tuples (Jazin, Kprin) are close to the
Shannon limit €5 and these are the ones with low degrees,
e.g., J = 3. These are the ones with lowest complexity too as
the comparison of Fig. 2 and Fig. 3 shows. Blue squares denote
the same LDPC code ensembles. On the other hand, there is a
“branch” of code ensembles with very high degrees that exhibit
very bad thresholds far away from capacity (emphasized with
the dashed circles). The performance can still be improved by
increasing w. By changing w = 3 to w = 10 (the blue dashed
branch), the thresholds are pushed further to the Shannon
limit but at the price of increased complexity due to larger
window sizes for the BP decoder. Spatially coupled regular
LDPC codes can get very close to capacity but with low
complexity, this is only possible for a subset of rates within
R € ]0,1]. We therefore introduce slight irregularity to the
ensemble definition to overcome this issue.

IV. NEARLY-REGULAR COUPLED LDPC CODE
ENSEMBLES

The construction of nearly-regular LDPC code ensembles
is based on the idea of mixing different but few regular en-
sembles based on given rules to overcome the shortcomings of
regular code constructions but still remain fairly regular degree
distributions. Therefore, the degree distributions structure is
restricted. We define a two step approach to the design of
rate-adaptive nearly-regular LDPC code ensembles. The basis
for the design is the use of the aforementioned set S of regular
LDPC codes of given rate accuracy A as described in Section
III. Next, we define a set S0 C S according to a specific
criterion C, that includes all the regular codes that suffice the



criterion C. The criterion can e.g. restrict the members of S¢
to have variable node degree J = 3 or J < 5. Other criteria
could be based on complexity, belief propagation threshold or
similar metrics. Once the subset S of S is chosen, a rule needs
to be fixed that defines how the codes within S have to be
mixed to yield a specific nearly-regular LDPC code ensemble
NR(\, p) with rate R. Now we can define a nearly-regular
LDPC code ensemble as follows.

Definition IV.1. Given a set S¢, a mixing rule and a desired
rate R, a nearly-regular LDPC code ensemble NR(),p) is
defined by the degree distributions

Mz) =277t (6)
p(x) = pr,a™ 7" + pre ™! @)
that suffice L
RO p) = 1 - do ) ®)
Jo AMz)dzx

and where (J, K;) and (J, K;) are taken from S¢ according
to the specified mixing rule.

An extension to the above definition in terms of a mixture
of different variable node degrees is also possible but not
subject of this paper. For the mixing rule different options are
possible. Two options that are investigated within this paper
are the direct neighbor mix as well as the boundary mix. The
boundary mix takes the two regular codes with highest and
lowest rate from the set S¢ and mixes them. Assuming the
criterion for the set S¢ to be J = 3, the degree distribution
for the boundary mix are

Az) = 2? €)
p(x) = pre, @™ + pre T (10)

where K; and K denote the check node degree for the regular
code ensemble in So with highest rate R; and lowest rate
R;, respectively. The coefficients px, and pg, have then to
be chosen to yield the target rate R, which has to suffice
R; > R > R;. A descriptive analogy for the method is the
interpolation of rates in between the highest and lowest rate
with the nearly-regular mixture. The boundary mix does not
necessarily make use of all the members of S¢ as it only uses
the highest and lowest rate members.

Example IV.2 (Boundary Mix for R = 0.67 with J = 3).
For obtaining the rate R = 0.67 with J = 3, we first choose
the set Sc according to the constraint J = 3. We obtain a
highest rate check degree of Kso = 30 and lowest rate check
degree K4 = 4. Solving the rate constraint (8) and the degree
distribution constraint (10) for the coefficients, we obtain

Mz) = 22 (11)
p(x) = 0.353623 + 0.64642%°. (12)

This ensemble has an average variable node degree J = 3
and average check node degree K = 9.096.

The direct neighbor mix approach incorporates all members
of S¢ as it implies a pairwise “interpolation” between members
of the set. To get a direct neighbor mix, take two regular
ensembles &; and &; with consecutive rates from the set Sc,
ie. with R; > R > R; and R ¢ Sc. Mixing &; and &; yields
an ensemble &, with rate R € [R;, R;]. The resulting degree

distribution is given by (10). The union of all rate intervals
formed by the mixture of consecutive ensembles from S¢
covers the rate range employed by the highest and lowest rate
ensemble from Sc. Therefore, all code rates within S are
achievable with the neighboring mixture.

Example IV.3 (Direct neighbor mix for R = 0.67 with J = 4).
To obtain the rate R = 0.67 with given constraint, e.g. J =4,
first choose Sc according to J = 4. The (4,10) and (4,16)
regular LDPC codes from Sc cover the rate interval R €
[0.6,0.75]. The two regular LDPC code ensembles are mixed
according to (10). The coefficients are solved to obtain the
desired rate R = 0.67 which yields

Mz) = 2® (13)
p(x) = 0.53722° + 0.4628215. (14)

The average check degree of this ensemble is K = 12.1, while
J=J=4

Using the above mentioned two step construction, various
mixing ensembles can be defined. Other mixing options incor-
porating more than two check degrees are also possible but
restricting the degree distributions to be only slightly irregular
is beneficial in terms of implementation. Note, that as we allow
only ensembles with variable node degrees J > 3, a linear
distance growth is guaranteed for the nearly-regular LDPC
code ensembles [15].

V. RESULTS AND DISCUSSION

In the following we make use of the threshold saturation
effect of spatial coupling for the nearly-regular LDPC code
ensembles. We therefore use the irregular extension of density
evolution for coupled irregular LDPC code ensembles (), p).
The difference to the above mentioned regular spatially cou-
pled case is that at each time instant £ we now assume variable
nodes with irregular degree distributions. The randomized
spreading of edges over w time instants is similar to the regular
case. The ensemble definition is an extension to [4]. This
defines a (\, p, L, w) coupled irregular LDPC code ensemble.
The design rate is given in the following

Lemma V.1 (Design Rate). The design rate of a (A, p, L, w)
coupled irregular LDPC code ensemble with w < L is given
by

L—w—1+2Y70" (1—~(2=51)

R=1-(1- R(\ p)) =

(15)
with v(x) as the check degree distribution of the underlying
irregular ensemble from a node perspective.

Proof: The proof follows directly from [4, Lemma 3].
Starting from the definition of a coupled regular LDPC code
ensemble, the variable and check degrees J and K appear
to be random variables in the irregular LDPC code ensemble
case. The irregular ensemble is built by taking the expected
value over the possible regular edge connections of the regular
ensemble. [ ]

As the fraction in (15) tends to one when L — oo and w <
L, the rate of the irregular coupled ensemble converges to the
design rate of the underlying irregular ensemble. To assess the
threshold improvement for the coupled irregular LDPC code
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Fig. 4. BP thresholds ¢BF of boundary mix ensembles for w = 3 and
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ensembles, the BP thresholds for the binary erasure channel
have to be calculated via density evolution. Here we also give
the extension of the above mentioned regular DE equations to
the irregular case in the following

Definition V.2 (DE for coupled irregular LDPC code en-
sembles). Given a coupled irregular LDPC code ensemble
(A, p, L,w), assume belief propagation decoding over the

binary erasure channel with erasure probability €. Define xgl)
to be the erasure probability of variable nodes at position ¢
with ¢ € [0, L —1] after [ iterations. Then the density evolution

update equation is given as

w—1

1 1= o
2P = e w21—p<1—wzx§lﬂ”k> . (16)
§j=0 k=0

Using density evolution as given in Definition V.2, a BP
threshold €2 for an NR(\, p, L, w) ensemble over the BEC
can be computed.

While the possibilities of constructing mixed ensembles
based on the above mentioned two step approach are endless,
we focus on specific examples derived from the shortcomings
of unfavorable regular codes in the following. The set S¢ is
restricted to be chosen based on a variable node degree con-
straint from S with A = 0.01. We fix J € {3,4, 5}. Using these
sets S¢, we then apply the direct neighbor mix and boundary
mix ensembles to obtain nearly-regular LDPC code ensembles
in the rate range R € [0.1,0.9]. We further apply spatial
coupling to the nearly-regular mixing ensembles from Section
IV to get the benefit of threshold improvement. Therefore in
the following, N R(, p, L, w) ensembles are evaluated. Belief
propagation decoding is assumed with transmission over the
BEC and we calculate density evolution thresholds €. Table
I shows exemplary parameters and thresholds of neighboring
and boundary mix ensembles for specific rates for J = 3 as
well as the mixing sets used in evaluation.

Figure 4 shows the boundary mixing ensembles for J &
3,4,5. While all three ensemble sets are covering a highest
rate of R = 0.9 the lowest rate of each ensemble set differs.

Fig. 5. BP thresholds ¢B ¥ of direct neighbor mix ensembles for w = 3 and
L — o0

The ensemble set with J = 4 achieves a rate as low as
R = 0.2. The ensemble set with J = 5 on the other hand
restricts the interval of supported rates only down to R = 0.5.
The performance of the three sets has to be compared to the
Shannon limit €>". One can observe that for high as well as for
low rates, the performance for all ensemble sets is very close
to the Shannon limit.

Only in the intermediate rate regime R ~ 0.6 the perfor-
mance drifts away from the Shannon limit for the ensemble
sets with lower variable node degree J € {3, 4}. This behavior
can be circumvented by increasing the degree, as the ensemble
set with J = b5 shows. This can be explained with the
threshold saturation phenomenon. The BP threshold of the
coupled nearly-regular LDPC code ensemble is close to the
MAP threshold of the uncoupled ensemble. When the variable
degree is increased while maintaining the rate, the MAP
threshold converges to the Shannon limit. The ordering of
performance for the three different variable node degrees that
were considered, underlines this explanation. For comparison,
the MAP threshold for the nearly-regular boundary mix en-
semble with J = 3 and rate R = 0.6 is shown in the graph
as well (blue square). The spatially coupled nearly-regular
ensemble achieves the MAP threshold, but the MAP threshold
is simply far away from the Shannon limit. The boundary mix
construction shows some limitations in terms of performance
for the ensemble sets with lower variable node degree.

The performance for the direct neighbor mix for the nearly-
regular LDPC code ensembles is shown in Fig. 5. The three
considered ensemble sets cover the same rate intervals as their
boundary mix counterparts, due to the same sets S¢ in both
cases. One can observe that all three ensemble sets perform
very close to the Shannon limit over the complete rate interval
that is supported. Only minor deviations from the Shannon
limit can be seen in case of the lower variable node degrees.
The inset in Fig. 5 again shows the convergence behavior of
the threshold saturation for increasing variable node degrees
but here the differences between the considered variable node
degrees are negligible. A variable node degree of J = 3 is
already sufficient. Although the performance is very close to
the Shannon limit a drawback can be that several different



TABLE 1.
Neighboring mix with J = 3 Boundary mix with J = 3
and (K7 K]‘) = (307 4)

Rate PK, [ K; [ K [ PP [ Gap PK; [ PP [ Gap
0.80 | 0.0132 20 15 0.1878 | 0.0114 | 0.8471 | 0.1215 0.0777
0.70 | 0.0119 12 10 0.2858 | 0.0135 | 0.6913 | 0.1662 0.1344
0.60 | 0.5042 10 6 0.3780 | 0.0211 | 0.5392 | 0.2372 0.1622
0.50 0 10 6 0.4880 | 0.0119 | 0.3848 | 0.3614 0.1384
0.40 0 6 5 0.5909 | 0.0090 | 0.2319 | 0.5497 0.0495
0.30 | 0.3380 5 4 0.6927 | 0.0066 | 0.0769 | 0.6908 0.0091

(a) Exemplary values for nearly regular degree distributions with gap to capacity

(pr; =1—pK;)

check degrees were mixed to cover the whole rate range. A
trade off between higher degrees for the boundary mix or
different check degree mixes depending on the rate interval
has to be evaluated regarding implementation.

The complexity as mentioned above is influenced from
the variable degree as well as the window size of the BP
decoder, which scales with w. The boundary mix shows good
performance only for the cases where additional complexity
(J = 5) has to be spent. The direct neighbor mix shows a
negligible gap to the Shannon limit already for variable node
degree J = 3 and its complexity lies on the lower bound.
This might be the best choice when an implementation can
afford many different mixtures of check degrees but keeping
the operations per variable node as low as possible. Note that
all the coupled nearly-regular LDPC code ensembles shown
in Fig. 4 and Fig. 5 have w = 3 which is sufficient for good
performance close to capacity while keeping the complexity
of the windowed BP decoder low.

VI. CONCLUSION

In this paper we recapitulated the performance of spatially
coupled regular LDPC code ensembles. The rate-flexibility
of regular LDPC codes was investigated, which unveiled that
while regular LDPC codes at certain favorable rates have very
low complexity and good performance, other rates turn out
to perform very poorly and having high decoding complexity.
To overcome this issue we introduced a new class of nearly-
regular LDPC code ensembles that are built upon the mixture
of two favorable regular codes of same variable node degree.
These codes exhibit performance on the binary erasure channel
close to the Shannon limit for all rates in the considered rate
interval, while having a decoder complexity as low as for the
best regular codes. The exclusion of variable nodes of degree
two in the construction ensures that the minimum distance
of the proposed ensembles increases linearly with the block
length.
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