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Abstract. Personalized sequential recommendation refers to making recommendation based on users’ his-

torical consumption behaviors. Most works based on RNN only model long-term patterns, which fail to cap-

ture skip behaviors. Contrarily, the CNN-based model whose target is to handle this problem can only lever-

age part of sequential behaviors and ignores global patterns, which limits its performance. In this paper, we 

propose a Recurrent Convolutional Recommendation Model (RCRM) to simultaneously catch global and lo-

cal patterns. Specifically, we employ a recurrent layer to capture global patterns and a convolutional layer to 

extract local patterns. An attention mechanism is then introduced to generate the final attentive local pattern, 

which can further concatenate with global patterns to predict next item. We conduct extensive experiments 

on two benchmark datasets and the results demonstrate that RCRM outperforms state-of-the-art baselines by 

a large margin over a variety of common evaluation metrics.  

Keywords: Sequential recommendation; recurrent neural networks; convolutional neural networks; atten-

tion mechanism 

1. Introduction 
In normal recommender systems, the consecutive events of one user are assumed to be independent and 

the dynamic preferences of the user are neglected. Actually, in many situations of real world, users' prefer-

ences are influenced by their previous behaviors. For instance, one may want to see The Avengers II and III 

after having watched The Avengers I. And users may continue to buy the same commercial goods for their 

satisfying experiences. The sequential recommendation is proposed to employ these historical behaviors. 

For user sequential behaviors, there are always two kinds of patterns, global patterns and local patterns. 

While global patterns represent long-term dynamic preferences, the local patterns indicate important short-

term interests which may skip a few time steps. Suppose a shopping example that one user buys a bicycle 

and basket first, then he continues to buy some snacks and drinks. After that, he buys a pump. In this case, if 

the recommender only considers global patterns, it would recommend the snacks and drinks with a high 

probability, because global patterns show that user’s interests have already transferred to snacks and drinks. 

However, if the recommender takes local patterns into consideration, the pump can also be a competitive 

candidate to be recommended, since the recommender can find important previous short patterns. 

Although global patterns and local patterns are both important to sequential recommendation, existing 

methods always consider only one of them. Recurrent neural network (RNN), as a specialized method to 

model sequence data, has become a popular choice in sequential recommendation. In [8], RNN is first intro-

duced to session-based recommendation. Then [1,9,10] make improvements based on that. And [4] extends 

RNN for user-based recommendation. Even if RNN has inherent power of modeling sequences, it usually 

assumes temporal dependency changes monotonously along with time steps, which results in its incapability 

of seizing short-term patterns. From a long-term perspective, this property makes RNN fit global patterns 

properly, inasmuch as the recent items are actually more important than those items have been consumed 
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long time ago. Yet when modeling local patterns, the impact of previous patterns may skip a few steps and 

still maintain strength. Due to this shortcoming of RNN, [16] proposes a convolutional sequence embedding 

recommendation model to capture the foregoing skip patterns. However, the model only takes several latest 

items in a fixed size window which ignores the global sequential patterns. 

To address the limitations of previous work, we propose a Recurrent Convolutional Recommendation 

model to simultaneously model global and local patterns. First, relying on the intrinsic power of RNN to pro-

cess sequences, recurrent layers are applied to capture global sequential patterns. Second, through convolu-

tional layers equipped with gated linear units (GLU), we can model local patterns of continuous items within 

a fixed length window. These local patterns in different positions are automatically selected by a followed 

attention mechanism. Then the combined global sequential patterns and attentive local patterns are used to 

compute recommendation scores for each candidate item. We theoretically and empirically show that our 

model is capable to make up the shortage of RNN and CNN, and also make full use of their advantages. The 

results of the experiments on two real-world datasets indicate significant improvements compared with state-

of-the-art methods. 

2. Related Work 
In this section, we first review some traditional methods in sequential recommendation, then we discuss 

deep learning based methods which are closely related to ours. 

2.1 Traditional methods 
One of the early solutions to sequential recommendation problem is Markov Chain. Based on the Mar-

kov assumption, a number of MC based models are proposed. [20] describes how to extract sequential pat-

terns and builds a recommender based on Markov chain. In [15], Markov decision processes are adopted to 

model user behavior sequences and the maximum likelihood estimates are enhanced with some heuristic 

methods. Combining both advantages of MC and matrix factorization, factorized personalized MC (FPMC) 

model is proposed to predict next basket items [7]. Then FPMC is extended to embed the localized regions, 

which not only exploits the personalized Markov chain, but also considers users' movement constraint [14]. 

[12] studies different sequential patterns for recommendation and finds that contiguous sequential patterns 

are more suitable for sequential prediction task than general sequential patterns. However, MC-based models 

might face the problem of independence assumption among past components. Additionally, with applying 

MC to sequential recommendation, the state space quickly becomes unmanageable when models include all 

possible sequences. 

2.2 Deep learning based methods 
Deep learning is an effective representation learning technique, which has been applied quite successful-

ly in a number of areas. As one of these methods designed for learning temporal aspects, RNN is widely used 

in sequence modeling tasks. For sequential recommendation, RNN is also a popular choice. [8] first applies 

RNN in session-based recommendation and proposes GRU4Rec model, which achieves significant im-

provements over conventional methods. Based on GRU4Rec, [1] explores the value of incorporating dwell 

time. The general idea of [1] is that the longer user examines an item, the more interested s/he is in that item. 

[9] introduces several parallel RNN architectures to model clicks and the features of the clicked items, such 

as images and texts. In [4], a delicately designed GRU with user integration replaces standard GRU to make 

more personalized recommendations. Although the above RNN based models have achieved encouraging 

results, they still suffer from the problem that RNN models sequence that one element usually has more sig-

nificant effect than the previous one for prediction.  

Besides RNN, Convolutional Neural Network (CNN) is another common method to model sequences, 

especially in natural language processing. Yet in recommender system, CNN is not used broadly. It is basi-

cally applied to process images and texts for recommendation. In [19], for instance, convolutional layers are 

introduced to extract users’ features from their reviews. And [18] leverages CNN to learn movie content 

from the poster. In sequential recommendation, [16] proposes a pioneering CNN model called Caser to make 

personalized recommendation. Its idea is to embed sequence of recent items into an “image” along the time 

79



and learn sequential patterns as local features with convolutional filters. However, modeling sequences with 

fixed size, Caser does not consider long-term sequential preference, which limits the performance. 

3. Proposed Methodology 
In this section, we first introduce the general architecture of RCRM model. Then we describe each com-

ponent of the model in detail respectively.  

3.1 Overview 
In this paper, we propose a novel CNN and RNN combined model to address personalized sequential 

recommendation problem, named Recurrent Convolutional Recommendation Model (RCRM). The basic 

idea of RCRM is to model both global and local patterns, and then make personalized recommendation based 

on that. As shown in Figure 1, the model consists of three main components, dynamic generator (including 

global learner and local learner), static generator, and recommendation generator.  

 

Fig. 1: The general architecture of RCRM. 

Dynamic Generator takes item sequence    [  
    

      
 ]  as input, where   

          and out-

puts user’s dynamic interests with global learner and local learner. The role of global learner is to learn long-

term sequential patterns with RNN. Although RNN can model global patterns, it hardly makes full use of 

most important local sequential patterns, for the reason that RNN assumes dependency changes monotonous-

ly along time. The local learner is built to make up for this. With one-dimensional convolution, local learner 

captures local patterns within a fix-sized local window. Taking global sequential behavior into consideration, 

local learner computes attention for each step. The global information and attentive local information are 

then used to produce dynamic preference. Static generator converts the input user u into high dimensional 

user embedding to model static preference. Finally, dynamic preference and static preference are fed to the 

recommendation generator to generate a ranking list over all items,   [         | |]
 

, that can be the next 

item user going to consume.  

The main motivation of our work is that RNN and CNN are two models which can complement each 

other. Compared to recurrent networks, convolutional networks don’t have dependency changing monoto-

nously problem and are specialized to extract local patterns that are highly correlated. But convolutions cre-

ate representations for fixed size sequences. To increase effective sequence size, the network is going to get 

deeper, which may bring new problems [6]. Therefore, RNN is adopted to learn global patterns for the rea-

son of its capacity to model long-term sequences.  

3.2 Global Learner 
The global learner, shown in the Figure 2, is a RNN with Gated Recurrent Unit (GRU) [2]. GRU is a 

more elaborate RNN unit aiming to deal with vanishing gradient problem. Each GRU has two gates, an up-

date gate and a reset gate. The update gate determines how much of the previous memory to keep,  
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                 .                                                             (1) 

The reset gate determines how to combine the new input with the previous memory,  

                 .                                                             (2) 

 

Fig. 2: The global learner detached from the complete model. 

Then the candidate activation   ̂ is computed in a similar manner,  

  ̂                       .                                                   (3) 

Finally, the activation of the GRU is a linear interpolation between the previous activation and the candi-

date activation,  

                  ̂.                                                       (4) 

Because the final hidden state    captures information in all the previous time steps, we take       as 

the expected global patterns      : 

     .                                                                 (5) 

3.3 Local Learner 
Local learner leverages the recent success of convolution filters of CNN on sequence learning [5,11]. 

With a shallow convolutional network, the learner could capture local sequential patterns. The inputs of local 

learner are a sequence of item embedding         which are the same as global learner, while the outputs 

are attentive local patterns      . 

Fig. 3: The local learner detached from the complete model. 

Figure 3 shows the detailed structure of local learner. The one-dimensional convolution has 2d filters 

      , where        and          . To capture features for total n steps, we ensure the length of 

outputs after convolution is the same as inputs by padding. Each    slides from beginning to the end of the 

sequence. The result of the interaction for the     convolution value is given by, 

    [  
      

        
 ]       

 
,                                               (6) 

where the symbol   denotes the inner product operator, i denotes the     time step and j denote     the filter. 

The result       is the inner product between filter    and items within w-sized local window, it contains 
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sequential patterns among these items. As there are altogether 2d filters, the output of the convolution for one 

time step is       . However, for each time step, not all patterns are equally important for the current pre-

diction. We therefore take GLU [3] as non-linearity and attach weight to the patterns. The convolutional out-

put    [
  

  
] is the input of GLU: 

           .                                                                               (7) 

where the symbol   is point-wise multiplication,   represents sigmoid function,          and       
is 

half the size of   . The gate       dynamically controls the relevant parts of    that are exploited to produce 

the final local sequential patterns. For there are t time steps, the local patterns can be represented as   
[        ]      .  

As discussed before, local learner is designed to capture relevant local patterns. One common technique 

to extract important elements in CNNs is max pooling. However, the relevant elements are also influenced 

by user’s global intention. Thus we involve a dot-product attention [17] which allows the model to automati-

cally learn attention for every time step with regard to global patterns,  

   
           

∑            
 
   

                                                              (8) 

where    is the weight of patterns at time step i. Then different elements of local patterns are combined line-

arly as follows:  

   ∑     
 
                                                                (9) 

where       represents the final attentive local patterns.  

This local learner enjoys the advantages of adaptively focusing on significant parts of local patterns by 

two mechanisms: First, the learner only selects important patterns within local window by GLU. Second, 

dot-product attention mechanism computes the weights for different time steps.  

3.4 Recommendation 

Fig. 4: The static generator and recommendation generator detached from the complete model. 

The global learner and local learner play different roles in our model. The former learns global patterns 

of the whole sequence, while the latter learns attentive local patterns, both of which are useful for predicting 

next item. Naturally we combine the global patterns and local patterns and feed them into a fully-connected 

layer to get an extended dynamic preference representation     , 

      *
  

  +     ,                                                           (10) 

where          
is the weight matrix that projects the concatenation to a d-dimensional vector,       

denotes the corresponding bias term and      represents the activation function. 

As shown in Figure 4, to model user’s static preference, we look up the user embedding    in static gen-

erator. The two d-dimensional vectors   and    
are also concatenated together and enter into a fully-

connected layer:  

    *
 

  +    ,                                                               (11) 
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where     | |   
and    | | are the weight matrix and bias term respectively. Each element of the results 

  [         | |]
 

  | | represents the likelihood that corresponding item will occur next. 

3.5 Network Training 
In the training process, the output of the final layer is entered to a sigmoid function: 

    
 |  

    
      

    (   
 

 )                                                      (12) 

where   
  is the collection of candidate items for the user u at the time step n. 

The collection   
  is the union of two collections, the positive collection   

 , and negative collection   
 . 

As our goal is to predict the next item a target user u is going to consume, the positive collection   
  always 

contains the next item     
 . Following the previous work [16], we randomly sample several negative items 

for each positive item to form collection   
 . 

For the whole item sequence a user u has consumed in the training set    [  
    

        
    

 ], we 

generate sequences and corresponding labels {([  
 ],  

 ), ([  
 ,  

 ],  
 ), …, ([  

 ,…,     
 ],   

 )} for training. 

Let    be the collection of time steps we generation for the user u. Then the likelihood of all examples is, 

   |   ∏ ∏ ∏     
  ∏ (   (  

 ))    
     

                                                 (13) 

Taking the negative logarithm of likelihood, the objective function, which is called binary cross entropy 

loss, is as follows: 

  ∑ ∑ ∑     (    
  )  ∑     (   (  

 ))    
     

                                            (14) 

The model parameters    {                                        } are learned by minimizing the ob-

jective function in equation (14) and the hyper-parameters are chosen via grid search. We take Adaptive 

Moment Estimation (Adam) as our optimization algorithms. To avoid overfitting, L2 Norm and dropout are 

adopted as regularization methods. 

4. Experiments 

4.1 Datasets and Experimental Setup 
We evaluate our approach as well as all the baselines on two real-world datasets: MovieLens 1M

1 
and 

LastFM
2
. For MovieLens 1M, we remove all rating scores to mimic implicit data. For LastFM, due to com-

putational reasons, we perform our evaluation on a 10% subsample with a maximum length of 3000. To pro-

vide sequential recommendations, those items and users with less than 5 feedbacks are filtered out. The sta-

tistics of the final datasets are shown in Table 1.  

Table 1: Datasets statistics. 

Dataset #records #users #items avg.length 

MovieLens 1M 998786 6064 3305 165.36 

LastFM 896396 961 44060 932.77 

Finally, we take first 70% of each user consumption sequence to form training set, the next 10% to form 

validation set, and the last 20% to form the test set. The hyper-parameters are tuned on the validation set 

while the final results are evaluated on the distinct test set after training is finished completely.  

4.2 Baselines and evaluation metrics 
We compare our proposed RCRM with four traditional methods (i.e., POP, Item-KNN, BPR, and FPMC) 

and a deep learning based method (i.e., Caser). POP always recommends the most popular items in training 

set, which is a strong baseline in certain domains. BPR [13] is a common method for non-sequential item 

recommendation on implicit feedback. FPMC [14] and Item-KNN are state-of-the-art methods for sequential 

recommendation. To show the advantages of our approach with consideration of both global and local se-

                                                                 

1 http://grouplens.org/datasets/movielens/1m/  

2 https://www.last.fm/  
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quential patterns, we also compare it with Caser proposed in [16], which regards each embedded item se-

quence as an “image” and captures local sequential patterns on this “image” via CNN.  

The goal of our approach is to predict the item that user would consume at a particular time step. There-

fore, we recommend a few items at each time, among which the target item should be. To evaluate our mod-

el’s performance, we adopt four widely used metrics, Recall, Precision, F1-score and MRR.  

4.3 Comparison against Baselines 
Table 2 presents the results of all methods over two datasets, and the best performer on each column is 

highlighted in bold face. The last row is the improvement of RCRM relative to the best baseline, defined by 
             

        
. 

Table 2: Performance comparison of RCRM with baselines over two datasets. 

Dataset MovieLens 1M LastFM 

Measures@10 Precision Recall F1-score MRR Precision Recall F1-score MRR 

POP 0.0035 0.0349 0.0063 0.0118 0.0007 0.0067 0.0012 0.0029 

BPR 0.0014 0.0145 0.0026 0.0046 0.0016 0.0159 0.0029 0.0057 

Item-KNN 0.0143 0.1430 0.0260 0.0578 0.0157 0.1567 0.0285 0.0596 

FMPC 0.0133 0.1325 0.0241 0.0451 0.0057 0.0572 0.0104 0.0269 

Caser 0.0204 0.2036 0.0370 0.0740 0.01442 0.1442 0.0262 0.0727 

RCRM 0.0225 0.2255 0.0410 0.0832 0.0167 0.1670 0.0304 0.0972 
Improv. 10.3% 10.8% 10.8% 12.4% 6.3% 6.6% 6.7% 33.7% 

As shown in Table 2, the sequential recommendation methods (i.e., Item-KNN, FMPC, Caser and 

RCRM) always outperform normal recommendation methods (i.e., POP and BPR), which indicates the im-

portance of considering sequential information. Among all the methods, the proposed RCRM model per-

forms best w.r.t. all metrics. This confirms that it is vital to model both global and local sequential patterns 

and RCRM has the capacity to exploit these two kinds of information.  

On MovieLens 1M dataset, RCRM achieves a large improvement relative to the best baseline (i.e., Ca-

ser). One obvious reason is that RCRM takes users’ global dynamic preferences into consideration, which 

are important to long-term behavior of watching movies. And on LastFM dataset, except for MRR metric, 

the relative performance gain is lower than that on the MovieLens 1M. Given the nature of the datasets, this 

result is reasonable. When listening to music, users prefer to repeat the same song over and over again. In 

addition, they always consume a playlist or a whole album at a time. These behaviors lead to the result that 

recent sequential patterns have more effects than previous sequential patterns and the methods which only 

consider latest sequential information (e.g. Item-KNN and Caser) may have better performances on LastFM 

than on MovieLens 1M.  

Fig. 5: Performance comparison between RCRM and strong baselines over two datasets with different recommendation 

list length K. 

Meanwhile, Figure 5 demonstrates the performance comparison between RCRM and three strong base-

lines (i.e., Item-KNN, FPMC and Caser) with different recommendation list length K. On both two datasets, 

RCRM outperforms other methods stably, which proves that RCRM can offer high-quality recommendations.  
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Finally, concerning the baselines, BPR does not work well on MovieLens 1M, even worse than POP. For one 

thing, normal methods are no longer suitable for sequential recommendation. For another, people are more 

likely to watch popular movies. Although Caser outperforms Item-KNN with all metrics on MovieLens 1M, 

it performs worse than Item-KNN on LastFM dataset w.r.t Precision@10, Recall@10 and F1@10. The main 

reason is the same as we explain before, that there are a number of repeated songs in users’ consumption se-

quences owing to single cycle. In such situations, Item-KNN has more advantages to predict the next song.  

4.4 Analysis of RCRM local learner 
In this part, we evaluate the contribution of local learner.             refers to the RCRM that only uses 

global patterns by removing local learner.            represents that the RCRM incorporates both local 

patterns and global patterns. 

Table 3. Comparison among different versions of RCRM 

Dataset MovieLens 1M LastFM 

Measures@20 F1-score MRR F1-score MRR 

           0.0291 0.0810 0.0183 0.0937 

           0.0326 0.0920 0.0191 0.0995 

As show in Table 3,            do not perform well on two datasets. This indicates that merely consid-

ering long-term patterns may not be able to train a satisfying recommender. Besides, comparing the results 

on two datasets, local learner brings improvement with different degree. Specifically,            performs 

better than            about 12.03% and 13.58% in terms of F1-score@20 and MRR@20 on MovieLens 

while 4.4% and 6.2% on LastFM. This verifies our assumptions again that on LastFM, recent information is 

more significant, where RNN can capture short-term patterns better compared with RNN in other cases. 

Therefore, it is understandable that local learner does not make contribution as much as on MovieLens.  

4.5 Visualization of the attention weights 
To illustrate the role of attention, we present some examples in Figure 6, which are sampled randomly 

from MovieLens. Each row corresponds to the 10 latest items a user has consumed, and the depth of the col-

or shows the attention scores given by equation (8).  

We have following observations from the figure: (1) The importance of historical items is not always in-

creasing along the time, e.g., in example 3, the weight of item 5 is larger than the following items. Thus in 

one prediction, valuable information can appear any position in the sequence, which is one of the main moti-

vation of RCRM. Recall that RNN assumes items importance grows over time monotonously, this also ex-

plains why hybrid model can outperform global model based only on RNN. (2) In some cases, one item 

plays a major role while in other cases, several items determine the next together. The effective items may be 

several steps apart or appear continuously. This further confirms the necessity of attention mechanism which 

highlights key information regardless of various forms of local patterns. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Visualization of attentions for the last 10 items each user has interacted with. 
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5. Conclusion and Future Work 
In this paper, aiming to sequential recommendation, we propose a novel model combining the recurrent 

layers and convolutional layers to capture both global patterns and local patterns. To further determine the 

importance of each item, the model integrates an attention mechanism. Based on global patterns and 

weighted local patterns, we have applied RCRM to predict next item the user would like to pick. The exper-

iments have been conducted on two real-world datasets, and the results indicate that RCRM outperforms 

state-of-the-art methods in terms of four different metrics. And the analysis of local learner and attention 

mechanism verifies the effectiveness of our model. 

At present, global sequential patterns and local sequential patterns are combined by simple concatenating. 

However, as we can see from the results, global patterns and local patterns are not equally important on dif-

ferent datasets. For the future work, we can adopt a more sophisticated structure to adaptively shift focus 

between these two patterns. Furthermore, other item features, such as film posters, ratings and reviews, can 

be integrated to enhance the model. 
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