
Fixed-base Exponentiation
André Weimerskirch
escrypt Inc.

Related concepts and keywords
binary exponentiation, k-ary exponentiation, windows exponentiation, fixed-
exponent exponentiation, Diffie-Hellman key agreement

Definition
The exponentiation of a fixed base element g ∈ G, with G some group, by
an arbitrary positive integer exponent e.

Theory
There are many situations where an exponentiation of a fixed base element
g ∈ G, with G some group, by an arbitrary positive integer exponent e
is performed. Fixed-base exponentiation aims to decrease the number of
multiplications compared to general exponentiation algorithms such as the
binary exponentiation algorithm. With a fixed base, precomputation can be
done once and then used for many exponentiations. Thus the time for the
precomputation phase is virtually irrelevant. Using precomputations with a
fixed base was first introduced by Brickell, Gordon, McCurley, and Wilson
(and thus it is also referred to as BGMW method) [1]. In the basic version,
values g0 = g, g1 = g2, g2 = g2

2
, . . . , gt = g2

t
are precomputed, and then

the binary exponentiation algorithm is used without performing any squar-
ings. Having an exponent e of bit-length n + 1, such a strategy requires on
average n/2 multiplications whereas the standard binary exponentiation al-
gorithm requires 3/2 n multiplications. However, there is quite some storage
required for all precomputed values, namely storage for t + 1 values. The
problem of finding an efficient algorithm for fixed-base exponentiation can
be rephrased as finding a short vector-addition chain for given base elements
g0, g1, . . . , gt (cf. fixed-exponent exponentiation). Note that there is always
a trade-off between the execution time of an exponentiation and the number
t of precomputed group elements.

In order to reduce the computational complexity, one might use a pre-
computed version of the k-ary exponentiation by making the precomputation
phase only once. However, there is time saved by multiplying together pow-
ers with identical coefficients, and then raising the intermediate products to

1

powers step by step. The main idea of the fixed-base windowing method is
that ge =

∏t
i=0 g

ei
i =

∏h−1
j=1 (

∏
ei=j gi)

j where 0 ≤ ei < h [1]. Assume that ge

is to be computed where g is fixed. Furthermore, there is a set of integers
{b0, b1, . . . , bt} such that any appropriate positive exponent e can be written
as e =

∑t
i=0 eibi, where 0 ≤ ei < h for some fixed positive integer h. For in-

stance, when choosing bi = 2i this is equivalent to the basic BGMW method
described above. Algorithm 1 takes as input the set of precomputed values
gi = gbi for 0 ≤ i ≤ t, as well as h and e.

Algorithm 1 Fixed-base windowing method
INPUT: a set of precomputed values {gb0 , gb1 , . . . , gbt}, the exponent e = ∑t

i=0 eibi,
and the positive integer h
OUTPUT: ge

1. A← 1, B ← 1
2. For j from (h− 1) down to 1 do

2.1 For each i for which ei = j do B ← B · gbi
2.2 A← A ·B

3. Return A

This algorithm requires at most t + h − 2 multiplications, and there is
storage required for t + 1 precomputed group elements. The most common
version of this method is the case where the exponent e is represented in radix
b, where b is a power of 2, i.e., b = 2w. The parameter w is also called the
window size. The exponent is written as e =

∑t
i=0 ei(2

w)i or (et . . . e1e0)2w
where t + 1 = ⌈n/w⌉ and bi = (2w)i for 0 ≤ i ≤ t, and h = 2w. Then
on average there are (t + 1)(2w − 1)/2w + 2w − 3 multiplications required.
Consider the following example [5] for e = 862 and w = 2, i.e., b = 4.
Then bi = 4i, 0 ≤ i ≤ 4, such that the values g1, g4, g16, g64, and g256 are
precomputed. Furthermore it is t = 4 and h = 4. The following table
displays the values of A and B at the end of each iteration of Step 2:

A method to reduce the required memory storage for precomputation
even further was proposed by Lim and Lee [6] which is called fixed-base comb
method. Here, the binary representation of the exponent e is written in h
rows such that there is a matrix EA (exponent array) established. Then v
columns of the matrix are processed one at a time. Assume that the exponent
is written as e = (en . . . e1e0)2. Then select an integer h (the number of rows
of EA) with 1 ≤ h ≤ n + 1 and compute a = ⌈(n + 1)/h⌉ (the number of
columns of EA). Furthermore, select an integer v (the number of columns

2

Table 1: Example for the windowing method.

j - 3 2 1

B 1 g4g256 g260g g261g16g64

= g260 = g261 = g341

A 1 g260 g260g261 g521g341

= g521 = g862

of EA that are processed at once) with 1 ≤ v ≤ a, and compute b = ⌈a/v⌉
(the number of processing steps). Let X = (Rh−1||Rh−2|| . . . ||R0) be a bit-
string formed from e by padding e on the left with 0’s such that X has
bit-length ah and such that each Ri is a bit-string of length a. Form the
h × a array EA where row i of EA is the bit-string Ri. The fixed-base
comb method algorithm has two phases. First, there is a precomputation
phase that is done only once for a fixed base element g, and then there is the
exponentiation phase that is done for each exponentiation. Algorithm 2 [5]
describes the precomputation phase.

Algorithm 2 Fixed-base comb method - precomputation phase
INPUT: a group element g and parameters h, v, a, and b
OUTPUT: {G[j][i] : 1 ≤ i < 2h, 0 ≤ j < v}
1. For i from 0 to (h− 1) do
1.1 gi ← g2

ia

2. For i from 1 to (2h − 1) (where i = (ih−1 . . . i0)2), do

2.1 G[0][i]← ∏h−1
j=0 g

ij
j

2.2 For j from 1 to (v − 1) do
2.2.1 G[j][i]← (G[0][i])2

jb

3. Return G[j][i] for 1 ≤ i < 2h, 0 ≤ j < v

Now let Ij,k, 0 ≤ k < b, 0 ≤ j < v be the integer whose binary representa-
tion is column (jb+ k) of EA, where column 0 is on the right and the least
significant bit of a column is at the top. Algorithm 3 displays the fixed-base
comb method exponentiation phase.

Algorithm 3 Fixed-base comb method - exponentiation phase
INPUT: a group element g and an exponent e as well as the precomputed values
G[i][j]

3

OUTPUT: ge

1. A← 1
2. For k from (b− 1) down to 0 do

2.1 A← A · A
2.2 For j from (v − 1) down to 0 do

2.2.1 A← G[j][Ij,k] · A
3. Return A

The number of multiplications required in the computation phase is at
most a + b − 2 of which there are at least b − 1 squarings. Furthermore,
there is space required for v(2h − 1) precomputed group elements. Note
that the required computational complexity depends on h and v, i.e., on the
available memory capacity for storing precomputed elements. In practice,
values h = 4 or 8 and v = 1 or 2 offer a good trade-off between running time
and memory requirements. Again, assume e = 862 = (1101011110)2, i.e.,
t = 9. Choose h = 3 and thus a = 4, and choose v = 2 such that b = 2.
In the first phase Algorithm 2 is applied. Table 2 displays the precomputed
values. Here, all possible values that might occur in a column of the EA
matrix are precomputed. Note that the values of the second row are the
values of the first one to the power of a = 4 such that later on two columns
can be processed at a time. Recall that gi = g2

ia
.

Table 2: Example for fixed-base comb method precomputation.

i 1 2 3 4 5 6 7

G[0][i] g0 g1 g1g0 g2 g2g0 g2g1 g2g1g0
G[1][i] g40 g41 g41g

4
0 g42 g42g

4
0 g42g

4
1 g42g

4
1g

4
0

Now form the bit-string X = (001101011110) with two padded zeros.
Table 3 displays the exponent array EA. Note that the least significant bit
of e is displayed in the upper right corner of EA and the most significant bit
in the lower left corner.

Finally, Algorithm 3 is performed. The following table displays the steps
of each iteration. Note that only the powers of the three base values gi are
displayed.

The last row of the table corresponds to ge = gl00 g
l1
1 g

l2
2 = g14g16·5g256·3 =

g862. The fixed-base comb method is often used for implementations as it

4

Table 3: Example for exponent array EA.

a = 4︷ ︸︸ ︷
I1,1 I1,0 I0,1 I0,0

e3 = 1 e2 = 1 e1 = 1 e0 = 0
e7 = 0 e6 = 1 e5 = 0 e4 = 1

0 0 e9 = 1 e8 = 1︸ ︷︷ ︸
v = 2

h = 3

b = ⌈a/v⌉ = 2

Table 4: Example for fixed-base comb method exponentiation.

A = gl00 g
l1
1 g

l2
2

k j l0 l1 l2
1 - 0 0 0
1 1 4 0 0
1 0 5 0 1
0 - 10 0 2
0 1 14 4 2
0 0 14 5 3

promises the shortest running times at given memory constraints for the
precomputed values. A compact description of the algorithm can be found
in [4].

Further examples and explanations can be found in [3, 5]. An improve-
ment of the fixed-base windowing method, which is called fixed-base Eu-
clidean method, was proposed by de Rooij [2]. However, in most situations
the fixed-base comb method performs more efficient.

Applications
A popular application of fixed-base exponentation is in elliptic curve cryptog-
raphy, for instance for Diffie-Hellman key agreement and ECDSA signature
verification.

5

References

[1] E.F. Brickell, D.M. Gordon, K.S. McCurley, and D.B. Wilson. Fast expo-
nentiation with precomputations. In Proceedings of Eurocrypt ’92, LNCS
658, Springer-Verlag, 1992.

[2] P. de Rooij. Efficient exponentiation using precomputation and vector
addition chains. In Proceedings of Eurocrypt ’94, LNCS 950, Springer-
Verlag, 1994.

[3] D.M. Gordon. A Survey of Fast Exponentiation Methods. In Journal of
Algorithms, vol. 27, pp. 129–146, 1998.

[4] D. Hankerson, J. L. Hernandez and A. Menezes. Software Implementa-
tion of Elliptic Curve Cryptography Over Binary Fields. In Proceedings
of Cryptographic Hardware and Embedded Systems, CHES 2000, LNCS
1965, Springer-Verlag, 2000.

[5] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press, 1996.

[6] C. Lim and P. Lee. More flexible exponentiation with precomputation.
In Proceedings of Crypto ’94, LNCS 839, Springer-Verlag, 1994.

6

