Fixed-base Exponentiation
André Weimerskirch
escrypt Inc.

Related concepts and keywords
binary exponentiation, k-ary exponentiation, windows exponentiation, fixed-
exponent exponentiation, Diffie-Hellman key agreement

Definition
The exponentiation of a fixed base element g € G, with G some group, by
an arbitrary positive integer exponent e.

Theory
There are many situations where an exponentiation of a fixed base element
g € G, with G some group, by an arbitrary positive integer exponent e
is performed. Fixed-base exponentiation aims to decrease the number of
multiplications compared to general exponentiation algorithms such as the
binary exponentiation algorithm. With a fixed base, precomputation can be
done once and then used for many exponentiations. Thus the time for the
precomputation phase is virtually irrelevant. Using precomputations with a
fixed base was first introduced by Brickell, Gordon, McCurley, and Wilson
(and thus it is also referred to as BGMW rnethod) [1]. In the basic version,
values go = g, g1 = g%, g2 = g,g; = ¢g* are precomputed, and then
the binary exponentiation algorithm is used without performing any squar-
ings. Having an exponent e of bit-length n + 1, such a strategy requires on
average n/2 multiplications whereas the standard binary exponentiation al-
gorithm requires 3/2 n multiplications. However, there is quite some storage
required for all precomputed values, namely storage for ¢ + 1 values. The
problem of finding an efficient algorithm for fixed-base exponentiation can
be rephrased as finding a short vector-addition chain for given base elements
9o, g1, - - -, g (cf. fixed-exponent exponentiation). Note that there is always
a trade-off between the execution time of an exponentiation and the number
t of precomputed group elements.

In order to reduce the computational complexity, one might use a pre-
computed version of the k-ary exponentiation by making the precomputation
phase only once. However, there is time saved by multiplying together pow-
ers with identical coefficients, and then raising the intermediate products to

powers step by step. The main idea of the fized-base windowing method is
that g¢ = [T'_o ¢ = T1/={ (Il.,—; 9:)’ where 0 < e; < h [1]. Assume that g°

j=1
is to be computed where g is fixed. Furthermore, there is a set of integers
{bo, b1, ..., b} such that any appropriate positive exponent e can be written

as e = Zﬁ:o e;b;, where 0 < e; < h for some fixed positive integer h. For in-
stance, when choosing b; = 2¢ this is equivalent to the basic BGMW method
described above. Algorithm 1 takes as input the set of precomputed values
gi = g% for 0 <i <t, as well as h and e.

Algorithm 1 Fixed-base windowing method
INPUT: a set of precomputed values {g™, ", ..., g%}, the exponent e = 3'_ e;b;,
and the positive integer h
QUTPUT: ¢°
1.A+1, B+ 1
2. For j from (h — 1) down to 1 do
2.1 For each i for which e; =j do B < B - g%
22A«+ A-B
3. Return A

This algorithm requires at most ¢ + A — 2 multiplications, and there is
storage required for ¢t + 1 precomputed group elements. The most common
version of this method is the case where the exponent e is represented in radix
b, where b is a power of 2, i.e., b = 2. The parameter w is also called the
window size. The exponent is written as e = Y2f_€;(2%)" or (e;...eje0)qw
where t + 1 = [n/w] and b; = (2*)" for 0 < ¢ < t, and h = 2¥. Then
on average there are (¢t + 1)(2¥ — 1)/2* + 2 — 3 multiplications required.
Consider the following example [5] for e = 862 and w = 2, i.e.,, b = 4.
Then b; = 4°,0 < i < 4, such that the values g', ¢, ¢', ¢%*, and ¢*°° are
precomputed. Furthermore it is ¢ = 4 and h = 4. The following table
displays the values of A and B at the end of each iteration of Step 2:

A method to reduce the required memory storage for precomputation
even further was proposed by Lim and Lee [6] which is called fized-base comb
method. Here, the binary representation of the exponent e is written in h
rows such that there is a matrix £A (exponent array) established. Then v
columns of the matrix are processed one at a time. Assume that the exponent
is written as e = (e, ...e1€9)2. Then select an integer h (the number of rows
of EA) with 1 < h < n+ 1 and compute a = [(n + 1)/h] (the number of
columns of FA). Furthermore, select an integer v (the number of columns

Table 1: Example for the windowing method.

il-1 3 2 [1 |
B 1] 620 | ¢%0g | ¢ 4040
— 4260 | _ 4261 — g3l
A1 %0 | %0200 [5213
— g521 — 4862

of FA that are processed at once) with 1 < v < a, and compute b = [a/v]
(the number of processing steps). Let X = (Rp_1||Rn—2||...||Ro) be a bit-
string formed from e by padding e on the left with 0’s such that X has
bit-length ah and such that each R; is a bit-string of length a. Form the
h x a array EA where row ¢ of EFA is the bit-string R;. The fixed-base
comb method algorithm has two phases. First, there is a precomputation
phase that is done only once for a fixed base element ¢, and then there is the
exponentiation phase that is done for each exponentiation. Algorithm 2 [5]
describes the precomputation phase.

Algorithm 2 Fixed-base comb method - precomputation phase
INPUT: a group element g and parameters h,v,a, and b
OUTPUT: {G[j][i] : 1 <i<2M0<j<wv}
1. For ¢ from 0 to (h — 1) do

1.1 g; < ¢*°
2. For i from 1 to (2" — 1) (where i = (i;_1 ...170)2), do

2.1 Gl0]l] + 1) o7

2.2 For j from 1 to (v —1) do

2.2.1 G[j]li] + (G[O][i))*"
3. Return G[j][i] for 1 <i< 2" 0<j<w

Now let [;,,0 < k <b,0 < j <wv be the integer whose binary representa-
tion is column (jb+ k) of EA, where column 0 is on the right and the least
significant bit of a column is at the top. Algorithm 3 displays the fixed-base
comb method exponentiation phase.

Algorithm 3 Fixed-base comb method - exponentiation phase
INPUT: a group element g and an exponent e as well as the precomputed values

Glils]

QUTPUT: ¢°

1. A+ 1
2. For k from (b— 1) down to 0 do
21 A« A-A

2.2 For j from (v — 1) down to 0 do
221 A<+ G[jl[Lx] - A
3. Return A

The number of multiplications required in the computation phase is at
most a + b — 2 of which there are at least b — 1 squarings. Furthermore,
there is space required for v(2" — 1) precomputed group elements. Note
that the required computational complexity depends on h and v, i.e., on the
available memory capacity for storing precomputed elements. In practice,
values h =4 or 8 and v = 1 or 2 offer a good trade-off between running time
and memory requirements. Again, assume e = 862 = (1101011110),, i.e.,
t = 9. Choose h = 3 and thus a = 4, and choose v = 2 such that b = 2.
In the first phase Algorithm 2 is applied. Table 2 displays the precomputed
values. Here, all possible values that might occur in a column of the FA
matrix are precomputed. Note that the values of the second row are the
values of the first one to the power of a = 4 such that later on two columns
can be processed at a time. Recall that g; = ¢**.

Table 2: Example for fixed-base comb method precomputation.

1 2 3 4 5 6 7

i |90 91 9190 92 9290 9291 929190

G
GIE | g0 91 9i9 95 9395 9391 929196

~.

Now form the bit-string X = (001101011110) with two padded zeros.
Table 3 displays the exponent array EA. Note that the least significant bit
of e is displayed in the upper right corner of FA and the most significant bit
in the lower left corner.

Finally, Algorithm 3 is performed. The following table displays the steps
of each iteration. Note that only the powers of the three base values g; are
displayed.

The last row of the table corresponds to ¢¢ = gglt gl = ¢'4¢165¢2%63 =
¢%%2. The fixed-base comb method is often used for implementations as it

4

Table 3: Example for exponent array FA.

a =4

111 I Ip Io

)

6321 6221 €1=1 60:0 }h—?,

er=0 e=1 e5=0 es =1
0 0 eg =1 eg =1

v =2
b=Tla/v] =2

Table 4: Example for fixed-base comb method exponentiation.

A= 909195
Eli b [u]h
1{-Jofolo
1{1] 4|00
10 5]0]|1
0|-1|l10|0]2
0|1)14]4]2
0/0|14]5]3

promises the shortest running times at given memory constraints for the
precomputed values. A compact description of the algorithm can be found
in [4].

Further examples and explanations can be found in [3, 5]. An improve-
ment of the fixed-base windowing method, which is called fized-base Eu-
clidean method, was proposed by de Rooij [2]. However, in most situations
the fixed-base comb method performs more efficient.

Applications
A popular application of fixed-base exponentation is in elliptic curve cryptog-
raphy, for instance for Diffie-Hellman key agreement and ECDSA signature
verification.

References

1]

[5]

(6]

E.F. Brickell, D.M. Gordon, K.S. McCurley, and D.B. Wilson. Fast expo-
nentiation with precomputations. In Proceedings of Eurocrypt 92, LNCS
658, Springer-Verlag, 1992.

P. de Rooij. Efficient exponentiation using precomputation and vector
addition chains. In Proceedings of Furocrypt '94, LNCS 950, Springer-
Verlag, 1994.

D.M. Gordon. A Survey of Fast Exponentiation Methods. In Journal of
Algorithms, vol. 27, pp. 129-146, 1998.

D. Hankerson, J. L. Hernandez and A. Menezes. Software Implementa-
tion of Elliptic Curve Cryptography Over Binary Fields. In Proceedings
of Cryptographic Hardware and Embedded Systems, CHES 2000, LNCS
1965, Springer-Verlag, 2000.

A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Ap-
plied Cryptography. CRC Press, 1996.

C. Lim and P. Lee. More flexible exponentiation with precomputation.
In Proceedings of Crypto '94, LNCS 839, Springer-Verlag, 1994.

