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Abstract 

In March 2016, the Japan Meteorological Agency (JMA) began to operate C-band 

dual-polarization Doppler weather radars with solid-state power amplifiers (SSPAs) at 

Kansai International Airport and Tokyo International Airport. The new radars feature a 

dual-polarization function and SSPA pulse compression. 

Observational data improvement is a major objective associated with the WMO 

Integrated Global Observing System (WIGOS). The dual-polarization function is 

expected to help improve quantitative precipitation estimation (QPE) and quality control 

(QC), as well as to support the provision of new products that allow identification of 

precipitation as rain, snow or hail. JMA is currently evaluating the accuracy of the new 

radar observation based on comparison with surface observation data. 

SSPA usage and the adoption of pulse compression reduce the radar’s peak power 

from the 200 kW of conventional klystrons to just 10 kW. The set-up also supports 

narrow bandwidth and improved signal detection capability, thereby contributing to the 

mitigation of interference with 5 GHz-band radio LAN (RLAN). 

The significant advantages of dual-polarization Doppler weather radar with SSPA will 

be highlighted via analysis of observational data during the 2016 rainy season. 

 

1. Introduction 

  In Japan, weather radar data are widely used for a variety of purposes including 

weather monitoring/prediction, water resource management and aviation safety. Such 

information therefore plays a pivotal role in protecting people from severe storms.  

The Japan Meteorological Agency (JMA) deploys nine Doppler Radars for Airport 

Weather (DRAWs) to support aviation safety. The first DRAW was installed at Kansai 

International Airport in 1994, and has remained operational since then. 

In 2016, the two DRAWs at Kansai International Airport and Tokyo International 

Airport (Haneda) were replaced with new SP-DRAW (solid-state polarimetric DRAW) 

types featuring SSPAs and dual polarization. Another SP-DRAW is scheduled for 

installation at Narita International Airport in 2016. 



The adoption of solid-state transmitters in DRAWs is based on the serious threat from 

interference caused by telecommunication devices (e.g., RLAN) to weather radars 

worldwide (Elena et al. 2015). The shortage of 5-GHz frequency band (C-band) space 

allocated to weather radars and RLAN is also a problem in Japan. 

To solve this problem, Japan’s radio regulatory authority is taking measures to 

separate frequency bands allocated to weather radar and RLAN services. The resulting 

radio frequency reallocation plan for weather radars in Japan will be based on nine 

channels with increments of 5 MHz within narrow band-width areas, as opposed to the 

conventional allocation plan based on channels with increments of 10 MHz. Accordingly, 

there is a need to reduce the bandwidth, unwanted emissions and peak power of 

weather radars. 

During the period of transition from the conventional channel allocation plan to the 

new reallocation plan, radio frequency channels may need to be temporarily changed 

for some weather radars to prevent interference with other radars. However, changing 

the transmission frequency of conventional radars requires very expensive waveguide 

filters that allow high-power handling and very-narrow-band operation. In contrast, the 

operation radio frequency of SP-DRAW can be readily changed because no such filter 

is required. 

To reduce operational costs, SP-DRAW also allows savings in areas such as 

consumable parts (through factors such as elimination of the need to use magnetron or 

klystron) and requires less space and electric power. 

 

2. Characteristics of SP-DRAW 

 

2.1 Purposes of SP-DRAW 

 Figure 1 shows the Haneda Airport SP-DRAW, whose main roles are to detect 

low-level wind shear (LLWS, including microbursts (MB) and horizontal shear lines (SL)) 

at/around the airport and to alert pilots if threshold levels are exceeded (Fig. 2). Clutter 

signals can reduce the quality of radar echo and consequently affect the reliability of 

LLWS detection. 

The SP-DRAW system can be used to identify weather and non-weather echoes using 

dual-polarization parameters, while conventional Doppler weather radar data may be 

affected by unintentional removal of weather echo because a high QC threshold is 

adopted to reduce clutter contamination. The introduction of SP-DRAWs has enabled 

the collection of high-quality Doppler velocity data without clutter contamination even in 

weak echo regions, which improve accuracy for identification of areas of sudden wind 
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2.2 Specifications of SP-DRAW and related operating parameters 

 Table 1 shows the specifications and operating parameters of SP-DRAW compared 

with those of conventional DRAW. 

 

Table 1. Specifications/operating parameters of SP-DRAW and conventional 

DRAW 

   SP-DRAW   Conventional DRAW 

Frequency  5,360 MHz   5,280 MHz 

Transmitters  GaN Power FET   Klystron 

Peak transmitter power 5 kW for both H and V  200 kW 

Antenna diameter 7 m (parabolic)   7 m 

Beam width  < 0.7°    < 0.7° 

Antenna gain  > 47 dBi    > 47 dBi 

Signal min.  < -110 dBm   < -110 dBm 

Side lobe level  < -27 dB    < -27 dB 

Range side lobe level < -55 dB 

Range gate spacing 150 m    150 m 

Radome diameter 11 m    11 m 

Antenna rotation rate 4.2 rpm (EL = < 9.2°)  4 rpm 

7 rpm (EL > 9.2°) 

Samples (hits)  18 – 29    32 

Azimuth spacing 0.7°    0.7° 

Pulse repetition frequency 1,040/832 Hz (EL = < 9.2°) 1,120/840 Hz  

1,365/1,092 Hz (EL > 9.2°) 

Pulse width  1 μs (range < 12 km)  1 μs 

64 μs (range >= 12 km) 

Transmission mode Dual (simultaneous)  Single (horizontal) 

Observation parameters Z, V, W, ZDR, ρHV, ΦDP  Z, V, W 

 

Transmission radio frequency can be set to any value between 5,330 and 5,370 MHz. 

As high-power gallium nitride FETs are used for SSPAs, peak SP-DRAW transmitter 

power can reach 5 kW for each (H/V) polarized wave. The bandwidth of transmitted 

waves is quite narrow, and leakage to the adjacent channel is substantially suppressed. 

Pulse widths can be set freely from 1 to 200 μs. JMA operationally uses values of 1 

and 64 μs for short and long pulses, respectively. A pulse compression technique 
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operation. 

High-quality data and frequent observation are essential for the early detection of 

severe storms, which is one of JMA’s goals. 

In relation to effective radio frequency usage, solid-state transmitters are very useful 

because they support: 

- achievement of balance between peak power reduction and high data quality; 

- mitigation of unexpected emissions against adjacent channels; and 

- simple frequency changes. 

With this approach, electricity consumption is 20% less than with conventional radar. 

Observational data improvement is a major objective associated with the WMO 

Integrated Global Observing System (WIGOS). To support the achievement of this goal, 

JMA will share lessons learned from its adoption of new-generation weather radars with 

NMHSs. 
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