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Abstract- 3D content-based hashing has not been as widely used as compared to 2D content-based hashing in the case of 
multimedia content such as images and videos. In this study, we develop a robust 3D mesh–model hashing based on a heat 
kernel signature (HKS) that can describe a multi-scale shape curve and is robust against isometric modifications; we also 
discuss the robustness, uniqueness, security, and model space of the hash for 3D model hashing. 
 
Index Terms- Perceptual 3D Model Hashing, 3D Hash Function, Heat Kernel Signature, Authentication 
 
I. INTRODUCTION 
 
With the rapid growth of the 3D content market and 
services, content-based hashing for the authentication 
and copy detection of 3D content has become a 
necessity. 3D content can be represented by various 
graphic models of polygon mesh, NURBS, or CAD. 
The conventional image and video hashing methods 
cannot be applied to vector data based on 3D graphic 
models. 
3D content hashing has received less attention than 
have 3D watermarking [1] and 3D retrieval [2]. 
Among a few papers that have been presented to date, 
K. Tarmissia [3] presented the information-theoretic 
hashing of a 3D mesh using spectral graph theory and 
entropic spanning trees. Lee [4],[5] presented a robust 
3D mesh hashing based on a key-dependent 3D 
surface feature, namely, the block shape feature 
combining the curvedness and the shape index. These 
schemes exhibit robustness against some attacks, 
including the uniqueness of the model and key and the 
security. But it cannot be robust against mesh 
simplification and tessellation of topologic attacks. 
Furthermore, they used the vertex distance [6] for 3D 
hierarchical object structure and used heat kernel 
signature [7] for shape feature. 
In this paper, we discuss the properties related to the 
robustness, uniqueness, security, and model space of 
3D model hashing, and we then propose an 
HKS-based 3D model hashing dependent on key and 
parameter. The proposed hashing obtains a pair of 
HKS coefficients in scales of local time and global 
time; the coefficients are calculated by eigenvalues 
and eigenvectors of a mesh Laplace operator that is 
estimated discretely from the Laplace–Beltrami 
operator and that clusters HKS coefficients into 2D 
square cells with variable size. The binary hash is 
generated from the intermediate hash vector that is 
obtained by projecting feature values to random values. 
Feature values are defined by the weighted distance 
based on the n-order Butterworth function of a pair of 
HKS coefficients.We evaluated the robustness against 
various geometric attacks and topologic attacks using 
a 3D public editing tool, and we evaluated the 

uniqueness of models and keys and the model space by 
measuring the attack intensity in the available 
authentication range. These properties were evaluated 
by the normalized Hamming distance. Lastly, we 
evaluated the security by modeling the differential 
entropy of the intermediate hash according to the 
Swaminathan method [8]. Experimental results 
verified that, for all requirements, the proposed 
hashing has superior performance compared to 
conventional hashing. 
 
II. PROPOSED PERCEPTUAL 3D MESH 
MODEL HASHING 
 
This paper presents 3D model–based hashing using 
HKS distribution. The proposed hash generation, as 
shown in figure 1(a), consists of the shape feature 
extraction, the parameter setting, the intermediate hash 
generation, and the binarization for generating the 
final binary hash. Among these steps, the parameter 
setting and the intermediate hash generation are 
performed iteratively until the intermediate hash value 
is the target value that satisfies the conditions for 
robustness, uniqueness, and model space. The model 
authentication by hash, as shown in figure 1(b), 
performs the authentication based on the Hamming 
distance between an original hash and a hash 
generated in the transmitted 3D model using the 
transmitted parameter and the stored key. 
A. Cell HKS Extraction 
The heat kernel signature at a vertex ࢜ ∈ ܄ is 
࢜)ܵܭܪ , (ݐ = ݇௧(࢜ (࢜, = ∑ ݁ିఒೕ௧߶ଶ(࢜)

ୀଵ , which 
is obtained from eigenvalues ߣ  and eigenvectors ߶ 
of the Laplace–Beltrami operator. We rescale all 
vertices so that the surface area of the 3D model is 100, 
and we calculate eigenvalues and eigenvectors from a 
discrete Laplace operator ܮ  on a mesh surface (࢜)݂
that is presented by Belkin [9] according to the same 
method of J. Sun [10]. The discrete Laplace operator 
ܮ   is defined as (࢜)݂
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(a)                           (b) 

Fig. 1. The process of (a) 3D model hash generation and (b) 3D 
model authentication based hash. 
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ସ
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 and ܰெೡ is the number of ࢜ ௩is the valence mesh ofܯ
vertices in ܯ௩. The sphere surface area of the local 
valence meshes of ࢜ is 4ߨℎଶ . We calculate 
eigenvalues and eigenvectors in the case of ݊=300 and 
divide the time duration of the log-scale, 
(ݐ)݈݊] , ݐ) [(௫ݐ)݈݊ = ݁ଵ, ௫ݐ = ݁ଵଵ ), 
150 times into uniform intervals ∆ݐ = (௫ݐ)݈݊) −
࢜)ܵܭܪ 150, then we calculate/((ݐ)݈݊ ,  at each (ݐ
time ݐ = ݐ + (݅ − 1)݁∆௧  ( ݅ ∈ [1,150] ). The 
proposed hashing divides the time scale into a local 
scale ( (ݐ)݈݊ ≤ (ݐ)݈݊ ≤ ݐ)݈݊ + 75)݁∆௧ ) and a 
global scale (݈݊(ݐ + 75)݁∆௧ < (ݐ)݈݊ ≤  ((௫ݐ)݈݊)
and uses average HKS coefficients in local and global 
scales as an HKS vector ℎ݇ݏ(࢜) = ݔ) ,  ) at a vertexݕ
 .࢜
For feature extraction, we firstly calculate the square 
cell vector using local and global HKS coefficients. 
Thus, we define 2D X,Y axes as local and global HKS 
coefficients, respectively, and we select a square cell 
by extending the 1D bin center points of each axis to 
two dimensions. The size of each cell can be 
determined by the 1D bin center points of the X,Y axes 
that are allocated to this cell, and the length of the final 
hash is determined by the size of each cell. The center 
points of each cell are obtained from the minimum 1D 
bin size and simple k-means clustering. The minimum 
1D bin size based on an estimated L2 risk function is 
calculated from the mean ഥ݉  and biased variance ߪଶ of 
a histogram with bin-width ℎ . We calculate the 
minimum 1D bin size ݔ߂  for all local HKS 
coefficients X = ݅|ݔ} ∈ ܰ} and the minimum 1D bin 
size ݕ߂  for all global HKS coefficients Y = ݅|ݕ} ∈
ܰ} then we determine the number ܰ of 1D bins that 
are the same in the X, Y axes. 

ܰ = ܽmin(ቔ௫(௫)ି(௫)
∆௫

ቕ , ቔ௫(௬)ି(௬)
∆௬

ቕ) +
ܾ (4) 
 

Therefore, the number of square cells of the X,Y axes 
is ܰ × ܰ, which is the bit length of the final hash. 
Since the number of square cells is different for 3D 
models, the hash uniqueness will be improved. 
However, this variable cell number effects the 
distribution of the cell vector, the bit length of the hash, 
and the hash robustness. We limit the available range 
of the 1D bin number to within [10,19] by setting two 
variables ܽ, ܾ  to 1/10 and, 10, which makes the 
number of square cells and the hash bit length 
[100,361]. 
The two bin center points ࢛ ࢛,  of X,Y can be 
extended to a 2D square cell ۰ = ܤ} = ݔ∆ ×
,݅|ݕ∆ ݆ ∈ [1,ܰ]}. The set of X–Y pairs included in 
any cell can be defined as ۵ = ,݅|ܩ} ݆ ∈ [1,ܰ]} , 
where ܩ = {ℎ݇ݏ(࢜) = ݔ) (ݕ, ∈ ݇|ܤ ∈
ൣ1, ܰ൧}.It is known that the probability that any HKS 
coefficient is included in a cell ܩ  is ܰ/ ܰ. The first 
hash parameter- that is, the bin center points ܝ =
࢛)  ) of X,Y- is generated differently in each 3D࢛,
model and also in the same model because the 
parameter is sensitive to the initial points. Therefore, 
this parameter achieves the improvement of the 
uniqueness and security. 
B. Hash Generation 
The proposed hashing projects feature values of cells 
onto random key patterns and it calculates the 
intermediate hash so that the projected values will 
reach the target robustness, and it generates the final 
binary hash through the binarization of the 
intermediate hash. 
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Y
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Fig. 2. Center points ࢛ =  and the  of a cell (ࢅ࢛,ࢄ࢛)

weighting function based on the distance. 
 
Firstly, we calculate the cell value ܾ from the 
magnitude of the HKS coefficients ℎ݇ݏ(࢜) =
ݔ) ݓ )with a weightݕ, that is obtained from the 
n-order Butterworth function, according to the 
distance ݀ = ฮℎ݇ݏ(࢜)−࢛ฮ between the centre 
point ࢛ = ݑ) , (ݑ of a cell ܤ and the HKS 
coefficients ℎ݇ݏ(࢜).  
 

ܾ = ∑ ೕ
ଵା൫ௗೖ/ௗೕ൯


|௦(࢜ೖ)|
ห࢛ೕห

ேೇ
ୀଵ  (5) 
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where |ℎ݇ݏ(࢜)| = ඥݔଶ + ଶݕ  , ห࢛ห =
ඥݑଶ +  ଶݑ
 
݀ܿis the cut-off frequency distance in a cell, which is 
the minimum distance between a cell and the left and 
right cells. 
 

݀ܿ = min (ቛ
ೕ࢛శభೕି࢛

ଶ
ቛ ,ቛ

ೕ࢛ೕశభି࢛
ଶ

ቛ) (6) 
 
ܽ is the amplitude of the n-order Butterworth 
weighting for bringing the intermediate hash to the 
robustness target, and we use it as the hash parameter. 
From the n-order Butterworth weighting, as shown in 
figure 2, the HKS coefficients have different weights, 
whether they are in the cut-off frequency region or not.  
The feature value of each cell ݂  is 
 

݂ = ∑ ܾே
ୀଵ +∑ ܾே

ୀଵ .  (7) 
 
As mentioned above, the amplitude of a cell must be 
adjusted for the intermediate hash to reach the 
robustness target. We define the amplitude to be 
ܽ = ܽ

()ߙ , that is, a multiplication of ܽ
()  of 

normal distribution ܰ(1.0.1.0)  and an adjustable 
variable ߙ . After ߙ = 1, the feature value ݂  can 
be rewritten as  

݂ = ܽ
()(∑ ቌ∑ ଵ

ଵାቆ
ೖ
ೕ

ቇ


|௦(࢜ೖ)|
ห࢛ೕห

ேೇ
ୀଵ ቍே

ୀଵ +    (8) 

൮
1

1 + ൬ ௗೖ
ௗೕ

൰


|ℎ݇ݏ(࢜)|
ห࢛ห

ேೇ

ୀଵ

൲
ே

ୀଵ

) = ܽ
() መ݂  

 
The intermediate hash ۶ூ = {ℎ݅|݅, ݆ ∈ [1,ܰ]}  is 
calculated by projecting the feature vector ۴ =
{ ݂|݅, ݆ ∈ [1,ܰ]}  onto the random vector ܀ =
,݅|ݎ} ݆ ∈ [1,ܰ]}. The intermediate hash ۶ூ  will be 
the same as the target values ܂ for the cell amplitudes 
 which are the second hash parameter. The proposed ,ۯ
hashing permutes ۶ூ using a 2D permutation key ۾ to 
improve the security and model space and it generates 
the final binary hash ܐெ,Θ; by thresholding.  
 

ℎ = ൜1, ifℎூ, > ܶℎ
0, otherwise   , ∀݅, ݆ ∈

[1,ܰ] (9) 

 
Therefore, given a model ۾ and a key ۹ =  the ,(۾,܀)
final hash ܐெ,Θ;  is generated by the parameter 
Θ(۹,ۻ) =  that satisfies the hash requirements (ۯ,ܝ)
for robustness, uniqueness, security, and model space. 
 
III. EXPERIMENTAL RESULTS 
 
We converted 1,000 models provided by “Princeton 
Shape Benchmark” to VRML data for test models and 
we rescaled all of the test models to be in the same 

bounding box for the same experiment condition. We 
made a comparison of the performance of the 
robustness, uniqueness, model space, and security 
between the proposed hashing and 3D-SSD based 
hashing [4],[5].  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Normalized Hamming distances and authentication 
error probabilities of the proposed hashing and 3D-SSD 

hashing to (a) Bending, (b) Mesh downsampling, (c) Cropping. 
 
C. Robustness Evaluation 

For the robustness evaluation, we generated 100 
hashes in each model and extracted hashes ܐ′  in 
models that were attacked by geometric and topologic 
modifications in 3ds-max. We analyzed the 
authentication error probability ܲ  of the attacked 
models ۻ′  using the normalized Hamming distance 
ெ,௵;ܐ)ܦ  .(ெ′,௵;ܐ,
 

ܲ = 1− Pr [ܦ൫ܐெ,௵; ெ′,௵;൯ܐ, < 0.2] (10) 
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Figure 3 provides the normalized Hamming distance 
ெ,௵;ܐ)ܦ (ெ′,௵;ܐ,  and the authentication error 
probability ܲ in all of the attack tests. Hereafter, we 
refer to the normalized Hamming distance as ܦ 
shortly. The above experimental results verified that 
the proposed hashing has more robustness than does 
3D-SSD hashing.  

D. Uniqueness Evaluation 
To evaluate the model-different key uniqueness, we 

calculated normalised Hamming distances between 
hashes generated by different keys in 1,000 models 
and analysed the unique probability 
Pr [ܦ൫ܐெೖ,௵ೖ;ೖ ெ,௵;൯ܐ, > 0.3] , the undecided 
probability Pr [0.2 < ெೖ,௵ೖ;ೖܐ൫ܦ ெ,௵;൯ܐ, ≤ 0.3] , 
and the non-unique probability 
Pr [ܦ൫ܐெೖ,௵ೖ;ೖ ெ,௵;൯ܐ, ≤ 0.2]. Table 1 lists three 
probabilities of the model-different key uniqueness. 
From this table, we know that the unique probability of 
the proposed hashing is very high (0.998) and is 4.06% 
higher than that of 3D-SSD hashing; also, the sum of 
the undecided probability and the non-unique 
probability is very low (0.00125). 

E. Security Evaluation 
We modeled the differential entropy ܪ(ℎ) of the 

intermediate hash values based on random values, then 
we evaluated them for the proposed hashing and 
3D-SSD hashing. The intermediate hash value ℎ݅  of 
the proposed hashing is ℎ݅ = ∑ ܽݓݎே

ୀଵ , which 
is the sum of the feature value ܽݓ and the random 
value ݎ. The random value ݎ  exhibits a Gaussian 
distribution of ܰ(݉ (ଶߪ, . The differential entropy 
  is (ݔ) of (ℎ)ܪ
 

(ℎ)ܪ = ଵ
ଶ
݁ߨ2)݈݃ × (݉

ଶߪଶ +݉
ଶߪଶ)∑ ݓ

ଶே
ୀଵ ) .      

(11) 
 

The differential entropy values of each bin number 
of the proposed hashing and of 3D-SSD hashing are 
shown in Figure 4. We calculated the differential 
entropy ܪ(ℎ) of each cell or block of 1,000 models 
and presented the maximum, minimum and average 
 of the (ℎ)ܪ in Figure 4. This figure shows that (ℎ)ܪ
proposed hashing is 9.47 to 15.22 in 10 bin numbers 
and it increases by the bin number but ܪ(ℎ)  of 
3D-SSD hashing is 6.92 to 9.47. On the average, the 
differential entropy of the proposed hashing is 5.34 to 
14.42 higher than that of 3D-SSD hashing. 

 
Fig. 4. Differential entropy of the proposed hashing and 

3D-SSD hashing. 

CONCLUSIONS 
 
This paper presented HKS-based 3D model hashing 
dependent on a key and parameter for 3D model 
authentication. Similar to 2D image hashing, 3D 
model hashing must satisfy the requirements for 
robustness, uniqueness, and security, though some of 
the requirements exhibit a trade-off relationship. For 
satisfying the above four requirements, we design a 
key-parameter–dependent hash function instead of a 
key-dependent hash function. From the experimental 
results, we confirmed that the proposed hashing has 
higher robustness, wider model space, higher unique 
probability, and higher differential entropy than does 
3D-SSD hashing. 
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