
246 IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH

Volume : 3 | Issue : 5 | May 2014 • ISSN No 2277 - 8179 Research Paper

Engineering

Sarath C S4 M.Tech, Dept of Computer Science & Engineering, N.S.S College of Engineering,
Palakkad, Kerala, India.

Mrs Usha K Associate Professor, Dept of Computer Science & Engineering, N.S.S College of
Engineering, Palakkad, Kerala, India.

ABSTRACT Hadoop is a MapReduce programming model which provides a cost effective solution for many data-in-
tensive applications. Hadoop stores data distributively and exploits data locality by assigning tasks to where

data is stored. Many data-intensive applications, however, require two (or more) input data for each of their tasks. Such applications
pose significant challenges for Hadoop as the inputs to one task may reside on multiple nodes, and Hadoop is unable to discover
data locality in this scenario. This often leads to excessive data transfers and significant degradations in application performance.
So, Bi-Hadoop was introduced as an efficient extension of Hadoop to better support binary-input applications. Bi-Hadoop integrates
an easy-to-use user interface, a binary-input aware task scheduler, and a caching subsystem. Experiments show that Bi-Hadoop can
significantly improve the execution of binary-input applications by reducing the data transfer overhead, and outperforms existing
Hadoop by more than 3x. In this paper, we introduce a further enhancement of Bi-Hadoop by incorporating support for multiple input
applications, that is, applications in which the input may reside on more than two nodes.

Extending Hadoop to Improve Support for
Multiple-input Applications

KEYWORDS : hadoop; bi-hadoop; data
locality

Introduction
Large-scale data intensive computing has become indispen-
sable for many applications to gain insights from increasing
volumes of data. The MapReduce programming model, along
with its open-source implementation Hadoop, has provided a
cost effective solution for such data processing needs. Hadoop
is designed to support data intensive applications on clusters of
hundreds or thousands of compute nodes.

However, the locality-awareness of Hadoop is based on a rela-
tively strong assumption that a task is expected to work on a sin-
gle data split. In practice, a split typically consists of one data
block, or a part of it. After all, this is what allows Hadoop to la-
bel a compute node as local or remote for scheduling purposes.
This is in accordance with the MapReduce programming model,
which defines one map task over each logical data split and thus
requires users to describe the mapper function as a unary op-
erator, applicable to only one single logical data split [1].

The unary-input requirement works well for many applica-
tions such as document processing. However, many other ap-
plications require more flexible operators. For example, a task
in a pattern matching application would naturally take two
inputs: one record of the template data, and another record of
the stored data. For such applications, the unary input oriented
Hadoop system has multiple limitations. So, Bi-Hadoop was im-
plemented as an extension of the existing Hadoop system, by
making the following modifications:
•	 An easy-to-use interface for users to describe the associa-

tion between a task and its inputs.
•	 A task scheduling algorithm that is able to exploit data lo-

cality for binary-input applications.
•	 A caching mechanism to accelerate data reads.

Extensive experiments were conducted to verify the effective-
ness of Bi-Hadoop, and the results showed that Bi-Hadoop out-
performs Hadoop by upto 3.3x, for binary input applications.
The aim of this project is to further enhance this Bi-Hadoop to
support multiple input applications. The project also aims at a
performance evaluation of homogenous and heterogenous Bi-
Hadoop clusters.

Bi-Hadoop: An Extension of Hadoop
As said earlier, Bi-Hadoop is an extension of Hadoop to support
binary input applications [1]. Bi-Hadoop can significantly im-
prove the execution of binary input applications by reducing the
data transfer overhead.

Design Overview
Figure illustrates an overview of Bi-Hadoop, which contains the

following components:

(1) the input interface,
(2) the caching subsystem, and
(3) the binary-input locality-aware scheduler.

Fig 1: Bi-Hadoop Extension System Overview

Input interface: This component assigns IDs to splits. Bi-
Hadoop inherits the default Hadoop output format and adds a
hook so that an ID can be designated to each split. In Bi-Hadoop,
tasks are generated by calling a user-defined filter function that
specifies which two splits would form a valid task.

Scheduler: The scheduler first obtains the task representa-
tion by applying the filter function from the user interface, then
gathers information about the locations of the input data blocks
(which DataNode has which blocks), and subsequently calcu-
lates a locality-optimized execution schedule.

Caching subsystem: This component runs on each compute
node and is designed to cache the input splits accessed by exist-
ing tasks (with the expectation that they will also be needed by
subsequent tasks). The caching subsystem sits between MapRe-
duce system[2] and HDFS system[3], therefore it is user trans-
parent. It supplies a split to the requesting map task if the split
is in the cache, and will seamlessly resolve to the native HDFS
data read mechanism when the requested split is missing in the
cache.

System Design
User Interface
The Bi-Hadoop user interface is designed to assign IDs to splits
by letting the user name splits with strings. Users specify the
map tasks by customizing a filter class, which returns true if a

IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH 247

Volume : 3 | Issue : 5 | May 2014 • ISSN No 2277 - 8179Research Paper

REFERENCE
[1] Xiao Yu and Bo Hong, “Bi-Hadoop: Extending Hadoop To Improve Support for Binary-Input Applications”, 13th IEEE/ACM International
symposium on Cluster, Cloud, and Grid Computing, 2013 | [2] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”,

OSDI, 2004 | [3] Dhruba Borthakur, The Hadoop Distributed File System: Architecture and Design, 2007 | [4] Jeffrey Dean, Sanjay Ghemawat, “MapReduce: A Flexible Data Pro-
cessing Tool”, Communications of the ACM, Vol. 53, no. 1, Jan 2010 | [5] Zhenhua Guo, Geoffrey Fox, Mo Zhou, “Investigation of Data Locality in MapReduce”, School of Informatics
and Computing Indiana University Bloomington, February 2011 | [6] Weina Wang, Kai Zhu and Lei Ying, “Map Task Scheduling in MapReduce with Data Locality: Throughput
and Heavy-Traffic Optimality”, Jan 2013 | [7] Kyong-Ha Lee, Yoon-Joon Lee, “Parallel Data Processing with MapReduce: A Survey”, SIGMOD Record, Vol. 40, no. 4, Dec 2011 | [8]
T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2009 | [9] “MapReduce”, https://hadoop.apache.org/docs/mapred _tutorial.html, April 2013 | [10] “The Hadoop
Distributed File System”, http://developer. yahoo.com/hadoop/tutorial/module2.html | [11] “Hadoop Components”, http://www.guruzon.com/6 /hadoop-cluster/architecture/
hadoop-components |

pair of split IDs form a task, and alse otherwise.

The Locality-aware Sceduler
The scheduler weaves all the components together in Bi-Ha-
doop. Once a MapReduce job is submitted, the scheduler first
creates an internal presentation of the tasks. The scheduler will
then monitor the locality of the data splits (disk replicas and
copies in the cache subsystem), exploit data sharing pattern
among the tasks, and assign tasks to optimize data localities
for the tasks[5]. Scheduling in Bi-Hadoop is performed in three
phases:

Phase 1: Task Generation
Binary-input applications have two sets of input splits, A and
B, and a task will take a split from A and another one from B.
Note that A and B may overlap, either partially or completely. In
this phase, we run the user-supplied filter function (discussed
in the user interface) and generate an internal presentation of
the tasks in the form of an incidence matrix I. Figure illustrates
an example of the incidence matrix for matrix-vector multipli-
cation. The matrix is of size 2 by 4 blocks and the vector is 4
blocks. Each value 1 in the matrix indicates a task that multi-
plies a matrix block with a vector block.

Phase 2: Static Task Grouping
Taking the incidence matrix as input, we partition the rows
and columns into groups such that tasks within the same group
share their input file splits. The static grouping phase provides
an insight into the relation between tasks: tasks from the same
group are likely to share (some) input splits, and if we assign
them to a common compute node, we will see reduced data
transfers.

Phase 3: Dynamic Task Dispatching
The dynamic task dispatching phase is executed during run
time, it decides which node should execute which tasks, and the
goal is to reduce data transfers while maintaining load balanc-
ing across the compute nodes. A task pack is the set of tasks that
will be executed together by a compute node. Task pack is the
unit of actual task dispatching. We use the following criteria
when forming task packs:

(1) the number of tasks in a pack should not exceed the total
number of tasks dividing the number of nodes;

(2) the difference between the number of row splits and the
number of column splits is small;

(3) at most half of the cache will be used for row splits or col-
umn splits.

Task packs will be created such that tasks in a pack share their
input splits; and the input file splits are likely to be already has a
local replica or in cache. Tasks in a pack are then scheduled onto
the corresponding compute nodes (represented by its Task-
Tracker) one by one. To take load balance into account, when no
more packs can be formed for an idle TaskTracker, i.e., when all
tasks have been already assigned to some pack, our scheduler
falls back to the default Hadoop scheduling algorithm so that

this idle TaskTracker can steal tasks from some pack that is as-
signed to some other TaskTracker.

Caching Subsystem
The caching subsystem has two components: a file handler ob-
ject and a service daemon. The handler object is constructed
when opening files. The service daemon sits on top of the file
system abstraction of each compute node.

The service daemon serves handlers’ requests, manages the
cached blocks and reports caching status to the TaskTracker for
scheduling. When it receives a caching request, it checks if the
required data is in the cache. If not, the daemon uses the usual
file system API(such as HDFS API) to read the data and saves
blocks into local file system.

With Bi-Hadoop, users will only need to perform one extra piece
of work than with existing Hadoop: specifying which two splits
form a task. Other than this, they just write Hadoop programs
as they currently do: focusing on the mapper and reducer func-
tions. The three phases of our scheduler as well as the caching
subsystem are transparent to the users. Bi-Hadoop can be im-
plemented by making modifications in Hadoop configuration
files[10][11]. Extensive experiments with pattern matching and
Page rank algorithms show that Bi-Hadoop can significantly im-
prove the execution of binary input applications by more than
3x.

Proposed System
Bi-Hadoop is designed for applications with exactly two inputs.
The aim of this project is to further add flexibility by making Bi-
Hadoop suitable to handle multiple input applications too. This
can be done by making changes in the interface, task scheduler,
and caching subsystem of the existing Bi-Hadoop system [1].

So, as the first step, we need to configure Hadoop on 3 nodes, of
which one will be the master node, the master node itself would
act as a slave also. Then we would set up single-node clusters
on these individual nodes, and then would merge them to form
a multi-node cluster with 3 nodes. By using virtualization soft-
ware such as VMware and DropBox, it would be able to setup
clusters with more nodes. Now, changes have to be made in the
user interface, task scheduler, and caching subsystem of these
Hadoop nodes thus making it Bi-Hadoop. These changes can be
made by editing the Hadoop configuration files; this is possible
since Hadoop is an open-source framework.

Now, the final step is to make further modifications to make it
more compatible to handle multiple-input applications. This
can also be done by editing the Hadoop configuration files.

Conclusion
So, by making changes in the input interface, task scheduler, and
caching subsystem, the performance of Hadoop for binary-input
applications can be enhanced. Also, this may be extended to im-
prove the performance of multiple-input applications, that is,
applications in which the input reside on more than two nodes.

