
AlgoSolve: Supporting Subgoal Learning in Algorithmic
Problem-Solving with Learnersourced Microtasks

Kabdo Choi
School of Computing,

KAIST
Daejeon, Republic of Korea
cyron1259@gmail.com

Hyungyu Shin
School of Computing,

KAIST
Daejeon, Republic of Korea
hyungyu.sh@kaist.ac.kr

Meng Xia
School of Computing,

KAIST
Daejeon, Republic of Korea
iris.xia@connect.ust.hk

Juho Kim
School of Computing,

KAIST
Daejeon, Republic of Korea

juhokim@kaist.ac.kr

ABSTRACT
Designing solution plans before writing code is critical for success-
ful algorithmic problem-solving. Novices, however, often plan on-
the-fly during implementation, resulting in unsuccessful problem-
solving due to lack of mental organization of the solution. Research
shows that subgoal learning helps learners develop more complete
solution plans by enhancing their understanding of the high-level
solution structure. However, expert-created materials such as sub-
goal labels are necessary to provide learning benefits from sub-
goal learning, which are a scarce resource in self-learning due to
limited availability and high cost. We propose a learnersourcing
workflow that collects high-quality subgoal labels from learners
by helping them improve their label quality. We implemented the
workflow into AlgoSolve, a prototype interface that supports sub-
goal learning for algorithmic problems. A between-subjects study
with 63 problem-solving novices revealed that AlgoSolve helped
learners create higher-quality labels and more complete solution
plans, compared to a baseline method known to be effective in
subgoal learning.

CCS CONCEPTS
•Applied computing→Computer-assisted instruction; E-learning;
• Human-centered computing → Computer supported cooper-
ative work.

KEYWORDS
Algorithmic problem-solving, Learnersourcing, Subgoal learning

ACM Reference Format:
Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim. 2022. AlgoSolve:
Supporting Subgoal Learning in Algorithmic Problem-Solving with Learn-
ersourced Microtasks. In CHI Conference on Human Factors in Computing
Systems (CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3491102.3501917

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3501917

1 INTRODUCTION
Algorithmic problem-solving [3]—solving programming problems
by formulating efficient algorithms that satisfy the time and mem-
ory constraints of the problem—teaches learners programming and
program design [1]. A number of online websites provide a learning
environment for algorithmic problem-solving, most notably Online
Judge systems [26, 47] such as TopCoder Competitive Program-
ming 1, Peking University Judge Online 2, and Google Code Jam 3.
Online Judge systems enable self-learning of algorithmic problem-
solving skills with their various features, such as automated grading
of the solution code where learners can immediately receive results
on the correctness of their solution or learner communities where
learners can ask questions and discuss solutions with each other.

One characteristic of algorithmic problem-solving is that plan-
ning out a solution before coding is crucial for successfully solving
the problem [6]. This practice is important since the learner can sep-
arate the two key challenges in problem-solving—decomposing the
problem into subproblems (decomposition problem) and composing
subsolutions into a complete solution (composition problem)—and
tackle each stage in isolation [18, 20]. However, novices often de-
velop plans on-the-fly as they write code instead of planning in ad-
vance [6, 32, 40], meaning that they are dealing with decomposition
and composition—already challenging problems for novices [27]—at
once, and end up producing incorrect or inferior solutions [6]. Also,
since the solution is not mentally well-constructed in the beginning,
their plans get easily altered as they discover new problems in the
middle of implementation [42], causing additional frustration.

Prior work has shown that subgoal learning [8]—amethod where
students learn solutions for problems by decomposing the solution
into functional pieces (i.e., subgoals)—helps learners develop more
complete solution plans [12]. The key benefit of subgoal learning
is that learners can better understand the generalizable, high-level
solution structure using subgoal labels—short textual descriptions
that explain the purpose of a given subgoal (example shown in
Figure 1). The use of subgoal labels can aid learners when creating
schemas by letting them focus on the structure of the solution [28]
and help them when later using the schemas as a basis for building
solution plans [41]. Subgoal learning has been shown to help learn-
ers in applying the learnt solution more easily when solving other
problems [7, 30]. Margulieux and Catrambone [28] compared vari-
ous subgoal learning methods and discovered that making learners
create their own subgoal labels and guiding the knowledge con-
struction with hints during label creation or expert-created labels

1https://www.topcoder.com/thrive/tracks?track=Competitive Programming
2http://poj.org/
3https://codingcompetitions.withgoogle.com/codejam

https://doi.org/10.1145/3491102.3501917
https://doi.org/10.1145/3491102.3501917

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

as feedback yields the best problem-solving performance improve-
ment. However, such high-quality materials are a scarce resource
in self-learning due to the high cost of producing them, and the
lack of expert materials deteriorates the learning experience, which
greatly limits the applicability of subgoal learning.

Figure 1: An example of a subgoal-labeled worked example.

To overcome the limited availability of expert-created labels
in self-learning environments, we employ learnersourcing [48],
a crowdsourcing approach for collecting various materials while
workers contribute as learners and gain learning benefits; in the
algorithmic problem-solving context, our approach collects high-
quality subgoal labels from learners while helping them improve
their problem-solving ability in return. Controlling the quality from
the potentially noisy data is an important challenge in learnersourc-
ing. A common approach for obtaining high-quality materials is
by asking learners themselves to rate the quality of the collected
data in another learning activity [16, 48, 50]. While such activities
provide learning benefits to learners as well as make the workflow
scalable, the learners’ benefit may vary depending on the quality of
the presented material [15]. For example, the learner might have an
ineffective learning experience if they are given only low-quality
materials during the activity.

In this work, we propose a two-stage learnersourcing workflow
(Figure 2) for collecting high-quality subgoal labels in the algo-
rithmic problem-solving context. Our workflow design focuses on
providing microtasks that guide learners to improve the quality
of the labels they produce, thereby collecting high-quality labels
as well as helping them improve their problem-solving skills. The
first stage is composed of a set of Subgoal Voting tasks, which
are multiple-choice questions where learners select the best sub-
goal label from multiple subgoal label examples. These tasks act
as a ‘warm-up’ stage that introduces and exposes learners to high-
quality subgoal labels, thereby nudging them to create high-quality
labels [15]. The second stage consists of Subgoal Labeling tasks
where learners create subgoal labels. Learners are first prompted
to create their own labels, and then presented with several high-
quality subgoal label examples where they can fix any errors or
mistakes and improve the quality of their initial labels by making
comparisons against the provided examples. The final, improved
labels are submitted to the system. The collected labels are later

shown as high-quality subgoal label examples to other learners. The
system needs to provide high-quality labels for learners to recog-
nize good examples and produce high-quality ones themselves [15].
To provide high-quality examples in the microtasks, the system uses
a multi-arm bandits algorithm, which was shown to be effective in
previous work in learnersourcing [50].

We implemented our learnersourcing workflow into Algosolve,
a prototype interface that supports subgoal learning for algorith-
mic problems, and conducted a between-subjects study with 63
participants who are novices in algorithmic problem-solving and
compared AlgoSolve against a baseline interface where participants
receive expert-created labels after creating subgoal labels, which is
known to be most effective for subgoal learning [28]. Participants
who learned through AlgoSolve created significantly higher quality
subgoal labels that reflect a more correct and deeper level of under-
standing of the subgoal compared to the baseline. The high-quality
subgoal label examples selected by the system were also shown to
be comparable in terms of quality to those created by experts. Algo-
Solve also helped learners improve their problem-solving skills; 31%
of the AlgoSolve group were able to provide a complete solution
plan compared to 6% in the baseline group, showing a deeper level
of understanding of the solution technique taught in the activity.

The contributions of this work are as follows:

• A learnersourcing workflow that collects high-quality sub-
goal labels for algorithmic problem-solving by guiding learn-
ers to improve the quality of the labels they produce while
providing them with learning benefits in solving algorithmic
problems.

• Results from a between-subjects study, indicating that Algo-
Solve successfully guides learners to provide higher quality
subgoal labels while helping them improve their solution
planning ability, compared to the best performing method
in subgoal learning.

2 RELATEDWORK
We review research on subgoal learning and existing learnersourc-
ing approaches.

2.1 Subgoal Learning
The subgoal learning method [8] helps learners in understanding
a solution by representing the solution as a hierarchical structure
rather than as a flat list of steps. Subgoals—a group of solution
steps that form a functional piece of the solution—highlight the
purpose of the steps and how they are organized. Subgoal labels
encourage learners to focus on the high-level solution structure that
is generalizable to other problems instead of memorizing individual
solution steps. As learners recognize the generalizable chunks of
the problem (or schemas), they can later retrieve the constructed
schema when planning out solutions for other problems, in which
subgoal labels help schema creation by letting learners focus on
the important solution structure [28]. Subgoal learning has been
shown to be effective at improving the learners’ ability to apply a
solution when solving other problems that require transfer [7, 30]
or build more complete solution plans that contain all necessary
parts for solving a problem [12]. Not only restricted to reading

AlgoSolve: Supporting Subgoal Learning in Algorithmic Problem-Solving with Learnersourced Microtasks CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 2: An overview of the proposed learnersourcing workflow. Learners first gain an understanding of good examples
of subgoal labels by going through a set of multiple-choice questions comparing various subgoal labels (Subgoal Voting task).
Learners then create their own labels and iterate on their initial labels bymaking comparisons against peer examples (Subgoal
Labeling task). A zoomed-in screenshot of the tasks is provided in Figures 4 and 6.

worked examples, but subgoals can also be used during the problem-
solving process, such as putting subgoal labels as comments before
implementation, acting as building blocks [31]. The effectiveness
of subgoal learning at improving the problem-solving performance
has been shown across various domains, such as mathematics [2,
7], chemistry [29], and programming [28, 30, 36, 37]. A number
of studies in the educational domain have also highlighted the
importance of learning how to decompose the problem into smaller
subgoals [11, 18, 19, 25], in which subgoal learning can be effectively
applied to support such skills.

Initially, subgoal learning was mostly provided as a passive activ-
ity where learners read a worked example with pre-written subgoal
labels and understand the solution structure [28]. However, passive
learning is known to be less effective than other types of learning
activities such as active, constructive, and interactive methods [10].
A recent study [28] discovered that letting learners construct their
own subgoal labels led to the best problem-solving performance
compared to passive or active methods, but only when they received
guidance—either hints during creation or expert-created labels as
the correct response. However, these types of guidance require the
presence of an instructor who can generate such hints or labels,
which is not always available in self-learning.

2.2 Learnersourcing Approaches for Collecting
Learning Resources

Learnersourcing [24] is a crowdsourcing method where learners
engage in learning activities and contribute to building the required
materials while going through a meaningful learning experience
themselves. Learnersourcing has been successfully employed in
collecting various learning materials that are comparable in terms
of quality to that of experts. AXIS [50] collects explanations for
math problems by asking learners to generate, revise, and eval-
uate explanations, where machine learning is applied to provide
high-quality peer explanations to future learners. PeerWise [14]
is a learnersourcing system where students create, answer, and
discuss multiple-choice questions. Students were able to write high-
quality questions, and even poorly written questions became useful
learning resources with other students’ comments on the ques-
tion [13]. UpGrade [46] presents a learnersourcing approach for
generating multiple-choice questions using prior student solutions.
Compared to traditional open-ended assignments, students who
answered UpGrade-generated questions achieved comparable learn-
ing outcomes in substantially less time. Other learnersourcing ap-
proaches aim to generate hints for improving student solutions [16],
subgoal labels for instructional videos [48] or mathematical prob-
lems [22], tutorial videos [49], explanations for programming mis-
conceptions [17], or even complex design problems [33].

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

Researchers have explored learnersourcing workflows that can
collect high-quality subgoal labels. Crowdy [48] implements a three-
stage workflow for generating high-quality subgoal labels on how-
to videos, where the labels are first generated, evaluated, and then
proofread. The quality of the final labels was found to be compara-
ble to expert-created labels. However, there were also cases where
learners generated subpar quality labels due to a lack of training.
In the domain of mathematical problems, SolveDeep [22] uses a
learnersourcing workflow that collects subgoal labels and builds a
hierarchical representation of subgoals, where learners first gen-
erate and then revise their labels based on the feedback given by
the system. SolveDeep, however, primarily focuses on building the
hierarchy of subgoals, and learners have less freedom in reflecting
on their own labels in that they have to either fully accept or reject
the given feedback. Also, both approaches ask learners to create
subgoal labels without any training on the labeling activity. In con-
trast to previous work, we design the workflow that guides learners
to become familiar with the task and produce better subgoal labels
by adding a ‘warm-up’ stage prior to the creation of the labels.

2.3 Improving the Quality of Learner
Contributions in Learnersourcing

The learnersourced materials are often provided to future learners
during their learning activity [16, 48, 50]. However, the quality
of the learnersourced materials may not be entirely trusted, as
they can be of low quality and may even be inaccurate [17], and
providing low-quality materials to learners may lead to a worse
learning experience. Only a few dedicated learners may exhibit high
effort and provide large amounts of high-quality contributions, and
when contributions are required (e.g., assessments in a course),
the overall quality drops significantly as many learners may be
disengaged or aim to achieve the minimum requirements [23].

Although much work has been done on selecting high-quality
contributions among the learnersourced data, either through learn-
ers themselves [16, 48], automated methods [38], or both [50], aim-
ing to design tasks that improve the learners’ ability to generate
high-quality materials has gained interest only recently. Khosravi
et al. [23] proposed several approaches that could lead learners to
provide higher-quality contributions, which include open learner
models for aiding self-regulation, tying the tasks with mandatory
assessments, and gamification mechanisms. Doroudi et al. [15]
suggested that providing high-quality examples to crowd workers
can significantly improve the quality of the produced materials.
Singh et al. [43] showed that learners who had the option not to
create multiple-choice questions but instead only answer existing
multiple-choice questions had a better learning experience and cre-
ated better quality questions, where one of the main factors for not
choosing to create questions was that learners lacked confidence in
both topic and language. These findings indicate a need for helping
learners perceive themselves as being more competent in producing
materials, which leads to the design of the warm-up stage in our
workflow. Results from an experiment by Nguyen et al. [39] imply
that the quality of the crowdsourced output can depend on the
task design and cognitive load of the learners. Another study done
by Moore et al. [34] revealed that students who showed a better
understanding of the material being covered created higher-quality

multiple-choice questions [34]. Building upon the findings from
previous work, we propose a novel learnersourcing workflow that
helps learners familiarize themselves with the task being covered
and enhance their understanding of the learning material.

3 LEARNERSOURCINGWORKFLOW DESIGN
Learners need to improve their solution planning skills and thereby
improve their algorithmic problem-solving performance. We pro-
vide learners with a subgoal learning activity as they go through
the learnersourcing workflow so that they can have a conceptual
understanding of the solution [7] and improve their ability to design
solution plans [12].

The design of the activity follows the approach commonly used
in subgoal learning research; learners study a worked example that
solves a given algorithmic problem, where the code is grouped into
subgoals. Learners need to be given high-quality subgoal labels as
they create their own labels [28]. We now introduce the design of
our learnersourcing workflow that helps learners to achieve these
goals.

3.1 Learnersourcing Workflow Design
We designed a two-stage learnersourcing workflow that guides
learners to improve the quality of the subgoal labels they produce,
and implemented it in a prototype system that supports subgoal
learning for algorithmic problems, named AlgoSolve. The workflow
consists of two types ofmicrotasks: 1) SubgoalVoting taskswhere
learners read through several subgoal label examples, compare
the quality between them, and vote for the best example through
system-generated multiple-choice questions, and 2) Subgoal La-
beling tasks where learners create their own subgoal labels and
iterate on their labels through comparisons against peer examples.
The Subgoal Voting task is designed as a ‘warm-up’ stage before cre-
ating subgoal labels, helping learners to gain an understanding of
good subgoal labels by asking them to compare different examples
of subgoal labels. The Subgoal Labeling task helps learners make
better quality labels and thereby effectively build the conceptual
organization of the solution.

The microtasks are generated from the same worked example
that solves a given problem. The worked example is decomposed
into subgoals, and each subgoal is randomly assigned to either of
the microtasks (Figure 3). The worked example and the subgoals
in the worked example are generated prior to the activity, done by
domain experts. Determining an appropriate subgoal scope could
have also been developed as a learnersourcing task in order to build
a fully autonomous system with only learners; however, we did not
include in this work to focus on gathering quality subgoal labels.

In order to support learners in learning subgoals using high-
quality examples, the system needs to secure enough label examples
in the beginning. AlgoSolve gathers initial examples by providing
learners with the Subgoal Labeling task alone, without the support
from peer examples. After three different examples are accumulated
for each subgoal, the system transitions into the full workflow and
provides both tasks with peer example support.

We now explain each stage in detail, followed by the policy for
selecting peer examples used in AlgoSolve.

AlgoSolve: Supporting Subgoal Learning in Algorithmic Problem-Solving with Learnersourced Microtasks CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 3: The microtasks are generated from a single worked example, which is grouped in terms of subgoals (S1 - S6) prior
to the process. Each subgoal, shown as boxes, is randomly assigned to either the Subgoal Voting task or the Subgoal Labeling
task, forming a single microtask.

Figure 4: Overview of the Subgoal Voting task. Learners are given up to five subgoal labels and are asked to select a single
option that best describes the given subgoal.

3.1.1 Task 1: Subgoal Voting. The Subgoal Voting task (Figure 4) is
designed as multiple-choice questions that ask learners to select a
subgoal label example that best describes a given subgoal with the
corresponding code segment. Learners are given up to five exam-
ples and select a subgoal label example that best describes a given
code snippet. The system uses learners’ selections to determine
the quality differences between subgoal labels and which labels
to show to future learners as examples. By showing subgoal label
candidates that explain the given subgoal, we expect learners to

quickly form a good understanding of the solution presented in the
worked example [25].

The Subgoal Voting stage acts as a ‘warm-up’ learning activity
where learners familiarize themselves with subgoal learning and
also good examples of subgoal labels. In contrast to prior work
where learners are simply given such examples [15], the Subgoal
Voting tasks ask learners to choose the best example among the
given options, which is likely to increase learner engagement and

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

gain a better understanding of subgoals [10]. The learners’ selec-
tions also influence which labels the system determines as high-
quality (further explained in Section 3.1.3).

Learners might lack knowledge in the topic being covered or
subgoal labels and have difficulty in understanding and determining
high-quality subgoal labels. In order to support learners in their
learning process, the system provides both system-selected, high-
quality subgoal labels and randomly-selected labels that are likely
to be of lower quality compared to system-selected labels. Learn-
ers receive three system-selected labels and up to two randomly
selected ones. We decided to include both types of examples so that
learners can make easier contrasts quality-wise by differentiating
labels of varying quality. At the same time, the number of randomly
selected examples is limited to two in order to avoid taking up
too many of the available options since these low-quality options
themselves have little benefit to learners [45]. We also decided to
make learners choose a single option so that learners have to deeply
think over selecting the best option rather than simply checking
all plausible-looking ones and avoid the system having unclear
distinctions among multiple plausible options.

Figure 5: Peer voting result information after the learner
submits their vote in the Subgoal Voting task.

Multiple-choice questions are typically accompanied by feedback
on the learners’ choice, such as showing the correct answer and
additional explanations for the options. However, since the system
does not have a clear knowledge of the correctness of the options,
it instead provides the peer voting result on each of the examples
(Figure 5). The peer voting result is shown as the number of times
the example was chosen by previous learners.

3.1.2 Task 2: Subgoal Labeling. Now that learners gained an un-
derstanding of high-quality subgoal labels, the system then asks
learners to provide their labels in the Subgoal Labeling task (Fig-
ure 6). Learners first submit their initial work (i.e., initial subgoal

labels) and then resubmit their final descriptions (i.e., final subgoal
labels) after viewing feedback given by the system (Figure 7). The
system provides three system-selected subgoal labels as feedback,
where learners canmake comparisonswith their initial labels, revise
errors or misconceptions in the initial labels, and make iterations.
The final, improved labels are collected by the system and provided
to future learners.

The Subgoal Labeling task is grounded on prior work on subgoal
learning [28] and resembles the most effective method for guiding
learners to successfully build mental organizations of the solution.
Margulieux and Catrambone [28] argue that guidance should be
carefully thought over; poorly designed guidance, such as provid-
ing both hints and expert-created labels as feedback, could hinder
learning by dismantling the learner’s prior understanding of the so-
lution and making them blindly apply the expert labels. We address
this issue by intentionally not presenting the examples as being
feedback nor of high quality so that learners become more likely to
keep their own explanations reflecting their own understanding of
the subgoal, rather than perceiving the given examples as ‘correct’
answers and simply copying them.

3.1.3 Policy for Selecting Subgoal Label Examples. As subgoal la-
bels get accumulated, AlgoSolve needs to determine high-quality
subgoal label examples to show in the microtasks. Many of the ex-
isting learnersourcing workflows use majority voting [16, 22, 48] to
choose the best examples. Another approach is to employ machine
learning to dynamically determine examples shown to learners,
such as multi-armed bandits [50, 51], a machine learning approach
for extracting the maximum reward from several alternative choices
(i.e., arms) where the reward of each arm is previously unknown.
We decided to use the latter approach, specifically multi-armed
bandits. We chose multi-armed bandits as it is capable of searching
for newly added examples (exploration) while also selecting exam-
ples known to be of the best quality (exploitation), which gives fair
exposure to more recently added examples.

AlgoSolve observes the decisions learners make in choosing
the best subgoal label among multiple examples through multiple-
choice questions. To fit the multi-armed bandit problem into our
context of voting, we formulate this problem as a multi-dueling
bandit problem [5]—a variant of the multi-armed bandit problem
where the algorithm selects multiple arms, which observes the
result of pairwise duels between the selected arms. In particular,
we use IndSelfSparring [44], a multi-dueling bandits algorithm
that uses Thompson sampling. In order to incentivize newly added
subgoal labels in the selection process, we gave the labels a high
prior distribution of Beta(4, 1), meaning that the labels are likely to
be chosen four out of five times.

Since learners submit their labels after making comparisons
against existing labels, there is a possibility that the submitted
label is a duplicate of a previously submitted label. Also, for simple
labels (e.g., subgoal on printing the result value), there could be
identical labels in the pool of label examples. In order to avoid
label examples with identical content, we prevent all labels that
are identical to a previously submitted label after removing non-
alphabetical characters from being selected by the system.

AlgoSolve: Supporting Subgoal Learning in Algorithmic Problem-Solving with Learnersourced Microtasks CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 6: Overview of the Subgoal Labeling task. Learners provide their own subgoal labels that describe the given subgoal.

Figure 7: After the learner submits their initial labels in the
Subgoal Labeling task, system-selected peer examples are
provided.

4 EVALUATION
In the current study, we evaluate whether AlgoSolve helps learners
improve the quality of the subgoal labels they produce while im-
proving their solution planning ability. We address the following
three research questions:

RQ1. (System label quality) Is the designed learnersourcing work-
flow capable of providing high-quality subgoal label exam-
ples to learners?

RQ2. (Learner contribution quality) Does the presence of micro-
tasks help learners create better quality labels, compared to
producing labels without the support of microtasks?

RQ3. (Learner experience) How do the learning activities in the
microtasks affect the learners’ learning experience?

To answer these questions, we conducted a between-subjects
study that compares AlgoSolve (microtask condition) to a baseline
interface (baseline condition). The baseline interface replicates the
best performing method in subgoal learning where learners create
labels on their own, accompanied by expert-created subgoal labels
as feedback [28]. The baseline condition can also be considered as
a basic learnersourcing approach where learners create materials
without supporting features that help them improve the quality of
their contribution. For each participant in the microtask condition,
we randomly assigned half of the subgoals to the Subgoal Voting
task and the remaining half to the Subgoal Labeling task. Partici-
pants in the baseline condition were asked to write subgoal labels
for all subgoals.

4.1 Participants
We recruited 68 participantswho are novices in algorithmic problem-
solving from two universities and a popular online judge system,
all located in South Korea. Among the participants, the first five
were assigned to create the initial seed subgoal labels for Algo-
Solve by using the baseline interface and were excluded from the
analysis. The remaining participants were randomly assigned to
one condition. In the end, 63 participants (male: 46, female: 17,
mean age: 23.4, SD age: 4.16) completed the study session, where
31 used the baseline interface and 32 used AlgoSolve. Participants
were compensated with 20,000 KRW (approximately 20 USD) after
completing the 1.5-hour study.

We asked participants to report their proficiency in algorithmic
problem-solving (baseline: 𝜇 = 3.22, microtask: 𝜇 = 3.31), their
familiarity with the topic covered in the study (baseline: 𝜇 = 1.51,
microtask: 𝜇 = 1.75), and confidence in writing explanations in
English on a 7-point Likert scale (baseline: 𝜇 = 3.62, microtask: 𝜇 =

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

3.92). We found no significant differences between the conditions
for any of the questions. All except six participants had less than a
year of experience in algorithmic problem-solving. More than two-
thirds of the participants (44 out of 63) were completely unfamiliar
with the solution technique used in the current study (i.e., Sliding
Window).

4.2 Study Materials
The Sliding Window technique [9] was selected as the topic for the
current study. Sliding Window is a solution technique commonly
used for reducing the time complexity when solving array problems
that deal with subarrays (e.g., find the subarray that has the largest
sum), which is done by sliding a subarray (i.e., window) throughout
the entire array and updating the necessary values efficiently as the
window gets slid. We chose Sliding Window since it is a relatively
straightforward technique that requires little background knowl-
edge in algorithms, and therefore learner performance would be
less affected by their previous experience in algorithmic problem-
solving. We selected two algorithmic problems that are solvable
using the technique. We sampled the problems in terms of difficulty
so that they do not have too trivial solutions, thereby presenting
enough challenge to novices and having similar levels of difficulty.
The level of difficulty was extracted from an expert-sourced reposi-
tory that collects the difficulty rating of algorithmic problems 4.

The subgoal-grouped worked example and expert subgoal labels
were created through discussion between the experimenters and
an expert who had significant experience in problem-solving com-
petitions. The created worked example consisted of 14 subgoals.
The worked example with expert subgoal labels is included in the
supplementary material.

4.3 Procedure
An overview of the study procedure is shown in Table 1. Participants
first completed the pre-questionnaire where they reported their
proficiency and expertise in algorithmic problem-solving. Before
starting the main session, participants were given instructional
materials on the Sliding Window technique and subgoal labels.
In the main study session, learners received either the baseline
labeling task or microtasks depending on the condition they were
assigned. We asked participants to complete a post-questionnaire
where they reported the cognitive load of the activity and their
experience in using the system. The study session concluded with
an assessment task where participants build and submit a solution
plan for a similar problem which also uses the Sliding Window
technique.

4.4 Measurements
We asked learners about their experience in using the system. In the
post-questionnaire, learners were asked to rate their cognitive load,
total time spent for the main session, helpfulness of the provided
subgoal labels, and helpfulness of the learning activity given in
the main session. For measuring cognitive load, we used the CS
Cognitive Load Component Survey (CS CLCS) [35], a cognitive load
measurement specialized for the context of computing education
research. CS CLCS is composed of 10 questions that measure three
4https://solved.ac/

Time (mins) Baseline Microtask
Pre-session (20)

5 Introduction & Consent
5 Pre-questionnaire
5 Sliding Window technique introduction
5 Subgoal label tutorial

Main study session (30)
Subgoal Voting task30 Baseline labeling task Subgoal Labeling task

Post-session (25)
5 Post-questionnaire
20 Assessment task

Table 1: Overview of the study procedure.

aspects of cognitive load: intrinsic, extraneous, and germane load.
The degree of helpfulness was rated using a 7-point Likert scale
(1: not helpful at all, 7: very helpful). While germane load is now
considered as being redundant [21], we use CS CLCS as it is the
only measure in computing education research and has been shown
to be reliable in measuring cognitive load [52].

One of the benefits of using subgoal labels is that it reflects the
purpose of the given subgoal instead of surface-level features. To
investigate how microtasks affect learners in creating quality sub-
goal labels that successfully explain their purpose, we developed a
subgoal label quality score that consists of four categories (Table 2).
The labels were first categorized based on whether the label con-
tained any incorrect explanations or did not summarize the code in
plain language (L0). Among the correct labels, we categorized them
in terms of explanation depth (L1, L2, L3). We chose explanation
depth since it reflects how well the learner conceptually under-
stands the solution, which is the primary goal of subgoal learning.
Representative examples for each level are shown in Table 4.

Category (Level) Description
Improper (L0) Labels that convey wrong information

about the subgoal, do not summarize the
function but instead explain line-by-line,
or do not explain in plain language (e.g.,
code)

Surface-level (L1) Labels that provide no explanation other
than the surface- or code-level interpre-
tation of the code (e.g., directly mention-
ing a variable with its name)

Intermediate-level
(L2)

Labels that contain more than mere
surface-level explanations but part of the
explanation lacks depth.

Deep-level (L3) Labels that successfully explain the pur-
pose of the given code.

Table 2: Categories of subgoal label quality that were used
in the current study.

We recruited four experts as raters to measure the quality of
learner-created subgoal label examples selected by AlgoSolve. The

AlgoSolve: Supporting Subgoal Learning in Algorithmic Problem-Solving with Learnersourced Microtasks CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

SOLO category Description
1 - Prestructural Nonsensical answer or an answer that

had no more information than the ques-
tion provided.

2 - Unistructural Described 1-2 concepts that applied to
the problem, but the description was in-
complete or did not demonstrate based
on the Sliding Window technique.

3 - Multistructural Described all concepts needed to solve
the problem but provided no explanation
beyond the question at hand.

4 - Relational Described how to solve the problem and
explained how the different pieces of the
choices were made to solve this particu-
lar problem.

5 - Extended Ab-
stract

Explained how to solve a problem like
this in abstract terms.

Table 3: SOLO scoring criteria that were used in the current
study.

raters had significant experience in solving algorithmic problems
and/or teaching algorithmic problem-solving. We asked raters to
solve the training problem using the Sliding Window technique
prior to the evaluation to ensure that they are knowledgeable about
the solution technique. They were also shown the tutorial material
on subgoal labels identical to participants so that they have a com-
mon understanding of what constitutes good subgoal labels. The
evaluation was made by comparing a system-selected subgoal label
against the expert-created subgoal label for each of the 14 subgoals,
rating the labels as either system better, expert better, or matching
in terms of quality. The interrater reliability, measured with Fleiss’
kappa, showed a slight agreement of 0.24.

To assess whether AlgoSolve provides learning benefits in algo-
rithmic problem-solving to learners, we measured their solution
planning ability using the solution plans submitted in the assess-
ment task. The submitted solution plans are graded using the SOLO
taxonomy [4], following previous work [12]. The SOLO taxonomy
measures how well learners understand the topic and whether they
produce higher quality, structurally more complex learning output;
in our study, how well learners describe their solution plan using
the conceptual understanding gained from the subgoal learning ac-
tivity. The SOLO taxonomy consists of five categories: Prestructural,
Unistructural, Multistructural, Relational, and Extended Abstract.
The criteria we used in the current study, which are a variant of
prior research on assessing the effect of subgoal learning in solution
planning [12], is provided in Table 3. An example solution plan for
each category is provided in the supplementary material.

For coding the submitted subgoal labels and solution plans based
on the categories in Tables 2 and 3, we used the following method,
which is similar to prior work [12]. Three raters graded the first
five sets of submissions (for each subgoal for labels) together to
form a consensus on expectations for each category. The raters
then individually graded another five sets of submissions and then
discussed and resolved any differences. After repeating the process
for 20% of the submissions, we measured the inter-rater reliability

of the individually graded submissions. The intraclass correlation
coefficient with absolute agreement (ICC(A)) was used for measur-
ing inter-rater reliability, following prior work [12, 28]. The raters
achieved a high level of agreement for both types of submissions;
0.90 for subgoal labels and 0.97 for solution plans. The remaining
80% of the submissions were graded by a single rater.

5 RESULTS
A total of 658 labels were collected after the study (baseline: 434,
microtask: 224). Note that the microtask participants were given
the Subgoal Labeling task for only half of the total subgoals and
therefore resulted in around half the number of labels submitted
by the baseline participants. We summarize the results in terms of
the three research questions.

5.1 RQ1. Quality of the System-selected Labels
The comparative evaluation between system-selected and expert-
created labels (Table 5) revealed that raters equally preferred the
system-selected labels (S6, S7, S8) and the expert-created labels
(S2, S4, S10). Three labels (S1, S5, S14) were considered as being
of comparable quality. The remaining five labels had no majority
opinions (i.e., the same number of raters diverged into different
opinions), two of them being a tie between ‘matching’ and system
label, implying a weak preference to the system-selected label. This
result indicates that, even from a small population of roughly 30
learners, our system is able to determine and provide subgoal labels
of decent quality that are comparable with expert-created labels.

In general, raters preferred expert-created labels for better de-
scribing the high-level and abstract purpose of the subgoal in ques-
tion. For example in S10, the phrase “slide the window” in the
expert-created label is a key term for explaining its high-level pur-
pose. Meanwhile, raters noted that the system-selected labels would
be better as these provide more details for understanding the given
code, such as “in the worst case as n” (S6) or “for two patterns
of ordering” (S8). This indicates that learners, especially novices,
may have different expectations on subgoal labels from instructors
or experts; subgoal labels are believed to be of higher quality if
the labels are written in high-level and abstract terms [28], while
novices show a higher demand for more in-depth explanations.
Lastly, raters indicated that the meaning of some system-selected
labels (e.g., S13) could be misinterpreted by learners, which implies
the need for validation or proofreading tasks of the collected labels
in the learnersourcing workflow.

5.2 RQ2. Quality of the Learner Submissions
Overall, the microtasks in AlgoSolve were able to help learners
create better quality labels compared to the baseline task (Figure 8).
Among the initial labels created in the microtask condition, 22% of
them were classified as being improper (i.e., L0), which was reduced
to 15% in their final submissions, while 30% of the labels baseline
participants produced were labeled as L0. Meanwhile, microtask
participants were able to create L3 labels (i.e., showed a deep under-
standing of the purpose of the given subgoal) for 27% of the total
labels in their first attempt, later improved to 43%, while only 20%
of the submitted labels in the baseline condition was identified as
L3. The degree of difference varied between subgoals though; for

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

S# L0 L1 L2 L3
S2 settings for the overall team Declare and initialize vari-

ables.
Preprocess for calculating out-
put

Initial setting for Sliding Win-
dow

S4 Find the wrong input Save operation result in
abc_nums, acb_nums

Calculate number of people
sitting in acb or abc

Count number of player who
don’t have to move.

S5 Update number of teams Add the list to the back one
more time.

duplicate team list Connect two teams list for cir-
cular calculation

S7 step for reorganization compare n times and get real
min_people

Get minimal number of people
that must switch seats.

Get the minimum number of
people to move by sliding win-
dow method

S10 check abc people that is lowest update abc_nums and
acb_nums for next loop

update num list whether A, B,
C or properly located

After moving sliding window,
update the number of people
who seat in place

Table 4: Representative examples of subgoal labels for each label score. Each row represents a subgoal (e.g., S1: Subgoal 1).

S# System-selected label Expert-created label Majority
S1 Get the input Get the input values Matching
S2 Make the setup for sliding window Set up the initial values for sliding window Expert
S3 Count the number of people of each team (A, B, and C) Calculate the number of people in each team No maj. (M, S)
S4 Count how many A, B, C are in ABC or ACB order For each possible team formation, calculate the number

of people who are correctly seated
Expert

S5 Double the list of team to find possible cases for circular
table

Since both ends of the seat are connected, duplicate the
sitting status list

Matching

S6 Set the minimum number of people need to move in
the worst case as ‘n’

Set up the initial minimum value holder System

S7 Find minimum people to be in ABC or ACB group order
using siding window method.

Slide thewindow and update theminimumvalue holder System

S8 Get the number of people who should change their
seats for two patterns of ordering

Calculate the number of people who have to move seats
to fit the team formation

System

S9 Update the number of minimum changes Update the minimum value holder No maj. (M, S)
S10 Update the number of people in ABC or ACB order Slide the window to the next index and update the

number of correctly seated people
Expert

S11 Update the “correct" sitting number of people based on
the starting position (we want it to be A)

Handle the person who is moved out from the first
team

No maj. (E, S)

S12 Update abc_nums and acb_nums for the change of start-
ing point of the second region.

Handle the person who is moved out from the second
team

No maj. (E, S)

S13 Update the number of people who should change their
seats in the third group

Handle the person who is moved out from the third
team

No maj. (E, S)

S14 Print the minimal number of people who need to move Print the minimal number of people who need to move
seats

Matching

Table 5: System-selected labels with the highest mean score among labels that received three votes or better (except for S6). We
also provide the comparison results between system-selected labels and expert-created labels. For subgoals without amajority,
we also denote the top choices (E: expert, M: match, S: system).

S5, there was a substantial increase in the number of L3 labels in
the final labels submitted by microtask participants, while there
was no difference in S10.

We performed a Cochran-Armitage trend test to test the differ-
ence in the label quality score distribution between baseline labels
(B) and initial labels in the microtask condition (Mi), and between
initial and final labels in the microtask condition (Mf), using Cliff’s
delta (𝑑) for calculating effect size. The results showed statistical
significance for the difference in the distributions with small effect

size—B vs. Mi: 𝑝 < 0.004 (𝑑 = 0.13), Mi vs. Mf: 𝑝 < 0.002 (𝑑 = 0.17).
In the microtask condition, 163 out of 224 labels were initially con-
sidered incomplete (i.e., L0 - L2). Among them, 34% were improved
in the final submission (Table 6) after the comparison in the Subgoal
Labeling task. Only seven labels, and none of the labels initially
counted as L3 decreased in label quality. Overall, the results demon-
strate that microtasks encouraged participants to create more correct,
more complete, and better quality labels.

AlgoSolve: Supporting Subgoal Learning in Algorithmic Problem-Solving with Learnersourced Microtasks CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 8: Distributions of label quality scores for each subgoal (S1 - S14) and the aggregated result (B: baseline, Mi: microtask
- initial submission, Mf: microtask - final submission).

Final labels
L0 L1 L2 L3

Initial labels

L0 29 6 6 8
L1 2 33 8 7
L2 3 2 38 20
L3 0 0 0 61

Table 6: Changes made in the labels during the Subgoal La-
beling task in terms of label quality score. Rows represent
scores of initial labels in the Subgoal Labeling task (Mi),
while columns represent scores of final labels (Mf).

In addition to the comparison based on label quality score, we
provide a brief analysis of the changes made in the final labels.

5.2.1 Notable Pattern of Changes After Comparison. For more than
half of the total initial labels (126 out of 224), participants made
changes after comparing against peer examples. The degree of
changes that were made varied greatly, from minor adjustments
(e.g., changing a single word) to modifying the entire content into

a different meaning. In particular, participants paid attention to the
purpose of the subgoal (e.g., ‘considering the circular formation’ in
S5) or the role of a variable (e.g., ‘correctly seated people’ in S4),
which are critical aspects of subgoal labels but was not included
in the initial submission. Even for minor adjustments, participants
were able to include key terms that are critical in explaining the
purpose of the given subgoal (e.g., ‘initialization’ in S1, ‘update’ in
S9).

5.2.2 Labels that Decreased in Terms of Label Quality Score. Al-
though participants were able to improve their labels after com-
paring with peer examples, there were a few cases where the label
became worse in terms of label quality score. Among the seven
labels that were worsened after comparison, four labels were iden-
tified as misinterpreting the meaning of a particular variable, e.g.,
abc_nums as ‘incorrectly’ (instead of correctly) seated people. We
suspect that this misinterpretation is due to the peer examples
containing ambiguous or incorrect information, which is in line
with the raters’ analysis of system-selected labels compared to
expert-created labels.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

5.2.3 Copying peer examples. A possible downside of providing
peer examples is that learners can blindly follow the given examples
by directly copying them. We inspected cases where participants
created a label that was identical to a provided label. Even though
we did not put any proactive methods or guidelines that prevent
plagiarising, only 13 labels (6%) were found to be the same as a
previously submitted label, four of whichwere submitted by a single
participant.

5.3 RQ3. Learning Experiences Provided by the
Microtasks

5.3.1 Effects on Solution Planning Ability. Participants who learned
using the microtask interface were able to come up with better so-
lution plans; 31% of the participants received a score of three or
higher, implying that they were able to correctly apply the tech-
nique to novel problems, in contrast to only 6% for the baseline
condition. The distribution of SOLO scores on participants’ solu-
tion plans is shown in Table 7. The Cochran-Armitage trend test
revealed statistically significant differences between the conditions
(𝑝 < 0.05, 𝑑 = 0.26). This difference implies that microtasks can
help learners apply the learned solution technique when planning out
solutions for similar problems.

1 2 3 4 5
Baseline 25 (81%) 4 (13%) 1 (3%) 1 (3%) 0 (0%)
Microtask 18 (56%) 4 (13%) 9 (28%) 1 (3%) 0 (0%)

Table 7: SOLO score frequency of the solution plans submit-
ted in the assessment task.

In general, learners in both conditions showed low performance
in generating solution plans. The majority of the participants in
both conditions received the lowest score (i.e., Prestructural), while
none received the highest score possible (i.e., Extended Abstract).
The current study was done through a single session rather than a
semester-long instruction as in prior work [12], and learners were
novices who were also new to the SlidingWindow technique, so the
overall low performance is not unexpected. It should also be noted
that not every solution plan was completely nonsensical but also
included inefficient solutions that did not make use of the solution
technique they have learned, i.e., they were able to derive a plausible
solution plan but were unable to apply the given technique.

5.3.2 Cognitive Load and Helpfulness of the Microtasks. A Kruskal-
Wallis H test revealed no significant difference in each cognitive load
measure (Table 8) between the conditions—Intrinsic: 𝑝 = 0.26 (𝑑 =

0.17), Extraneous: 𝑝 = 0.94 (𝑑 = 0.01), Germane: 𝑝 = 0.54 (𝑑 = 0.05).
Time spent on the training session was also similar between the
two conditions (baseline: 28.87 minutes, microtask: 29.63 minutes,
𝑝 = 0.81, 𝑑 = 0.03), indicating that the use of microtasks did not
impact the amount of training needed during the session.

The peer-created labels were shown to be comparable in terms
of helpfulness against expert-created ones (Figure 9), with no sig-
nificant difference between the two groups (𝑝 = 0.67, 𝑑 = 0.11).
Participants also found the learning activities given as microtasks
helpful (Figure 10). Overall, the provided activities helped them gain

Intrinsic Extraneous Germane
Baseline 5.52 (2.64) 2.84 (2.28) 6.50 (2.11)
Microtask 4.97 (2.12) 2.64 (1.78) 6.57 (1.65)

Table 8: Mean (standard deviation) score of cognitive load.

a better understanding of subgoals and the given solution. We describe
the participants’ experiences for each of the microtasks in detail be-
low. However, we also discovered a sharp contrast between Voting
and Labeling tasks in terms of helpfulness; the Cochran-Armitage
trend test reveals significant differences against the baseline La-
beling task (𝑝 < 0.02, 𝑑 = 0.39) and the Subgoal Labeling task
(𝑝 < 0.02, 𝑑 = 0.39).

Learner Experience on the Subgoal Voting Task. Although the
majority of participants (19 out of 32) thought the Subgoal Vot-
ing task as being helpful in learning subgoals, participants rated
lower in terms of helpfulness compared to the other tasks. Partici-
pants reported that the subgoal label examples acted as hints for
grasping the meaning of code segments they did not understand
well, showing that the Subgoal Voting task acted as a scaffold for
understanding the solution when novice learners struggled to com-
prehend the given worked example. The examples were also helpful
for participants in learning good examples of subgoal labels.

Participants found the task unhelpful when the provided options
did not enhance but instead distracted from their understanding
of the solution. When multiple options had the same meaning
with only subtle or subjective differences, participants were con-
fused about which option they should choose. One participant also
reported that choosing among the options that have ambiguous
meaning was difficult and wished to see more descriptive options.
Also, the peer voting result was generally perceived as unhelp-
ful, mainly when the example was recently added and there was
not enough peer information. Since there is little peer information
about recently added labels (thereby shown as ‘0 out of 0’), learners
were confused by its meaning and did not find any use of the in-
formation. Nevertheless, participants still found the task useful in
that they had to think hard to choose the best option, and showing
various options aided them in understanding the subgoals.

Learner Experience on the Subgoal Labeling Task. Contrary to
the Subgoal Voting task, participants were mostly positive about
the Subgoal Labeling task. All except five participants reported
that they found the task helpful for learning subgoals. Participants
found the peer examples useful as a guide for making good labels or
improving on their inferior initial labels. One participant noted that
he was able to improve code-level terms (e.g., list, for-loop) into
more abstract terms (e.g., seating sequence, repetitively) by looking
at the peer examples. Peer examples also acted as feedback, enabling
learners to identify and fix their errors or misunderstandings about
the code segment.

Participants also expressed desires for controlling how and what
examples they receive. One participant commented that she would
like to get more subgoals that highlight the drawbacks of her sub-
goal label. Another participant wished that these are presented
more like a hint so that she could further develop her thinking
skills, where a single example is presented at a time, starting from

AlgoSolve: Supporting Subgoal Learning in Algorithmic Problem-Solving with Learnersourced Microtasks CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 9: Helpfulness of the given labels; expert labels in baseline, peer examples in microtask (1: not helpful at all, 7: very
helpful).

Figure 10: Helpfulness of the learning activities (1: not helpful at all, 7: very helpful).

short labels and later showing more detailed, lengthier explana-
tions.

6 DISCUSSION, LIMITATIONS, AND FUTURE
WORK

Our learnersourcing workflow was able to collect high-quality sub-
goal labels while helping learners gain a better understanding of
the solution technique, thereby helping them improve their abil-
ity to plan the solution using the learned solution technique. In
this section, we discuss the implications, limitations, and future
directions of our work.

6.1 Improving the Workflow Design
6.1.1 Improving Quality of Subgoal Labels. Overall, our learner-
sourcing workflow helped learners produce better quality labels
compared to the baseline which did not provide any support when
creating the labels. However, the quality of labels that participants
created was different across subgoals (Figure 8). We briefly discuss
two notable patterns.

Three subgoals (S2, S7, S10) were identified as compound sub-
goals — high-level subgoals consisting of lower-level subgoals. Com-
pound subgoals were expected to be most challenging to novices
as these require an understanding of larger blocks of code. Overall,
participants struggled to produce high-quality subgoal labels, but in
S7, they were able to improve their labels after comparing against
peer examples in the Subgoal Labeling task. We discovered that
the voting pattern in the Subgoal Voting task differed between S7
and the other subgoals; the majority of the participants were able

to select L3 labels that reflect a deep understanding of the subgoal.
We suspect that participants being able to successfully identify
high-quality labels in the Subgoal Voting task led to the system
successfully showing such labels in the microtasks, resulting in
making higher quality labels after comparison. It suggests the im-
portance of successful voting of good explanations in propagating
its quality in future learner contributions.

In S4 and S5, we observed a significant improvement after com-
parison in the Subgoal Labeling task, while participants initially
produced labels that were similar to that of baseline participants in
terms of quality. The labels received low scores because participants
failed to catch the intent in the code. For example, the concatenation
operation in S5 is to consider the circular formation, but learners
did not explain the purpose of the operation and simply mentioned
the operation itself. However, we believe that learners were able to
realize their surface-level descriptions after they were given peer
examples. This outcome implies that peer comparison took a key
role in creating higher-quality subgoal labels.

Even though most of the participants were able to improve their
labels after comparing against peer examples, there were cases
where peer examples can be misinterpreted and spread wrong
information to future labels. These results suggest that a sufficient
validation process of the collected labels (e.g., proofreading) should
precede before being shown in the Subgoal Labeling task.

6.1.2 Improving Learning Experience. Participants noted that the
microtasks helped them in learning subgoals and the given solu-
tion technique. However, we observed that the Subgoal Voting task
was perceived to be less helpful than the Subgoal Labeling task.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

In the Subgoal Voting task, participants were asked to select only
a single option. This decision was intended to make the system
quickly identify high-quality subgoal label examples, while learners
need to make careful decisions on their choices. However, this also
induced unwanted confusion and difficulty for learners. When mul-
tiple options were virtually identical, learners were confused about
which to choose. This shows an important tension in designing
learnersourcing systems: The system wants a clear distinction of
high-quality labels, while learners might be hesitant to select the
best option. The Subgoal Voting task could be improved by pro-
viding semantically diverse examples to learners. For example, the
system could cluster similarly phrased labels and select one that
will be shown to learners from each cluster.

The peer voting result, given as a method of feedback for the
multiple-choice questions in the Subgoal Voting tasks, was generally
not useful. Learners felt the information was difficult to interpret,
which was especially confusing in the early stage of the labeling,
where there weren’t enough peer votes. Although a longer-term
study with more accumulated peer data might provide better in-
sight to learners, the findings from the current study indicate that
presentation of such information should be carefully considered so
that learners can easily interpret its meaning.

Through open-ended responses, we were able to discover direc-
tions that could further improve the learning experience. Currently,
the system does not take the learner’s initial label into consid-
eration when choosing subgoal label examples. However, as one
participant noted, the system could provide examples that are more
relevant and better in terms of quality so that learners can make
better comparisons. A similar implication is suggested in previous
work [28]; learners could have a negative learning experience even
though being provided with high-quality subgoal labels due to the
sheer difference between their own labels and the expert-created
ones, which makes comparison highly difficult. Future work could
explore how providing relevant examples for comparison would
have an effect on the learning outcome.

Currently, subgoals are randomly assigned to either of the mi-
crotasks. However, the amount of benefit from the microtask might
vary among learners, based on their prior experience; a compe-
tent learner might already have a good understanding of a certain
subgoal and therefore feel the Subgoal Voting task as trivial and
even unnecessary. Prior work [31] indicates that subgoal learning
can quickly become tedious as learners gain expertise. Tasks that
match and make use of their high level of understanding could be
provided to mitigate this situation, such as asking them to critique
the labels provided by other learners and improve their quality.

6.2 Limitations
We evaluated our system with 63 participants. However, this could
be considered relatively small-scale compared to previous work on
learnersourcing [48, 50] and computer science education [12, 36].
Also, participants did not use English as their primary language,
which might have affected their ability to create subgoal labels and
solution plans in English. Although our evaluation results strongly
suggest the effectiveness of our workflow design, further investi-
gation on a larger and more diverse population would strengthen

the usefulness of the approach, most notably the peer voting result
shown in the Subgoal Voting task.

While we compared the system-selected subgoal labels against
expert-created labels through expert evaluation, we did not col-
lect learners’ preferences among the provided peer examples in
the current study. Investigating which type of subgoal labels are
helpful from the learner’s perspective would reveal useful insights
in improving the label example selection process, which we leave
as future work.

We observed that the majority of the participants were unable
to develop a complete solution plan using the solution technique
they learned from the activity. Participants might have suffered
from the limitation of being a single-session study with only one
worked example. Longer-term instructional support with multiple
algorithmic problems for a solution technique would further reveal
how the microtasks take effect in improving the learners’ problem-
solving skills. Also, we chose a simple solution technique due to the
limitations of a single-session, short-term study.Whether AlgoSolve
will be effective for other topics in algorithms that require expertise
remains an open question. Since many of the subgoals can be shared
across different topics, e.g., input/initialization or output [42], we
expect our approach to be applicable in other problems.

6.3 Extending the System into an Autonomous
Learnersourcing Platform

Our two-staged workflow was able to successfully distill high-
quality subgoal label examples from the collected labels through
the Subgoal Voting task without expert intervention. Still, the scope
and hierarchy of subgoals were determined through expert discus-
sion prior to the study. We predetermined the subgoal scope and
hierarchy in the current study in order to focus on whether the pro-
posed workflow can successfully collect high-quality subgoal labels
from learners. The scalability of the system could be improved by
lessening the amount of manual work needed from experts. Future
work could explore the design of the task that can effectively build
such a structure of subgoals.

7 CONCLUSION
Subgoal learning can help learners improve their solution planning
ability when solving algorithmic problems. Subgoal learning bene-
fits from expert-created subgoal labels, which are scarce resources
in self-learning. We introduced a learnersourcing approach for col-
lecting high-quality subgoal labels by guiding learners to produce
higher quality subgoal labels through high-quality peer-created ex-
amples while helping them improve their problem-solving skills.We
designed a two-stage workflow where learners are first introduced
to high-quality subgoal label examples through multiple-choice
questions and then create their own labels with an opportunity of
iterating on their subgoal labels through comparison against other
subgoal labels. Our evaluation results demonstrated the usefulness
of the proposed workflow design in helping learners improve the
quality of their labels while improving their problem-solving skills.

ACKNOWLEDGMENTS
We thank members of KIXLAB (KAIST Interaction Lab) for their
support and feedback. This workwas supported byAlgorithm LABS.

AlgoSolve: Supporting Subgoal Learning in Algorithmic Problem-Solving with Learnersourced Microtasks CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

We thank our study participants for their valuable and insightful
comments.

REFERENCES
[1] Owen L Astrachan. 2004. Non-competitive programming contest problems as

the basis for just-in-time teaching. In 34th Annual Frontiers in Education, 2004.
FIE 2004. IEEE, T3H–20.

[2] Robert KAtkinson, Richard Catrambone, andMaryMargaretMerrill. 2003. Aiding
Transfer in Statistics: Examining the Use of Conceptually Oriented Equations
and Elaborations During Subgoal Learning. Journal of Educational Psychology
95, 4 (2003), 762.

[3] Roland Backhouse. 2011. Algorithmic problem solving. John Wiley & Sons.
[4] John B Biggs and Kevin F Collis. 2014. Evaluating the quality of learning: The

SOLO taxonomy (Structure of the Observed Learning Outcome). Academic Press.
[5] Brian Brost, Yevgeny Seldin, Ingemar J Cox, and Christina Lioma. 2016. Multi-

dueling bandits and their application to online ranker evaluation. In Proceedings
of the 25th ACM International on Conference on Information and Knowledge Man-
agement. 2161–2166.

[6] Francisco Enrique Vicente Castro and Kathi Fisler. 2020. Qualitative Analyses
of Movements Between Task-level and Code-level Thinking of Novice Program-
mers. In Proceedings of the 51st ACM Technical Symposium on Computer Science
Education. 487–493.

[7] Richard Catrambone. 1998. The subgoal learning model: Creating better examples
so that students can solve novel problems. Journal of experimental psychology:
General 127, 4 (1998), 355.

[8] Richard Catrambone and Keith J Holyoak. 1990. Learning subgoals and methods
for solving probability problems. Memory & Cognition 18, 6 (1990), 593–603.

[9] Christian Charras and Thierry Lecroq. 2004. Handbook of exact string matching
algorithms. King’s College Publications.

[10] Michelene TH Chi. 2009. Active-constructive-interactive: A conceptual frame-
work for differentiating learning activities. Topics in cognitive science 1, 1 (2009),
73–105.

[11] Michael De Raadt, Richard Watson, and Mark Toleman. 2009. Teaching and as-
sessing programming strategies explicitly. In Proceedings of the 11th Australasian
Computing Education Conference (ACE 2009), Vol. 95. Australian Computer Society
Inc., 45–54.

[12] Adrienne Decker, Lauren E Margulieux, and Briana B Morrison. 2019. Using the
SOLO taxonomy to understand subgoal labels effect in CS1. In Proceedings of the
2019 ACM Conference on International Computing Education Research. 209–217.

[13] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen Purchase. 2008. Peer-
Wise. In Proceedings of the 8th International Conference on Computing Education
Research. 109–112.

[14] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen Purchase. 2008.
PeerWise: students sharing their multiple choice questions. In Proceedings of the
fourth international workshop on computing education research. 51–58.

[15] Shayan Doroudi, Ece Kamar, and Emma Brunskill. 2019. Not everyone writes
good examples but good examples can come from anywhere. In Proceedings of
the AAAI Conference on Human Computation and Crowdsourcing, Vol. 7. 12–21.

[16] Elena L Glassman, Aaron Lin, Carrie J Cai, and Robert C Miller. 2016. Learn-
ersourcing personalized hints. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing. 1626–1636.

[17] Philip J Guo, Julia M Markel, and Xiong Zhang. 2020. Learnersourcing at Scale
to Overcome Expert Blind Spots for Introductory Programming: A Three-Year
Deployment Study on the Python Tutor Website. In Proceedings of the Seventh
ACM Conference on Learning@ Scale. 301–304.

[18] Mark Guzdial, Luke Hohmann, Michael Konneman, Christopher Walton, and
Elliot Soloway. 1998. Supporting programming and learning-to-program with an
integrated CAD and scaffolding workbench. Interactive Learning Environments 6,
1-2 (1998), 143–179.

[19] Minjie Hu, Michael Winikoff, and Stephen Cranefield. 2013. A process for novice
programming using goals and plans. In Proceedings of the Fifteenth Australasian
Computing Education Conference-Volume 136. 3–12.

[20] Robin Jeffries, Althea A Turner, Peter G Polson, and Michael E Atwood. 1981. The
processes involved in designing software. Cognitive skills and their acquisition
255 (1981), 283.

[21] Dayu Jiang and Slava Kalyuga. 2020. Confirmatory factor analysis of cognitive
load ratings supports a two-factor model. Tutorials in Quantitative Methods for
Psychology 16 (2020), 216–225.

[22] Hyoungwook Jin, Minsuk Chang, and Juho Kim. 2019. SolveDeep: A System
for Supporting Subgoal Learning in Online Math Problem Solving. In Extended
Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems.
1–6.

[23] Hassan Khosravi, Gianluca Demartini, Shazia Sadiq, and Dragan Gasevic. 2021.
Charting the design and analytics agenda of learnersourcing systems. In LAK21:
11th International Learning Analytics and Knowledge Conference. 32–42.

[24] Juho Kim. 2015. Learnersourcing: improving learning with collective learner activity.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[25] Kenneth R Koedinger, John C Stamper, Elizabeth A McLaughlin, and Tristan
Nixon. 2013. Using data-driven discovery of better student models to improve
student learning. In International conference on artificial intelligence in education.
Springer, 421–430.

[26] Andy Kurnia, Andrew Lim, and Brenda Cheang. 2001. Online judge. Computers
& Education 36, 4 (2001), 299–315.

[27] H Chad Lane and Kurt VanLehn. 2005. Teaching the tacit knowledge of program-
ming to novices with natural language tutoring. Computer Science Education 15,
3 (2005), 183–201.

[28] Lauren E Margulieux and Richard Catrambone. 2019. Finding the best types of
guidance for constructing self-explanations of subgoals in programming. Journal
of the Learning Sciences 28, 1 (2019), 108–151.

[29] Lauren E Margulieux, Richard Catrambone, and Laura M Schaeffer. 2018. Vary-
ing effects of subgoal labeled expository text in programming, chemistry, and
statistics. Instructional Science 46, 5 (2018), 707–722.

[30] Lauren E Margulieux, Mark Guzdial, and Richard Catrambone. 2012. Subgoal-
labeled instructional material improves performance and transfer in learning
to develop mobile applications. In Proceedings of the ninth annual international
conference on International computing education research. 71–78.

[31] Lauren E Margulieux, Briana B Morrison, Baker Franke, and Harivololona Ramil-
ison. 2020. Effect of Implementing Subgoals in Code. org’s Intro to Programming
Unit in Computer Science Principles. ACM Transactions on Computing Education
(TOCE) 20, 4 (2020), 1–24.

[32] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan,
Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz
Wilusz. 2001. A multi-national, multi-institutional study of assessment of pro-
gramming skills of first-year CS students. In Working group reports from ITiCSE
on Innovation and technology in computer science education. 125–180.

[33] Piotr Mitros. 2015. Learnersourcing of complex assessments. In Proceedings of
the Second (2015) ACM Conference on Learning@ Scale. 317–320.

[34] Steven Moore, Huy Anh Nguyen, and John Stamper. 2021. Examining the Effects
of Student Participation and Performance on the Quality of Learnersourcing
Multiple-Choice Questions. In Proceedings of the Eighth ACM Conference on
Learning@ Scale. 209–220.

[35] Briana B Morrison, Brian Dorn, and Mark Guzdial. 2014. Measuring cognitive
load in introductory CS: adaptation of an instrument. In Proceedings of the tenth
annual conference on International computing education research. 131–138.

[36] Briana BMorrison, Lauren EMargulieux, and Adrienne Decker. 2020. The curious
case of loops. Computer Science Education 30, 2 (2020), 127–154.

[37] Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. 2015. Subgoals,
context, and worked examples in learning computing problem solving. In Pro-
ceedings of the eleventh annual international conference on international computing
education research. 21–29.

[38] Eni Mustafaraj, Khonzoda Umarova, Franklyn Turbak, and Sohie Lee. 2018. Task-
specific language modeling for selecting peer-written explanations. In The Thirty-
First International Flairs Conference.

[39] Ha Nguyen, June Ahn, William Young, and Fabio Campos. 2020. Where’s the
Learning in Education Crowdsourcing?. In Proceedings of the Seventh ACM Con-
ference on Learning@ Scale. 305–308.

[40] David N Perkins, Chris Hancock, Renee Hobbs, FayMartin, and Rebecca Simmons.
1986. Conditions of learning in novice programmers. Journal of Educational
Computing Research 2, 1 (1986), 37–55.

[41] Robert S Rist. 1989. Schema creation in programming. Cognitive Science 13, 3
(1989), 389–414.

[42] Robert S Rist. 1991. Knowledge creation and retrieval in program design: A
comparison of novice and intermediate student programmers. Human-Computer
Interaction 6, 1 (1991), 1–46.

[43] Anjali Singh, Christopher Brooks, Yiwen Lin, andWarren Li. 2021. What’s In It for
the Learners? Evidence from a Randomized Field Experiment on Learnersourcing
Questions in a MOOC. In Proceedings of the Eighth ACM Conference on Learning@
Scale. 221–233.

[44] Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong Yue. 2017. Multi-dueling
Bandits with Dependent Arms. In Proceedings of the Thirty-Third Conference on
Uncertainty in Artificial Intelligence.

[45] Marie Tarrant and James Ware. 2010. A comparison of the psychometric proper-
ties of three-and four-option multiple-choice questions in nursing assessments.
Nurse education today 30, 6 (2010), 539–543.

[46] Xu Wang, Srinivasa Teja Talluri, Carolyn Rose, and Kenneth Koedinger. 2019.
UpGrade: Sourcing student open-ended solutions to create scalable learning
opportunities. In Proceedings of the Sixth (2019) ACM Conference on Learning@
Scale. 1–10.

[47] SzymonWasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal.
2018. A survey on online judge systems and their applications. ACM Computing
Surveys (CSUR) 51, 1 (2018), 1–34.

[48] SarahWeir, Juho Kim, Krzysztof Z Gajos, and Robert C Miller. 2015. Learnersourc-
ing subgoal labels for how-to videos. In Proceedings of the 18th ACM Conference

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Kabdo Choi, Hyungyu Shin, Meng Xia, and Juho Kim

on Computer Supported Cooperative Work & Social Computing. 405–416.
[49] Jacob Whitehill and Margo Seltzer. 2017. A Crowdsourcing Approach to Collect-

ing Tutorial Videos–Toward Personalized Learning-at-Scale. In Proceedings of
the Fourth (2017) ACM Conference on Learning@ Scale. 157–160.

[50] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z
Gajos, Walter S Lasecki, and Neil Heffernan. 2016. Axis: Generating explanations
at scale with learnersourcing and machine learning. In Proceedings of the Third
(2016) ACM Conference on Learning@ Scale. 379–388.

[51] Joseph Jay Williams, Anna N Rafferty, Dustin Tingley, Andrew Ang, Walter S
Lasecki, and Juho Kim. 2018. Enhancing online problems through instructor-
centered tools for randomized experiments. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems. 1–12.

[52] Albina Zavgorodniaia, Rodrigo Duran, Arto Hellas, Otto Seppala, and Juha Sorva.
2020. Measuring the cognitive load of learning to program: A replication study.
In United Kingdom & Ireland Computing Education Research conference. 3–9.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Subgoal Learning
	2.2 Learnersourcing Approaches for Collecting Learning Resources
	2.3 Improving the Quality of Learner Contributions in Learnersourcing

	3 Learnersourcing Workflow Design
	3.1 Learnersourcing Workflow Design

	4 Evaluation
	4.1 Participants
	4.2 Study Materials
	4.3 Procedure
	4.4 Measurements

	5 Results
	5.1 RQ1. Quality of the System-selected Labels
	5.2 RQ2. Quality of the Learner Submissions
	5.3 RQ3. Learning Experiences Provided by the Microtasks

	6 Discussion, Limitations, and Future Work
	6.1 Improving the Workflow Design
	6.2 Limitations
	6.3 Extending the System into an Autonomous Learnersourcing Platform

	7 Conclusion
	Acknowledgments
	References

