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1. Introduction

The transition from hands-on driver assistance (Levels 1–2) [ 1 ] to hands-off highly 
automated driving (HAD) (Levels 3–5) requires a number of changes to system safety 
approaches. For example, a higher level of component availability is required as 
the system cannot be simply deactivated upon detection of a component hardware 
fault (fail operational vs. fail safe). Furthermore, at a functional level, an approach to 
correctly interpreting the current driving situation including environmental conditions 
and making judgements regarding subsequent actions is required in order to ensure 
critical driving situations are avoided under all possible circumstances. 

The conditions for being acceptably safe with respect to functional safety for 
passenger vehicles are set by ISO 26262 [ 2 ]. Adherence to this standard remains a 
necessary prerequisite for demonstrating the safety of automated driving in order 
to ensure a reliable and fault-tolerant implementation of the system with respect 
to random hardware and systematic failures. Safety of automated driving also 
requires the satisfaction of a set of safety goals at the vehicle level. Safety goals 
are top-level safety requirements that define how the system must perform in order 
that the risk of hazardous events is tolerable. The issue of the insufficiency of the 
system to meet the safety goals, due to inherent restrictions in sensors, actuators 
or the inadequacy of the intended function itself, is not addressed [ 3 ] by ISO 26262. 
Extensions to the standard, in particular, the Safety of the Intended Functionality 
(SOTIF) approach, aim to address these issues, but are currently focused on driver 
assistance rather than HAD systems [ 4 ]. As a result, additional approaches to those 
already defined by the standards must be developed and the ability of the system 
to meet its safety goals must be systematically argued based on “first principles” 

where adherence to existing standards is only one part of the overall argument.  
An assurance case [ 5 ] provides a convincing and valid argument that a set of claims 
regarding the safety of a system is justified for a given function based on the 
provision of evidence and a set of assumptions over its operational context.

In this report we explore the challenges involved in assuring the safety of highly 
automated driving systems with particular focus on the topic of functional 
insufficiencies (where the function does not meet the safety goals) within an open 
context. A framework is presented for structuring key elements of the argumentation 
strategy and a review of state-of-the-art is presented aligned to each of the elements 
of the framework. The report also uses case studies to highlight where significant 
research challenges still exist. 

The application of established approaches to ensuring functional safety while 
protecting the system against cyber-physical attacks (security) is a necessary 
prerequisite for system safety but is outside the scope of this report.

1. Introduction

© University of York 2020

3Assuring the safety of highly automated driving: state-of-the-art and research perspectives



1. Introduction 8. Conclusions 9. Bibliography
2. Challenges of  

safety assurance in  
the open context

5. Domain analysis  
and the definition  

of safety goals

4. Application of  
the framework

6. System  
design

7. Verification and 
validation evidence

3. A framework for  
safety assurance of highly 

automated driving

2. Challenges of  
safety assurance in  
the open context

In 2017, when Volvo1 started testing its automated driving systems in Australia for 
the first time, it encountered a situation the Swedish designers had not necessarily 
anticipated – kangaroos. Having “trained” the system to accurately recognise and 
predict the path of large mammals such as deer and elk crossing the road ahead, 
the movements of the marsupials responsible for 90% of the animal/vehicle collisions 
in Australia had the system stumped. Since then, there have been other incidents2 
of automated driving vehicles misinterpreting their surroundings with fatal 
consequences for the vehicle occupants and pedestrians. 

Figure 1: Functional components of a highly automated driving system

Figure 1 summarises the functional components constituting a highly automated 
driving system. Sensing components may consist of various direct sensor channels 
such as RADAR, LIDAR and video cameras. Understanding components involve 
interpreting the current driving situation based on the sensing inputs and can also 
include indirect contextual information, for example, from digital maps and vehicle-
to-infrastructure systems. This includes the processing of raw sensor data to provide 
a logical perspective of the current situation including vehicle position and trajectory 
as well as the type, position and trajectories of other traffic participants. Decision 
components react based on a set of driving goals (e.g. drive from A to B) and an 
interpretation of the current scene to calculate the required driving strategies. 
Action components are responsible for executing the driving strategy via the set of 
vehicle actuators (brakes, engine, steering wheel, etc.).

We define an open context system as a system that operates within an environment 
which cannot be fully specified at design time, either due to the inherent complexity 
and unpredictability of the environment or due to the manner in which the environment 
evolves over time. The open context provides a key challenge to the safety validation 
and assurance of highly automated driving systems. In particular, safety assurance 
must address the issue of demonstrating that adequate system performance 
is guaranteed within an environment that cannot be completely specified and 
continuously changes during operation of the system.

1 https://www.theguardian.com/technology/2017/jul/01/volvo-admits-its-self-driving-cars-are-confused-by-kangaroos 2 https://www.theguardian.com/technology/2017/sep/12/tesla-crash-joshua-brown-safety-self-driving-cars

2. Challenges of safety assurance in the open context

Open context

Highly automated driving system

Sensing Decision ActionUnderstanding
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Figure 2: Sources of complexity and uncertainty in highly automated driving systems

Figure 2 summarises the sources of uncertainty and complexity in systems 
resulting from the open context. Uncertainty is inherent due to the complexity 
and unpredictability of the operational domain in which the system operates. For 
example, other road users may often behave in unexpected ways, the same object 
may look different in different weather conditions, or road signs may be damaged 
or missing. This unpredictable domain is then observed by the system via channels 
that are also inherently imperfect due to technical limitations of the sensing 
approach itself [ 6 ]. Thus, the understanding and decision-making components of 
the system are presented with noisy, incomplete data about the current situation. 

This uncertainty is typically counteracted by using multiple sensing channels (that 
may present conflicting information) and algorithms that make use of heuristics 
or machine learning functions to interpret the data. However, these algorithms are 
themselves inherently imprecise and introduce an additional level of uncertainty. 
For example, object classifications may only be provided with a particular level of 
confidence. Based on the resulting partial understanding of the inherently complex 
environment, “decision” functions are required to implement a driving strategy 
capable of safely navigating the vehicle to its ultimate destination. 

The unpredictable nature of the impact of the vehicle’s actions on its environment, 
for example in terms of the reactions of other drivers and road users, closes the 
cycle to the complex environment to be interpreted by the vehicle. In other words, 
a function operating according to its specification running on failure-free hardware 
could still cause serious safety hazards if the complexity and uncertainties inherent  
in the driving tasks are not adequately managed. 

The dominant challenges facing the safety assurance of highly automated driving 
systems are therefore the derivation and validation of system safety goals that are 
sufficient to control the risk of hazardous events and the demonstration of their 
fulfilment under all feasible situations that may be encountered by the vehicle during 
its operation. These need to be achieved despite the complexity and uncertainty 
inherent in the domain, and in the sensing and understanding/decision algorithms.
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3.1 How safe is safe enough?

More than 90% of accidents on the road can be attributed to human error [ 7 ] and 
automated driving systems have the potential for making roads significantly safer  
by restricting the impact of potentially inattentive and unreliable human drivers. 

However, these systems also introduce new classes of risks. By transferring the decision 
function from the driver to the machine they also bring up a number of ethical questions. 
A number of factors will impact on whether or not society at large will place their trust 
in these systems. The level of tolerable residual risk associated with the introduction of 
the new technology will also be seen within the context of the perceived safety benefits 
on the function itself. It is our task as automotive safety engineers to deliver safety 
arguments for the system that are convincing, objective and sound, and that can be 
understood and accepted by not only governing authorities but also the public at large. 

The starting point of any safety argument is some definition of the safety claim that 
is being made. In other words, how “safe” we argue the system to be. In 2016, the 
German ministry of transport and digital infrastructure commissioned a report3 into 
ethical considerations of automated driving. One of the recommendations of the 
report was that it must be shown that the automated driving systems perform, on 
average, better than a human driver in terms of avoiding or mitigating hazardous 
situations, although in some cases it may be acceptable that the performance is 
slightly worse than a human so long as an overall “positive risk balance” is achieved. 

A related approach based on the definition in French “Globalement au moins aussi bon”, 
or GAMAB for short, refers to the principle that any new system must be at least as 
good any previous system it replaces. Although superficially this could be used to argue 
the risk equivalence to average human drivers, it could also easily well be argued that 
automated driving systems are not a replacement of the human driver but are instead 
a fundamentally new technology. In addition, this is also a problematic standpoint 
from a product liability perspective, as every accident could be examined individually 
regarding whether or not better engineering and management practices could have 
prevented the accident from occurring.

The ethics commission report however did not only focus on positive risk balance 
as a measure of an ethically acceptable level of safety. It also places emphasis on 
the application of a proactive driving behaviour, avoidance of accidents as much as 
“practically possible” and the avoidance of discrimination on the basis of any person-
related characteristics. The principle of ALARP (as low as reasonably practicable), or 
variants thereof, are also often used in the regulation of safety-critical systems. The ALARP 
approach to risk assessment involves demonstrating that the cost involved in further 
reducing the risk would be disproportionate to the benefit gained. These judgements 
are typically made not only on the basis of quantitative assessments but also on an 
understanding of good engineering practice and existing standards. If it could be argued 
therefore that applying existing standards and good engineering practice could result in 
significantly better performance than an average human driver, then a direct comparison 
to current accident statistics may not be sufficient. Such a qualitative approach to arguing 
safety nevertheless requires some definition of what it means to drive “safely”.

3. A framework for safety assurance of highly automated driving

3. A framework for  
safety assurance of highly 

automated driving

3 Ethics Commission Report Automated and Connected Driving (in German), Bundesministerium für Verkehr und digitale Infrastruktur, 2017
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This could include some safe driving principles such as the following:

•	 Maintain a proactive driving style:

•	 Employ an anticipatory and predictable driving style – avoid hazardous 
scenarios.

•	 Maintain legal compliance.

•	 Ensure a reactive driving style:

•	 In case of violations of laws and regulations by other road users, the system 
reconstitutes its legal compliance.

•	 If this is not possible, or other road users, animals or objects cause a hazard, 
prevent a possible accident or mitigate the damage.

The evidence used to support how well these claims are met by the system 
will include quantitative statements based on statistical analysis that reinforce 
our confidence in our arguments and help to illustrate the level of residual risk 
achieved. In addition though, a broad range of evidence should be presented based 
on engineering rationale as part of the system design as well as verification and 
validation activities. 

The assurance case will provide a structured argument that the HAD function 
achieves safe behaviour for all conditions that meet the set of assumptions 
describing the target application domain. The assurance case must justify that the 
level of risk associated with the HAD function is acceptable. This will rely not only 
on technical but also societal, ethical and legal considerations. The assurance case 
argument will be based on the capability of the chosen system architecture itself 

to minimise the risk associated with insufficiencies due to domain complexity 
(aleatoric uncertainty), sensing errors and component insufficiencies (epistemic 
uncertainty) [ 8 ]. This argument shall be supported by a diverse set of verification 
and validation evidence that support claims of the functional sufficiency of the 
HAD function for its determined context as well as the validity of the set of 
assumptions used to delimit the open context in terms of their relevance to the 
target domain.

3.2 Summary of the framework

Figure 3: A framework for the safety assurance of highly automated driving

3. A framework for  
safety assurance of highly 

automated driving
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This section summarises a framework in which the main elements of such an 
argument are presented. The overall approach is summarised in Figure 3. At its  
core is a top-level definition of an acceptable level of safety and the overall aim is 
to develop an assurance case that argues that the level of residual risk associated 
with the system is commensurate to societal and legal expectations. The activities 
within the framework are continuously iterated as the use of the systems in the 
field lead to a better understanding of the operational design domain as well as the 
system’s inherent technical limitations and subsequent improvements.

A systematic Domain analysis forms the basis of an understanding of the environment 
in which the system should operate. Classes of scenarios in which the system should 
operate are defined and analysed to identify dominant properties of the environment 
relevant to the safe operation of the system. A set of high-level safety goals for the 
system are then defined based on this domain analysis. This includes a systematic 
hazard and risk analysis involving not only a consideration of a failure in the function 
of the ego-vehicle, but also a systemic view of intrinsically hazardous conditions 
within the interaction between the ego-vehicle and its environment that must be 
avoided. Since the safety goals are defined based on this “determined context” for the 
vehicle operation, the validity of the safety assurance argument that is produced is 
therefore also restricted to this “determined context”, as defined by the set of scenario 
classes and identified properties. The resulting scope is known as the operational 
design domain. Typical classes of scenario included in the analysis could include, for 
example, motorway driving at speed, and in heavy traffic, and relevant environmental 
properties may include weather and lighting conditions, road surface, as well as the 
behaviour and type of other traffic participants. Ensuring that all “relevant” classes of 
scenario and their dominant safety properties have been identified is a key task of the 
validation of such systems. The top-level safety goals of the system are also defined 

within the context of societal and legal expectations on safe driving behaviour.  
The rigorous analysis of such contextual requirements therefore also forms an 
important component on delimiting the scope of the safety assurance argument.

System design involves applying an iterative approach to refining the safety goals in 
coordination with system design decisions. At each level of refinement, assumptions 
made in the design are explicitly stated and analysed, so that they may also be later 
validated. Further iterations of the domain analysis may also be required, for example, 
to identify particular properties of the environment relevant to the operation of 
a visual pedestrian recognition system. This may identify assumptions on other 
components of the technical system architecture, for example, assumptions about 
the depth of focus and resolution of the camera that provides the input to the 
pedestrian recognition function. A functional and technical system design should 
be derived that is capable of achieving the safety goals, even in the presence of 
inevitable insufficiencies and faults within individual components. 

Component insufficiencies may be, for example, limitations of particular sensor 
components in poor light conditions. Meeting the safety goals requires a means 
of determining and specifying which insufficiencies of individual components are 
acceptable in all parts of the “sense, understand, decide, act” chain. In addition, a 
means is required to determine how such insufficiencies either propagate through, or 
are minimised by, the chosen system design (e.g. through a combination of diverse 
sensor channels with non-overlapping insufficiencies). A compositional approach to 
analysing the safety of the system can be used to manage the emerging complexity and 
allow for re-use of standardised parts. This should involve a precise (preferably formal) 
specification of the assumptions each component requires to be fulfilled on its input 
interfaces in order to guarantee a particular performance on its output interfaces.

3. A framework for  
safety assurance of highly 

automated driving
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In such a way, pre-qualified components can be combined to form a system 
architecture that can be analysed for its robustness in satisfying the safety goals. 
The system architecture must be robust both to functional insufficiencies of the 
individual components themselves, as well as to the uncertainties inherent in the 
domain or sensing channels.

The evidence requirements for Verification and validation will dramatically increase 
for HAD systems in comparison to previous vehicle functions. As well as the need to 
demonstrate high levels of availability of the function compared to the validation of the 
relatively simple diagnostic and safe state mechanisms of the past, a number of other 
specific challenges must be solved. At the component level, a high level of confidence 
is required that the assumes/guarantees contracts are fulfilled for each component, 
taking account of functional insufficiencies. This could include, for example, the formal 
verification of a decision algorithm, or a demonstration of the perception accuracy of a 
particular sensor channel under the determined set of scenario conditions. A particular 
challenge is to verify that machine learning algorithms fulfil their specification with an 
adequate level of accuracy. 

In addition, evidence must be provided to validate that the scenario classes and 
associated properties provide adequate coverage of the real scenarios encountered in 
the target domain. Such validation is required at the system level, but also to confirm 
the assumptions made for each component (e.g. size, shape and behaviour parameters 
of pedestrians that were used to select training data for a machine learning-based 
pedestrian recognition function). Due to the complexity of the domain and the 
impractical number of driving hours that would be required to provide statistically 
relevant test results [ 9 ], sources of validation other than standard vehicle-level system 
tests will be required. These may include simulation as well as the statistical analysis 

of large amounts of data captured in the field (e.g. during the operation of previous 
generations of a driving function). Both the simulation and field data analysis 
will need to be based on the same semantic data model as was used to describe 
the scenario classes and properties during the domain analysis. In this way, the 
validation activities can be actively used to refine the domain model and confirm the 
appropriateness of the assumptions made to restrict the scope of the open context 
relevant for the safety assurance.

Lastly, in order to reason about the applicability of the non-exhaustive verification 
and validation results across the entire scope of the input space for the operation 
of the vehicle, statistical extrapolation techniques will be required that can predict 
residual failure rates based on the combination of analysis, simulation, test and 
field monitoring evidence. In particular it must be demonstrated that coverage of 
rare but nevertheless critical events has been achieved.

3. A framework for  
safety assurance of highly 

automated driving
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4.1 Introduction

Within the last few years, many companies have begun development on HAD vehicles and 
have demonstrated prototypes under controlled conditions. The first fatal accidents caused 
by HAD enabled (test) vehicles have demonstrated the gap between prototypical functions 
and systems that can be released for unconstrained and safe operation within a given 
operational design domain (ODD). The capabilities required to release such systems for 
safety will need to be developed and introduced over time, thereby limiting the speed at 
which the systems can be introduced into the market. This is due to a number of factors:

•	 The need to develop competencies in system safety methodologies for open 
context autonomous systems within the automotive industry, including a 
significantly strong foundation in basic systems engineering principles;

•	 The need to resolve a number of open research questions that are required 
for a convincing safety assurance case;

•	 Technological development of the tool chains and infrastructure required for 
design, simulation and test of the systems;

•	 The efficacy of the methods referenced within the safety assurance case must be 
confirmed for realistic examples (e.g. ability of innovative testing techniques to 
demonstrate the robustness of machine learning-based perception functions);

•	 Pre-validated system components with known functional and performance 
properties must be developed for re-use that can be applied to successively more 
sophisticated functions without requiring a complete system re-validation.

The industrialisation of the assurance approaches for large-scale series development 
and release of such systems will require major changes across the industry. An iterative 
approach to developing these capabilities and confirming their effectiveness is therefore 
recommended. Example phases of increasing capabilities are shown in Figure 4.

Figure 4: Phases of capability improvement in safety assurance of HAD

In this section, the assurance framework is applied to two use cases from the 
HAD domain with differing complexity in order to demonstrate how various of the 
components of the framework fit together and where challenges still remain.

4. Application of the framework
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4.2 Level 3 highway chauffeur

The first use case will address assurance concepts for an SAE Level 3 [ 1 ] Conditional 
Driving Automation System that takes over control of the vehicle while driving on 
highways. During this time, the driver can direct their attention to other pursuits while 
the system takes control of the Dynamic Driving Task (DDT) and Object and Event 
Detection and Response (OEDR). The driver must be available to take over control in 
the case of a system failure or when the boundary of the ODD is met. This scenario can 
be seen as an extension of existing SAE Level 2 systems, for example, for longitudinal 
and lateral control. However, due to the fact that the driver no longer permanently 
monitors the system and environment, the assurance argument is not just restricted to 
arguing the absence of false positive events (e.g. harsh braking when not necessary) but 
must also consider false negative events (e.g. all objects in the trajectory of the vehicle 
must be detected) and performance requirements (e.g. geometric accuracy in the 
detection of objects and their classification). The following is a description of a potential 
assurance strategy for such a system based on the core components of the framework.

Domain analysis

The highway chauffeur function is limited to a restricted ODD which is described  
in terms of classes of scenarios according to the PEGASUS methodology  
(www.pegasusprojekt.de) and grouped according to a set of well-defined use cases 
(e.g. handover from driver to system, continuous driving in lane, overtaking, obstacle 
avoidance, handover from system to driver). The scenarios are defined according to 
the following five layers:

•	 Street topography;

•	 Traffic infrastructure (signs, traffic guidance);

•	 Temporal modifications of street topography and traffic infrastructure;

•	 Traffic participants and their interactions;

•	 Environmental conditions and their interactions with other properties of  
the scenario.

The description of the scenarios includes explicit restrictions of the ODD, for 
example geo-fencing to certain roads where there is complete and up-to-date 
information available regarding topology and infrastructure, weather conditions 
in which the sensor set is known to exhibit an adequate level of performance and 
the absence of roadworks or other traffic anomalies. To increase readability and 
analysability, the scenarios could be specified using Traffic Sequence Charts [ 10 ] or 
in the OpenScenario language (www.vires.com). The definition of the ODD leads to 
a set of assumptions about the environment and requirements on the detection 
of the ODD boundaries which must be captured in the system-level requirements 
specification. A semantic knowledge-based model, based on ontologies, is required 
in order to provide traceability between the ODD and the system specification, 
simulation, tests and field data.

Based on the scenario-driven description of the ODD and an understanding of 
the proposed function and system architecture including sensing channels and 
interfaces to other systems, a hazard and risk analysis for SOTIF is performed.  
For all identified hazardous events, acceptance criteria are defined (e.g. validation 
targets for the number of observed failures over time). Thus, a set of SOTIF-related 
safety goals are defined for the system including a concretisation of parameters 
for the specific vehicle, such as safe braking distance (or specification of dynamic 
parameters dependent on properties of the current scene) and acceptance targets.

4. Application of  
the framework
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The system specification shall include, in addition to a reference to the ODD, a 
description of the intended functionality and the derived safety goals. There is a risk 
in a scenario-driven approach that safety goals are derived with undue focus on known 
triggering events and lack of coverage of unknown triggering events. Due to the fact 
that the ODD is restricted to situations in which many of the system components 
(e.g. radar-based object detection) would have typically been previously validated for 
Level 1 and Level 2 systems, the validation of the requirements’ completeness and 
probability of unknown triggering events can be performed predominantly in vehicle-
based testing at a targeted sub-system level or system level (e.g. in the presence of 
a safety driver). Additionally, an analysis of other road users’ expectations of system 
behaviour, traffic flow simulation and crash databases can provide additional 
sources of information during requirements elicitation.

Design for assurance

The system specification is decomposed according to the “sense, understand, decide, 
act” functional structure and the associated requirements are allocated to components in 
the technical system architecture. Thereby assumptions about the ODD or other system 
components that are necessary in order for each component to reach its performance 
targets are documented and validated against the respective component specifications 
and known properties. Due to the use of previously validated components with well-known 
properties for the restricted ODD, a formal specification and analysis of all properties 
of interest may not be required if alternative validation evidence can be presented to 
argue that the ODD-specific limitations of the components are well understood. 

For the functional safety and SOTIF properties related to the safety goals, a safety 
analysis of the system architecture – fault tree analyses (FTA) and failure mode and 

effects analyses (FMEA) – should be extended to consider SOTIF properties. Deductive 
analyses such as FTA depend on all triggering events to be known to determine 
whether or not the validation target is met for that given set of basic events. Inductive 
analyses such as FMEA are better suited at detecting previously unidentified potential 
triggering events. These types of analyses are therefore to be seen as complementary 
rather than alternatives. The safety analyses will lead to the identification of additional 
system design measures (e.g. redundant sensing channels) or improved algorithmic 
capabilities to reduce the probability of the identified triggering events. FTAs on the 
other hand have the advantage of analysing the propagation of triggering events 
through the system.

Verification and validation

A verification and validation strategy shall be defined with regard to the risk of 
potentially hazardous triggering events and shall cover the ability of the sensors and 
sensor processing algorithms to model the environment, the ability of the decision 
algorithms to handle both known and unknown situations and make appropriate 
decisions, as well as the ability of the human-machine interface to prevent foreseeable 
misuse, and the manageability of the handover scenario by the driver [ 4 ].

The objective of the verification of the sensing and understanding algorithms is to 
determine the performance limits of the perception functions of the system and 
to confirm that these meet the performance requirements allocated to the sensing 
path. These tests, performed under lab and controlled test track conditions, shall 
systematically verify the sensing performance of the system across all scenarios and 
environmental conditions defined in the ODD.

4. Application of  
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If during the course of testing, previously unknown triggering events are discovered, 
then the domain analysis shall be revisited to determine whether or not the domain 
model shall be extended to explicitly include or exclude such conditions. Over time, an 
existing catalogue of conditions and concrete scenarios (e.g. road structures specific 
to a particular location) will be continuously extended so that it can be used as a 
regression test for verifying against known triggering events.

Simulation is a viable means to verify the decision functions (e.g. manoeuvre 
planning): in particular, to cover many variations of the scenario classes defined in the 
ODD and to verify the behaviour of the system in rare, but otherwise critical, situations 
that are either too complex or too hazardous to reproduce in the real world. The 
use of simulation in combination with a formalisation of safety goals also allows for 
search-based testing to be performed to automatically determine scenarios in which 
the system fails to maintain the safety goals. These scenarios will then be analysed to 
determine whether or not they represent a gap in the ODD or system specification. 
During simulation, typically a perfect sensing model is assumed. However, fault 
injection on the simulated sensor channels (e.g. sporadic false negatives) could also be 
used to determine the robustness of the system against insufficiencies in the sensors.

Once sufficient confidence in the performance of the individual sub-systems has 
been achieved, then system verification within the target vehicle can begin, initially 
on closed test tracks and later on the open road. The scenario-based approach to 
defining the ODD provides a suitable test coverage criterion, however it is anticipated 
that certain combinations of scenarios and environmental conditions may only be 
reached under contrived conditions (e.g. test track). System verification activities 
are focused on determining the performance of the system with respect to known 
triggering events.

System validation activities have the objective of determining the risk of unknown 
triggering events leading to hazardous situations. This will again involve achieving 
a suitable coverage of the scenarios defined in the ODD but also must include a 
statistically relevant number of driving miles with the ability to uncover situations not 
yet specified. In order to achieve the number of driving miles required in a feasible 
time frame, various strategies can be applied in parallel. Test fleets with dedicated 
safety drivers are essential, but do not scale. Additional validation information can 
be achieved through collecting data from vehicles with an equivalent sensor set with 
the Level 3 function operating in silent mode. The analysis of the field data and its 
correlation with the definition of the ODD requires the use of the same semantic 
model as applied in specifying the classes of scenarios and environmental conditions. 
This then allows for triggering events discovered during validation to be analysed 
within the context of the current understanding of the ODD and for targeted analyses 
to be performed (e.g. search for occurrences of a particular scenario under specific 
weather conditions in the recorded field data). 

In addition, extreme value theory should be applied to recorded sensor data and 
internal state information to provide a statistical distribution of measurable events that 
can be used to deduce the probability of safety goals being violated. This in turn can 
be used to define test stopping criteria by calculating the set of data required in order 
to make such statistical extrapolations with sufficient confidence. Representative 
scenarios discovered during field testing (e.g. as yet unknown triggering events) 
should be recorded in a manner that they can replayed within a simulation 
environment in order to determine root-causes of the issues as well as to be able  
to use them as regression tests for future systems.

4. Application of  
the framework
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Assurance case

In essence, the assurance case must argue the absence of unreasonable risk due to 
functional insufficiencies through the following perspectives:

1. The specified behaviour is an accurate representation of the intended behaviour 
(addressing semantic gap in the specification).

2. The implemented behaviour corresponds to the specified behaviour, including 
in achieving the performance targets. This corresponds to verification of the 
implementation.

3. The implemented behaviour corresponds to the intended behaviour. This is 
equivalent to a validation of the implementation and follows naturally from goals 1 
and 2, if these could be argued with full certainty. This is however not realistic for all 
but the most trivial systems and ODDs.

4. The assurance case is valid only for the restricted ODD. Therefore, a strong argument 
also needs to be made that the HAD function is only active within the ODD and that 
the system can accurately detect when the boundaries of the ODD have been met.

5. The assurance case must argue that the handover between system and driver and 
vice-versa is safe.

The assurance case structure consists of qualitative arguments that system 
insufficiencies are well understood, and unknown triggering events are minimised 
(SOTIF approach). This argument is supported by the use of components with known 
performance properties from their application to previous SAE Level 1 and SAE 
Level 2 systems operating in the same domain, as well as systematic approaches to 
simulation and test. Quantitative arguments are made when defining test stopping 

criteria and when using statistical analysis to support the validation arguments, for 
example based on extreme value theory. An overall quantitative statement regarding 
the residual failure rate associated with functional insufficiencies is not made. 

Open research challenges

The overall assurance approach for the Safety of the Intended Function of the Level 3 
highway chauffeur is summarised in Figure 5.

Figure 5: Assurance strategy for Level 3 highway chauffeur (SOTIF focus)
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Based on the state-of-the-art review conducted within this report (see Sections 5, 6, 
and 7), the areas of the strategy with the most significant remaining open research 
challenges can be summarised as follows:

•	 Development of a common semantic model of the ODD that can be used within 
the system specification, simulation, test and field data analysis. Ideally this 
semantic model will become an industry standard in combination with the 
classes of scenario.

•	 Extensions of systems safety analysis techniques (such as FTA, FMEA, etc.) 
are required in order to model the effects of propagations of component-level 
insufficiencies throughout the system. These methods require as prerequisites the 
availability of information regarding potential insufficiencies at the component 
level. This information could be provided, for example through systematic and 
extensive testing or experience in the use of the same components within the 
context of other functions.

•	 Testing approaches for determining functional insufficiencies (discovery of 
known triggering events) at the component level and especially for sensors 
and perception algorithms are required. In particular, an argument for the 
absence of false negatives must be made during component and system tests 
which poses particular challenges in the generation of relevant test data and 
associated ground truth. The effectiveness of the testing approaches in detecting 
insufficiencies and arguing the absence of unknown triggering events must be 
demonstrated in order for them to provide a contribution to the system safety 
case. This must be evaluated within the context of extreme value theory to 
estimate the probability of residual failures. Further research is required in order 

to determine appropriate data and thresholds in order for the extreme value 
theory approach to yield robust results.

•	 Due to the fact that the assurance case is predicated upon a restricted ODD, 
the ability of the system to accurately detect the ODD boundary and respond 
appropriately must be rigorously argued. This challenge is closely related to the 
ability to ensure a safe handover to the driver upon reaching the boundary of the 
ODD. This requires ensuring sufficient time for the driver to revert their attention 
to the driving task and may require additional driver awareness monitoring systems.

4.3 Level 4 urban automated driving

In this section, a second application of automated driving is studied with significantly 
more challenges for safety assurance. SAE Level 4 High Driving Automation systems for 
urban automated driving require the system to take over dynamic driving tasks (DDT) 
and Object and Event Detection and Response (OEDR) in highly complex environments 
as well as providing fall-back functions in the case of system malfunctions. To illustrate 
the challenges involved in the safe implementation of urban automated driving it 
is useful to analyse the factors that led to a fatal accident involving a prototype HAD 
vehicle developed by Uber and discussed in detail in the article linked in this footnote4. 

The overall perspective on Uber’s initial assurance strategy can be summarised by 
the following quote from the article:

“… ATG, like everyone in the self-driving car industry, believed that the more miles a car 
drove itself without help from a human, the smarter it was. But the whole industry now 
realized this is an overly simplistic way to measure how well a car drives.”

4. Application of  
the framework

4 https://www.businessinsider.de/sources-describe-questionable-decisions-and-dysfunction-inside-ubers-self-driving-unit-before-one-of-its-cars-killed-a-pedestrian-2018-10?r=US&IR=T
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A more detailed analysis of the events leading to the accident shows that in trying to 
resolve the conflict of reducing the number of false positive events to create a smooth 
driving experience, a subsequent increase in false negative rates was deprioritised or 
ignored. In addition, there were known insufficiencies in the perception capabilities of 
the system, particularly involving near-range sensing and the detection of pedestrians 
and generation of ghost objects caused by effects such as the shadows of tree 
branches on the road. This suggests that a systematic design and analysis of the 
overall sensing approach was lacking, and information gathered about insufficiencies 
in the sensing were not adequately addressed at the system level. In addition, the 
built-in emergency braking system of the host vehicle was de-activated based on 
the assumption that the safety driver would take over in the event of a real threat. 
Furthermore, simulation-based verification was found to be inadequate, leading to 
immature functionality to be tested on the road within a public environment.

In addition to these technical challenges, a number of further organisational and 
procedural weaknesses were highlighted including an incentives system that 
caused engineers and safety drivers to prioritise smooth driving over safety-related 
interventions. The various contributing factors leading to the Uber accident serve 
to highlight the challenges of urban automated driving (in addition to those already 
discussed for the Level 3 scenario).

•	 The vehicles will operate in a far more complex and unpredictable “crowded” 
environment. This will include a higher density of objects that must be correctly 
identified and classified at much shorter distances in “distracting” surroundings.

•	 The increased level of perception ability will (at least, based on current sensor 
technology) rely on a cluster of numerous sensors of various modes (radar, 

LIDAR, camera). Understanding the limitations of each of these sensor types, 
their interactions and potential common cause triggering events, will be essential 
to arguing a sufficient performance.

•	 Due to the complexity and unpredictable nature of the ODD, a scenario-driven 
approach is unlikely to provide the level of completeness required without an 
infeasible explosion in the level of detail in the scenario specification.

•	 There will be an increasing number of potential scenarios in which the safe 
intended behaviour cannot be precisely defined. A clear set of ethical and legal 
principles will be required to guide the specification of system behaviour in these 
cases.

•	 Machine learning will play an increasingly significant role in the perception 
algorithms in order to extract structure from the complex environment (e.g. 
convolutional neural networks for pedestrian detection and pose estimation) as 
well as for decision making (e.g. reinforcement learning for trajectory planning). 
Machine learning poses particular problems in demonstrating the sufficiency of 
the system to react under all conditions. 

•	 The initial operation of Level 4 automated driving services within specific cities 
with the close cooperation of city authorities and homologation authorities also 
opens up the possibility of making use of city and traffic infrastructure to increase 
the reliability of the HAD function. This leads to allocation of safety requirements 
on the infrastructure outside the scope of the vehicle manufacturers and existing 
safety standards.

4. Application of  
the framework
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Domain analysis

Although still restricted by a given ODD that may include certain roads within a 
given city or certain weather conditions, the environment in which a Level 4 urban 
automated vehicle will operate will be significantly more diverse and complex than 
that for the Level 3 highway chauffeur. In particular, the close interaction between 
the vehicle and various types of other traffic participants such as pedestrians, 
cyclists, cars, buses, trams will inevitably lead to complex scenarios in which the  
safe intended behaviour cannot be easily defined, leading to a new type of semantic 
gap in the specification, defined in [ 11 ], as the moral responsibility gap. For 
this reason, a set of requirements that represent the legal, societal and ethical 
expectations on the behaviour of the vehicle must be defined and a clear definition  
of the boundaries of the vehicle behaviour with respect to these constraints is 
required (i.e. the vehicle should not be expected to make “moral” judgements5). 

When capturing the ODD for urban automated driving, even for a restricted ODD, 
the number of possible properties that could impact on the safe operation will be 
huge, in particular when taking into account dynamic effects, such as reactions of 
pedestrians and other road users to the ego-vehicle’s behaviour. When analysing the 
domain, an enumeration of all possible critical scenarios and properties will quickly 
lead to unmanageable complexity explosion with the high chance of incompleteness 
with respect to critical corner cases. This will require abstractions to be found that 
correspond to phenomenological properties of the domain critical to the safety of 
the driving function. The abstracted properties will then need to be used to define 
the ODD without the need to enumerate all possible scenarios. Certain properties  
will be specific to the sensor set, for example reflectivity and density of objects may  
be relevant for radar-based but not for camera-based perception systems.  

These phenomenological abstractions may be discovered via expert analysis, extensive 
tests, machine learning analysis of field data [ 12 ], as well as simulation including 
physical simulation of sensor properties. The set of classes chosen to represent the 
ODD will, of course, need to be thoroughly and continuously validated in the field as 
they are likely to evolve over time.

The above-mentioned level of domain analysis will lead to a more detailed definition 
of safety goals that also need to take into account the societal, legal and ethical 
constraints, as well as the phenomenological domain analysis. These safety goals 
will need to be refined and specified for specific classes of scenarios (e.g. pedestrian 
crossings) with reference to the semantic ontologies of road topologies, objects and 
environmental conditions. It is anticipated that the complexity of such safety goal 
definitions will need to go far beyond that proposed in [ 13 ] and will require a concerted 
industry-wide initiative to perform this analysis and form a consensus for acceptable 
safety goals for urban environments. In addition, a set of suitable technical performance 
indicators must be defined in order to measure progress against these safety goals to 
determine the sufficiency of a system to operate safely within the defined domain.

System design

The increased complexity of the requirements derived from the safety goals and 
allocation to individual components will require a higher level of rigour and formality 
in the design process in order to be able to argue that the design is sufficient for 
the safety goals. Requirements on perception algorithms will vary according to the 
scenario, for example, while turning at pedestrian crossings, the near 360 degree 
range sensing is most critical, while when driving at higher speeds the ability to 
detect and predict pedestrian movements from a distance is required.

4. Application of  
the framework

5 http://theconversation.com/self-driving-cars-why-we-cant-expect-them-to-be-moral-108299
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This may result in potentially conflicting optimisation goals that must be resolved 
during the design process. Based on the performance of current sensor technologies 
and perception algorithms, these requirements will lead to a large number of 
environment sensors (approximately 40 for vehicles currently in development). In 
order to argue the adequacy of this complex sensing system to detect all possible 
conditions of the ODD, a structured decomposition of the perception requirements 
based on the domain analysis is required and allocated to scenarios, together with 
spatial zones of the surroundings. In refining the requirements through the system 
design, the assumptions regarding the environment as well as the capabilities of 
system components must be clearly identified. The importance of design-based 
arguments based on systematically derived phenomenological domain attributes  
will increase for this class of systems, as testing alone can no longer provide a  
strong verification argument, due to the inherent uncertainty and complexity of  
the environment.

Model-based systems engineering approaches will be required in order to manage 
the complexity of verifying that the system design meets the requirements. In 
particular, design-by-contract approaches to specifying system components, 
including all assumptions about possible uncertainties on their inputs, insufficiencies 
in their function and failure modes in their execution, will provide the formal means 
of reasoning about the robustness of the system as a whole. Physical simulation of 
sensors, detailed component analysis, verification of performance requirements 
and fault injection tests will provide the information regarding the basic fault models 
at the component level. The model-based specification of the system design will then 
allow for an automated system-level analysis of the safety goals and multi-criteria 
optimisation (e.g. trade-off between robust coverage of perception requirements 
and the number of sensors).

The application of design-by-contract approaches becomes particularly relevant when 
integrating machine learning-based components into the system. For perception 
functions, this may involve so-called early fusion architectures (the machine learning 
function takes a number of diverse sensors as inputs) or late fusion (each sensor input is 
processed separately and semantic information is then provided to a separate function 
to perform cross-checking and plausibility checks to develop an understanding of the 
scene). A clear definition of the assumptions about the operating domain and system 
components is required, as is a definition of the guarantees that can be made by 
the machine learning function, including its level of robustness in terms of detection 
accuracy. This assumes/guarantees relation must then be confirmed by targeted 
analysis and verification applied to both the trained function and the training data itself.

For machine learning functions in the decision and planning components of the 
system, it is unclear whether or not behavioural constraints can be defined in enough 
detail in order to ensure that the safety goals are always met, in particular in the 
case where reinforcement learning is used. Instead, a continuous observation of the 
environment to ensure that assumptions are met despite an evolving domain and 
the application of constrained learning techniques will be required. Multiple levels of 
system monitoring will nevertheless be required, in order to continuously monitor 
the boundaries of the ODD and system performance and to determine when an 
automated fall back to a safe operating mode is required. 

Verification and validation

The verification and validation strategy for Level 4 urban automated driving must 
address the issues of increasing domain and system complexity including many 
situations that cannot be predicted during design time or safely tested in real systems. 

4. Application of  
the framework
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This requires that an increasing emphasis is placed on simulation, including at 
the perception level, as well as ever more systematic approaches to arguing the 
completeness of validation tests in the vehicle. Driving both of these will be the 
phenomenological attributes and semantic ontologies in addition to the set of 
scenario classes defined for the domain. The application of simulation and search-
based testing to identify realistic corner cases for the perception will require accurate 
models of the sensors and environment and a clear specification of the performance 
properties. In particular, physical simulation of the sensors as well as combined 
sensing, perception, decision-level system simulation will require significant computing 
resources involving much capital investment. 

With an increased reliance on simulation to gather assurance evidence, the integrity 
of the simulation and test environments as well as the transferability of the results 
also needs to be called into question. Simulation environments currently under 
development are still at an early stage, or reliant on open source development 
processes; a concerted effort will therefore be required in order to provide a qualified 
simulation and test infrastructure for automated driving.

Vehicle-based tests will remain essential for validating the assumptions made 
during domain analysis, system design and verification. In order to argue a 
coverage of not only the huge range of scenario classes but also the variations of 
phenomenological properties, the ability to directly trace situations monitored in 
the field to the domain model is essential. A semantic analysis of field monitoring 
data will also be required in order to identify gaps in the domain model, i.e. 
where behaviour was observed for which no causes in the domain model or as yet 
unidentified relationships between domain properties could be found. In order to 
argue the statistical relevance of the validation data, carefully selected performance 

indicators must be found that provide robust results when applying extreme value 
theory. Nevertheless, it is infeasible to expect that sufficient field data can be 
collected before release. Therefore, a successive approach to introducing Level 4 urban 
automated driving services is required that continuously collects validation data 
commensurate to a controlled widening of the ODD and level of authority given 
over to the system. 

Assurance case

The assurance case will follow a similar structure to that for the Level 3 highway 
chauffeur case, in terms of qualitative arguments to demonstrate safety for a 
given ODD and quantitative arguments to increase confidence in the verification 
and validation measures. In a number of places, an even greater level of rigour 
in the argumentation will be required. In particular, arguing a sufficient level of 
understanding of the domain requirements and demonstrating that machine 
learning-based functions met their design contracts will require a cross-industry 
consensus to develop accepted argumentation strategies, eventually leading to a  
new generation of safety standards. 

Due to the difficulty in capturing the variability of the domain using scenario 
descriptions, an over-reliance on scenario-based requirements and tests to 
demonstrate the safety of the vehicle should be avoided. This may lead to the 
temptation to focus assurance activities on passing specific scenarios rather than 
arguing the overall safety of the system for the entire ODD, even for scenarios 
which have not been defined in detail.

4. Application of  
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In addition, whereas for the Level 3 highway chauffeur class of systems, an 
argumentation is required for the safe handover between system and driver, for 
Level 4 urban automated driving an argument is required for the safe interaction 
between the system and other traffic participants in order to demonstrate that the 
behaviour of the vehicle does not promote additional hazards, for example due to 
reactions of pedestrians to different driving styles of automated vehicles.

Figure 6: Assurance strategy for Level 4 urban automated driving (SOTIF focus)

Open research questions

The overall assurance approach for the Safety of the Intended Function for Level 
4 urban automated driving is summarised in Figure 6. Based on the state-of-the-
art review conducted within this report in comparison to the Level 3 scenario, the 
areas of the strategy with the most significant remaining open research challenges 
have been identified as follows:

•	 Approaches are required to ensure that societal, ethical and legal constraints 
are adequately covered in the resulting specification of the safe intended 
behaviour and that the completeness and consistency of these requirements 
are validated and their implementation verified.

•	 An industry-wide consensus on a set of representative use cases and scenarios 
for the testing of basic capabilities is required. This will include an investigation 
into the extent to which the scenario-based domain models and assurance 
methods developed for Level 3 functions can be applied to the increased 
complexity of Level 4/Level 5 use cases.

•	 Notations and methods are required for performing and recording the 
phenomenological analysis of the ODD with the particular focus on managing the 
complexity of the semantic ontologies and identifying abstractions that nevertheless 
capture the most critical properties to be considered in the safety concept.

•	 A set of standardised safety goals are required that can be formally expressed, 
including the consideration of dynamic aspects of the ODD as well as a set of 
technical key performance indicators to indicate the systems performance in 
relation to these goals. These key performance indicators must also be able 
to monitor the occurrence and probability of incidents where the system 
performed inadequately but did not lead to an accident.
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•	 Scalable, tool-supported model-based systems engineering methods are required, 
supported by formal and automated analysis for capturing the requirements and 
system design, including the representation of performance-related requirements 
on the components that can only be formulated probabilistically. These methods 
must be supported by automated optimisation approaches to calculate optimal 
system architecture designs that satisfy all safety goals while optimising 
properties such as cost, energy consumption, weight and system availability.

•	 Targeted evaluation and industry-wide collaboration are required to develop an 
understanding of the types of automated driving functions for which machine 
learning not only leads to performance benefits but for which safety assurance 
arguments can be made. Future safety standards must be developed that 
explicitly consider machine learning functions from a design and verification 
perspective.

•	 Targeted research is required in order to understand the impact of automated 
vehicles in urban environments on the behaviour of other drivers and road 
users. Design measures and communication strategies will need to be found 
and agreed across the industry to reduce the risk of “collaboration hazards” 
caused by false assumptions made by traffic participants and automated vehicles.

4. Application of  
the framework
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5.1 Introduction
This section provides an overview of state-of-the art research and industrially applicable 
methods for performing the activities related to the domain analysis component of 
the framework. 

In this context, domain analysis is used to identify classes of conditions that could lead 
to hazardous events. According to ISO 26262 [ 2 ], hazardous events can be defined 
as situations in which the vehicle can no longer avoid an accident without third-party 
intervention, situations in which not all relevant traffic participants have an adequate 
assessment of the situation, or situations in which traffic participants demonstrate 
unpredictable behaviour. The standard ISO PAS 21448 [ 4 ] for the Safety of the Intended 
Functionality (SOTIF) defines triggering events as specific conditions of a driving 
scenario that serve as an initiator for a subsequent system reaction possibly leading 
to a hazardous event. The standard requires that measures are defined in order that 
safe behaviour is maintained in the presence of all known triggering events and that the 
probability of unknown triggering events is minimised. The SOTIF standard does not give 
detailed guidance on how to identify relevant interactions with the environment or the 
insufficiencies of sensors, actuators and algorithms that could lead to triggering events.

5.2 Determining the open context
Identifying hazardous events and triggering events requires firstly that the intended 
system behaviour, in terms of its interaction with the environment, is understood. 
This in turn requires an understanding of the scope of conditions that may occur 

within the environment. The ODD defines the domain over which the automated 
vehicle is designed to operate safely. SAE J3016 [ 1 ] defines the ODD as “Operating 
conditions under which a given driving automation system or feature thereof is specifically 
designed to function, including, but not limited to, environmental, geographical, and time-
of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway 
characteristics.” Only once the intended safe behaviour is clearly defined within a certain 
ODD can deviations from the intended functionality due to known and unknown 
triggering events be properly considered. If an adequate assurance case cannot be 
formulated for the absence of unreasonable risk due to functional insufficiencies and 
failures within a given ODD, then a restriction of the ODD may be necessary (e.g. to 
eliminate the possibility of triggering events not currently covered by the sensor set).

Neither ISO 26262 nor ISO PAS 21448 provide clear guidance on how to achieve this level 
of understanding of the intended behaviour for complex systems operating within an 
open context. For autonomous driving, a methodology is therefore required to generate a 
definition of safe behaviour of the system within the context of its target environment. 
A key part of the definition of the ODD must refer to classes of traffic situations to which 
the vehicle will be exposed and their accompanying environmental conditions. These traffic  
situations can be described in terms of scenes and scenarios, defined in [ 14 ] as follows:

A scene describes a snapshot of the environment including the scenery and dynamic 
elements, as well as all actors’ and observers’ self-representations, and the relationships 
among those entities. Only a scene representation in a simulated world can be all-
encompassing (objective scene, ground truth). In the real world it is incomplete, incorrect, 
uncertain, and from one or several observers’ points of view (subjective scene).
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A situation is the entirety of circumstances, which are to be considered for the selection 
of an appropriate behaviour pattern at a particular point of time. It entails all relevant 
conditions, options and determinants for behaviour. A situation is derived from the scene 
by an information selection and augmentation process based on transient (e.g. mission-
specific) as well as permanent goals and values. Hence, a situation is always subjective 
by representing an element’s point of view.

A scenario describes the temporal development between several scenes in a sequence 
of scenes. Every scenario starts with an initial scene. Actions and events as well as goals 
and values may be specified to characterize this temporal development in a scenario. 
Other than a scene, a scenario spans a certain amount of time.

Figure 7: Taxonomy of use case, scene and scenario [ 14 ]

Based on the above definitions, the functional description of the system can therefore 
be defined in terms of a set of use cases that includes a functional range and the 
desired behaviour, the specification of system boundaries and the definition of one or 
more usage scenarios. The basic components of use cases, scenes and scenarios 
are summarised in Figure 7 [ 14 ]. Furthermore, scenarios are well suited to describe 
test cases, in either a simulated or a real environment, by extending the scenario 
descriptions with pass/fail criteria. In order to derive a complete specification of the 
safe intended behaviour of the system it is also necessary to consider the legal and 
societal expectations on the system.

One key challenge to the safety assurance of highly automated driving is providing 
sufficient confidence that all possible systematic triggering events are known and 
controlled at the time of the release of the system. This requires that the use case 
and scenario catalogue covers a sufficient range of scenarios and their properties.  
[ 12 ] suggests that it is possible to identify structural principles in the complex space 
of driving situations and environmental conditions, and that these principles could 
be “learnt” based on an analysis of field data and accident databases labelled with 
ground truth. In general, methods for analysing the domain and identifying relevant 
representations can be categorised as follows:

•	 Analysis of pre-existing knowledge of the domain, including analysis of accident 
databases. 

•	 Analysis of field data. 

•	 Simulation. 
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The scenarios generated must be rigorously specified such that their completeness 
can be argued. This will help to ensure that experiences from operation in the field can 
be used to extend the model. It will also ensure that a consistent and unambiguous 
interpretation of the scenarios and associated test results is possible across all 
platforms. OpenSCENARIO (www.vires.com) is an attempt to standardise a language 
for describing autonomous driving scenarios and is used within the Pegasus project 
(www.pegasusprojekt.de). The Pegasus project describes a set of criticality indicators 
that can be derived from a scenario-based analysis and used as part of requirements 
derivation. An example of such a criticality indicator is “time-to-collision”. 

Traffic sequence charts (TSCs) [ 10 ] (see Figure 8) are an extension of the 
OpenSCENARIO approach and provide a formal semantics based on ontologies of 
categories for artefacts which must be observable in real traffic situations. Formally, 
TSCs visualise first-order real-time temporal logic formulas that refer to artefacts in 
the real-world model and focus on describing the required dynamic behaviour of the 
vehicle within different sets of situations. However, they do not serve to specify the 
range of inputs required to be considered when assessing potential insufficiencies in 
the sensing and understanding modules of the system. [ 10 ] proposes a development 
process by which scenarios are collected based on, for example, analysis of accident 
databases and then successively abstracted to cover classes of scenarios that share 
critical conditions. This set of scenarios is then used as the basis for successively 
refining the functional and non-functional requirements on the system.
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Figure 8: Example traffic sequence chart from [ 10 ]
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5.3 Semantic modelling of the ODD

In order to be able to ensure traceability between the ODD and system specification, 
simulation and test environments and field-based monitoring data, a common semantic 
model capable of describing the ODD is required. This traceability is essential in order 
to refine the definition of the ODD over time to incorporate all findings from later 
phases of the development and deployment process. For example, choices of sensors 
will influence which environmental conditions need to be captured within the ODD. 
Triggering events captured during field-based testing that cannot be traced to the 
ODD definition imply that extensions of the semantic model and scenario classes 
are required. Semantic ontologies [ 15 ] have been proposed as a means for creating 
a common model for describing the ODD. For example [ 16 ] provides an ontology 
definition for an operational world model for autonomous driving that covers road 
structures, infrastructure and topologies, vehicles, pedestrians and animals and their 
associated behavioural models, other objects and environmental conditions. [ 17 ]  
proposes how knowledge-based systems can be used to provide an ontology of 
the ODD defined using the Web Ontology Language (OWL) standardised by the World 
Wide Web Consortium (W3C). The representation of the in first order logic allows for 
completeness and consistency checks to be made on the ontologies.

5.4 Systems theoretic approaches

An alternative to a scenario-based approach to domain analysis is to instead take a 
systems theoretic approach. Some work has investigated the use of applying Systems 
Theoretic Process Analysis (STPA) [ 18 ] to the safety analysis of automated driving [ 19 ]. 
Such approaches are based on the concepts of systems and control theory in order to 
identify control scenarios that can lead to hazards, and then develop the associated 
safety constraints. These approaches allow a focus to be placed on the interactions 

between the system and its environment and how certain states of the system and its 
environment could lead to hazards, regardless of whether a functional failure occurred 
within the system or not. As such, they offer an approach that may be better suited 
for analysing system insufficiencies than the safety analyses proposed by ISO 26262 
[ 2 ], which are more focused on the consequences of specific types of component 
failures (random hardware faults, software bugs, etc.) of the system. 

A scenario-based approach (e.g. [ 10 ]) to domain analysis and identification of 
criticality indicators has, due to its anecdotal approach to specification, the risk 
of incompleteness. On the other hand, system theoretic models (e.g. [ 19 ]) do not 
naturally scale to the open context issue of a highly complex and continuously 
changing environment. Due to an inadequate consideration of the environment, 
neither approach appears to be able to offer a complete analysis of triggering 
events that could lead to insufficiencies in the perception functions (sensing, 
understanding), incorrect decisions, and subsequent hazardous events.

5.5 Formulating safety goals

Currently, there is no industry consensus regarding the set of safety goals that an 
automated vehicle must achieve. These safety goals are inherently related to the 
ODD in which the vehicle operates and must not only ensure the safety of the vehicle 
occupants and surroundings but must not be so conservative as to render the vehicle 
unusable. In other words, the safety goals must define the boundary between an 
agile, natural driving style, crucial for user acceptance and unacceptable dangerous 
behaviour. Responsibility-Sensitive Safety (RSS) published by MobileEye [ 13 ] 
proposes a mathematical interpretation of the “elusive directive called duty of care”,  
an imprecise notion in traffic laws. 
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To this end, RSS formalises five “common sense” rules, which can also be interpreted 
as top-level safety goals:

•	 Do not hit someone from behind.

•	 Do not cut in recklessly. 

•	 Right-of-way is given, not taken.

•	 Be careful of areas with limited visibility.

•	 If you can avoid an accident without causing another one, you must do it.

RSS constrains the path planning output to valid trajectories, for example, in the 
sense that minimum safety distances are maintained. These constraints are defined  
in terms of properties of the environment calculated by the perception function 
and can therefore also be monitored during run-time. The RSS approach aims to 
reduce the need for exhaustive validation tests by encapsulating safety properties as  
a formal model that can be “proven” to be adhered to at run-time. An additional 
layer of properties can be defined that minimise the impact of dangerous situations 
caused by other traffic participants (e.g. overtaking vehicle cuts in and violates the 
safe driving distance). The RSS approach is based on the following premises:

•	 The set of traffic scenarios used to derive the “common sense” rules are exhaustive.

•	 The behaviour of other traffic participants can be modelled using simple kinematic 
models.

•	 A realistic set of parameters can be found for these kinematic models based on 
explicitly stated assumptions, for example, the maximum reasonable deceleration 
that a lead vehicle might apply. Mobileye emphasises that these parameter values 
should be societally agreed upon and confirmed by regulators.

It is as yet unclear to what extent a complete specification of the safety goals in this 
way is feasible, due to the dependency on the above set of premises. Therefore, it 
is expected that the domain analysis and safety goal formulation are continuously 
validated and extended based on an analysis of simulation and field-based monitoring.
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6.1 Introduction

This section provides an overview of state-of-the-art research and industrially applicable 
methods for performing the activities related to the system design component of the 
framework. As discussed in Section 3, a black-box, data-driven approach to the verification 
of automated driving systems alone is not economically tractable [ 9 ]. Therefore, black-
box verification techniques must be augmented with approaches by which individual 
elements of the system with well understood performance properties can be verified 
to a sufficient level of confidence. An analytical argument can then be formed that the 
composition of individual system elements leads to a sufficiently safe system overall. A key 
objective of the “design for assurance” activities is therefore to reduce overall verification 
effort, and increase confidence in the system performance by decomposing the system 
assurance task into a number of smaller, more tractable activities based on evidence from 
the system design and the inherent properties of individual components.

6.2 Requirements decomposition and the semantic gap

ISO 26262 [ 2 ] and ISO PAS 21448 [ 4 ] require that the safety goals (as identified 
via hazard analysis and risk assessments for the chosen classes of scenarios) are 
iteratively refined into a set of functional safety requirements which in turn are 
allocated to a technical system architecture and refined further into technical 
safety requirements. These technical safety requirements [ 20 ] are eventually 
allocated to individual hardware and software components. At all levels of system 
decomposition, assumptions are made about the behaviour of the environment or 

other components in the system. For complex systems, such as those required to 
implement highly automated driving tasks, it is essential that these assumptions 
are explicitly stated and validated as part of the assurance process. The challenge of 
demonstrating the refinement of the safety goals to a complete set of functional and 
technical safety requirements under consideration of all system and environment 
assumptions is described in [ 20 ] as the “semantic gap”. A semantic gap occurs within 
the development process when the intended functionality is more diverse than the 
actual functionality specified by the implemented requirements (creating a gap 
between what is intended and what is specified). There is potential for semantic gaps 
to be introduced at multiple points in a systems engineering process, as summarised 
in Figure 9. Satisfaction arguments have been proposed [ 21 ] [ 20 ] as a means of 
providing rich traceability between requirements at different refinement levels. 
Satisfaction arguments take into account domain knowledge and assumptions while 
describing the specification refinement to provide an explicit record of the strategy 
used to decompose requirements. 

It is currently unclear how the resulting effort and complexity in the requirements 
elicitation and management tasks associated with such approaches can be efficiently 
handled. One approach is to separate the specification of the domain, including 
all assumptions, from the specification of the safety requirements [ 22 ] and the 
specification of the system function itself. This allows the refinement of the safety 
requirements to be addressed in a more formal and complete manner than that 
of the more complex functionality. In addition, by describing the ODD separately 
(see Section 5 on domain analysis), this can be amortised over a number of system 
functions and variants.

6. System design

6. System  
design

© University of York 2020

27Assuring the safety of highly automated driving: state-of-the-art and research perspectives



1. Introduction 8. Conclusions 9. Bibliography
2. Challenges of  

safety assurance in  
the open context

5. Domain analysis  
and the definition  

of safety goals

4. Application of  
the framework

6. System  
design

7. Verification and 
validation evidence

3. A framework for  
safety assurance of highly 

automated driving

This in turn leads to the potential for industry-wide standardisation of ODDs for 
different classes of scenario (e.g. German Autobahns, city-specific Urban Environments) 
to establish a common baseline on safety requirements while retaining the potential for 
differentiation via functional comfort, performance and cost. As the scope of desired 
system behaviour expands, the specifications can then be extended as required (e.g. 
increased scenario coverage or to allow for alternative perception channels).

Figure 9: Potential for semantic gaps in the system development process

Ultimately, it will be unrealistic to presume that a complete requirements specification 
can be created for such a complex system as HAD operating within an open context. 
Validation activities (see Section 7) must therefore be defined that determine whether 
the level of residual semantic gap is sufficiently small (equivalent to demonstrating 
a low enough probability of unknown triggering events). An industry consensus is likely 
to be required in order to determine the depth of detail required in requirements 
elicitation and analysis against the need for extensive validation tests.

6.3 Model-based systems engineering and design-by-contract

In order to handle the emerging complexity of the system requirements 
decomposition and system design, a number of characteristics of the system must 
be considered and optimised simultaneously. Model-based systems engineering [ 23 ] 
approaches allow for the specification of multiple perspectives on the functional 
and technical system architecture such that the dependencies between components 
across different architectural levels can be explicitly considered and specified [ 24 ].  
A number of modelling languages have been developed ranging from the domain 
agnostic, such as SysML [ 25 ], to domain specific, such as AADL (Architecture Analysis 
& Design Language) [ 26 ], EAST-ADL [ 27 ], PREEVision (www.vector.com/preevision). 
Figure 10 shows a simplified description of the system architecture for a driving 
assistance system using SysML.
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Figure 10: SysML internal block diagram of a driver assistance system [ 28 ]

The use of formal modelling languages can increase the precision with which statements 
about the system design can be explicitly documented and made amenable to analysis. 
However, the inherent complexity of the system design remains. Contract-based design 
techniques are a means by which the system complexity can be managed by breaking 
the system design into individually analysable components that are connected via ports 
and signals. A contract [ 29 ] specifies what each system or component expects from 
its environment (assumptions) and guarantees to its environment in turn (guarantees). 
The definition of assumptions and guarantees for each component allows for a 
compositional argument to be made for properties at the system level while allowing for 
each component to be considered as an independently verifiable “black box”. This allows 
for the verification complexity to be reduced and nevertheless precise statements 
about system properties to be made [ 30 ]. Figure 11 shows example assumptions 
and guarantee conditions for the vehicle computer component from Figure 10.

Figure 11: Example contract-based design

For safety contracts, only safety-related properties and relevant environmental 
assumptions need to be considered, which can limit the state space to be explored 
during formal analysis. However, the safety contracts also must consider faults in 
the component’s environment that lead to erroneous inputs as well as execution 
faults of the component itself. At the component level it must be verified that within 
a reasonable level of confidence, the component fulfils its guarantees for all inputs 
that meet the set of assumptions (including faulty inputs and execution faults).
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Conditional Safety Certificates [ 31 ] and Vertical Safety Interfaces [ 32 ] propose languages 
for specifying assumptions between components (horizontally) and between system 
abstraction layers (vertically). An example of horizontal safety contracts could include 
assumptions that a behavioural planning algorithm makes on the accuracy of a machine 
learning-based perception algorithm in order to choose the right course of action. 
An example of a vertical contract could be assumptions that the machine learning 
algorithm makes on the integrity of the hardware-based calculations necessary in 
order to correctly classify its inputs. Formalising safety contracts, for example using 
linear temporal logic [ 33 ], [ 34 ] allows for automated proof that certain compositional 
conditions, such as refinement of contracts, are met [ 35 ], thus providing a way for 
constructing compositional safety arguments [ 36 ] that ensure completeness for a given 
set of properties (often defined at the system's interfaces to its environment).

6.4 Model-based safety analyses

A complementary approach to safety contract modelling is the modelling of faults 
for a component, and the analysis of the propagation of those faults through the 
system. There are a number of approaches for doing this, such as using component 
fault trees [ 37 ] or Hip-Hops (Hierarchically Performed Hazard Origin and Propagation 
Studies) [ 38 ]. As an example, Figure 12 shows an excerpt of a component fault 
tree for the Vehicle Computer component from Figure 10 [ 28 ]. Based on an analysis 
of the component fault trees of each component, fault trees can be automatically 
generated for top-level system events.

Figure 12: Component fault tree for the Vehicle Computer described in Figure 10 [ 28 ]

The ability to automatically analyse the impact of individual component faults on 
system-level failures based on model-based system designs allows for the possibility 
to automatically generate system design alternatives that optimise certain failure 
behaviours (e.g. overall system failure rate) [ 28 ]. The richer the failure model is, the 
more accurate an overall multi-goal optimisation can be.
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The use of contract-based design and component fault models is seen as particularly 
relevant in the development of HAD functions, due to the need to manage the high 
level of functional complexity and interaction between many system components. 
In particular, the system must cater for faults and insufficiencies in the components 
themselves while ensuring that all system-level safety goals are met. The use of 
safety contracts and component fault models allows for the integration and reuse of 
pre-validated third-party components in a modular safety case without the need for 
implementation details. This may facilitate the management of complexity explosion 
in the assurance argument when integrating proven components (e.g. radar sensors, 
already used within driver assistance contexts) by explicitly modelling knowledge 
about their known fault behaviour and performance limitations. Furthermore, the 
formalised contract-based design and failure propagation analysis techniques 
described above can be used to evaluate the effectiveness of design options for fault 
tolerance and redundancy mechanisms (see below).

In order for contract-based design and automated safety analysis approaches to cover 
failure modes associated with functional insufficiencies, model-based approaches 
must be extended to include a representation of component performance in terms of 
potential deviations from an ideal result as well as the probability of such deviations 
occurring [ 13 ]. Examples of such deviations would be inaccuracies in the location 
of objects within a scene. Small deviations between the sensed location and actual 
location may occur frequently, if not always, yet may have little effect on the safety 
goals. Larger deviations may occur less frequently but may have an impact on the 
safety goals. A model-based approach to specifying HAD functions must therefore 
consider functional performance of components within the safety contracts as well 
as during the analysis of fault propagation. Estimation of the insufficiencies of the 
components, for example, through simulation and test, will be discussed in Section 7.

6.5 Fault tolerance, monitoring and redundancy

A complex system is expected to have residual transient or latent faults. Therefore, a 
highly available safety-critical system must be designed to operate safely even in the 
presence of component faults. A key property to be considered during system design 
is therefore the ability to maintain a safe state in the presence of faults. This includes 
the definition of fault tolerance mechanisms as well as behavioural (also known as 
graceful) degradation such as coming to a safe stop at the side of the road when 
a system failure occurs. For highly automated driving scenarios, the driver cannot 
be relied upon to provide controllability of the situation. Therefore, the technical 
requirements on monitoring and handling component faults increase dramatically. 
Even fault detection and mitigation concepts within a system layer may not achieve 
a perfect level of coverage. Hierarchical layers of run-time monitoring are proposed 
(see Figure 13) to observe system properties at various levels of abstraction. At 
the physical layer, standard functional safety techniques are applied to ensure 
that the execution platform retains its integrity and to trigger a safe state upon 
detection of failures. Examples of such monitoring would be hardware diagnostics to 
detect random hardware failures. At the functional layer, measures must be found to 
counteract function performance issues due to inherent limitations in the sensing 
hardware (e.g. field of view of radar sensors) and algorithms (e.g. inaccuracies of 
machine learning). Such measures may include using heterogeneously redundant 
sensor channels, plausibility checks or the adaptation of driving behaviour based 
on anticipated sensor performance [ 39 ]. At the self-awareness layer, function-
independent safety constraints identified from an analysis of the operational design 
domain are continuously monitored, as are the validity of assumptions made on the 
domain during system design (see recommendation of SAE J3061 [ 1 ], also known as 
functional boundary monitoring [ 40 ]).
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An example of the monitoring of safety goals suggested by [ 13 ] is to ensure that 
decisions made by the planning components of the HAD function do not lead to a 
violation of safe longitudinal distance to the vehicle ahead, given current speed and 
road conditions.

Figure 13: Levels of abstraction in run-time monitoring

A model and contract-based approach to system specification and design allows for 
the same models to be used to generate run-time monitoring components.  

This helps to enable run-time, as well as design-time assurance through the 
continuous monitoring of properties that are important for the validity of the 
assurance case. The fault tolerance and monitoring systems must not only mitigate 
“classical” types of faults such as random hardware failures or software error, but 
also performance insufficiencies that are inherent in technologies such as machine 
learning [ 41 ]. Such components can be used for monitoring both functional and 
non-functional performance properties [ 42  ]. The use of “Self-Adaptation Envelopes” 
is described in [ 41 ] as a way to encapsulate undependable parts of the system. The 
function of these undependable parts can then be suppressed if their behaviour 
is observed to fall outside a pre-specified safety-envelope. A similar approach has 
been defined in the form of Dependability Cages [ 43 ], that are capable of comparing 
observed scenarios to previously specified safe behaviour. This enables the checking 
of functional correctness and the validity of assumptions on the ODD at run-time. 
The RSS approach proposed by MobileEye [ 13 ] could also form the basis of generating 
run-time checks of the formalised safety goals at the vehicle behaviour level.

Within the automotive industry we currently see a move away from federated E/E 
architectures, characterised by electronic control units (ECUs) dedicated to specific 
(groups of) functions that communicate with other ECUs [ 44 ]. These are being 
replaced by integrated architectures based on powerful general-purpose computing 
platforms. In parallel, the complexity and interaction between software components 
are increasing, requiring new software architectures that can nevertheless fulfil the 
timing, safety and reliability constraints of the embedded domain. One advantage 
offered by the availability of increased general-purpose computing power and 
advanced software paradigms such as Service Oriented Architectures is the possibility 
for run-time reconfiguration of the system, at least for the short period of time and 
limited functionality required to bring the vehicle to a safe stop [ 45  ].

6. System  
design

Self-awareness layer
Behaviour is governed by high level safety 
considerations (e.g maintain safe distance 
from other vehicles). Environment is observed 
to ensure that ODD assumptions are met.

Functional layer
Redundancy and plausibility measures 
to detect performance limitations due to 
complexity and inherent uncertainty in the 
sensing channels and algorithms.

Physical layer
Provides a reliable execution platform based 
on traditional functional safety approaches 
including diagnostics of random hardware 
failures.
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Classic approaches to homogenous hardware redundancy as prevalent in the 
aerospace domain are unlikely to take hold for many system components (with 
the exception of certain actuators such as steering control) due to economic 
drivers of the mass market. Therefore it must be ensured that the reconfiguration 
process itself is executed to an appropriate level of integrity, including ensuring that 
sufficient resources are available to execute the fail operational functionality and 
that the performance of the function (in terms of functional insufficiencies) can be 
demonstrated to be adequate, even after reconfiguration. 

6.6 Machine learning

One of the challenges caused by applying machine learning methods to implement 
parts of the “sense, understand, decide, act” function chain is that a precise 
specification of the required behaviour is often not possible. It is the very fact that the 
machine learning functions are able to infer the target function without a specification, 
based on the presented training data, that makes them desirable for use within an 
open context. This introduces uncertainty into the safety assurance process, which is 
further compounded by the unpredictable and opaque nature of the performance of 
the algorithms. 

In order to argue the claim that functional insufficiencies within the machine 
learning function are minimised, it is important to understand the causes of such 
insufficiencies. As interest in machine learning safety has grown: a number of authors 
[ 46 ], [ 47 ], [ 48 ] have investigated different causes of performance limitations in 
machine learning functions. Some examples applicable to the highly automated 
driving are described as follows.

Scalable oversight and distributional shift

One of the key differences in machine learning techniques compared to algorithmic 
approaches is the lack of a detailed specification of the target function. Instead, the 
functional specification can be seen to be encoded within the set of training data. 
Therefore, if the training data do not reflect the target operating context, then there 
is a strong likelihood that the learned function will exhibit insufficiencies. Critical 
or ambiguous situations, within which the system must react in a predictably safe 
manner, may occur rarely or may be so dangerous that they are not well represented 
in the training data. Consider, for example, the situation where a small child enters 
the road ahead between two parked vehicles. This leads to the effect that critical 
situations remain undertrained in the final function (scalable oversight). The potential 
of scalable oversight has profound consequences for the selection of training data. 
It must be argued that the training data contains an equal distribution of all classes 
of critical situations and object classes or that the selected training leads to an 
appropriate level of generalisation. Such considerations will also be necessary in 
order to reflect legal and ethical concerns regarding discrimination against certain 
demographic groups, such as ethnic minorities that may not be strongly represented 
in training and test data.

In addition, the system should continue to perform accurately even if the operational 
environment differs from the training environment (distributional shift) [ 47 ]. This 
effectively can be formulated as the robustness of the system to react in a shift of 
distribution between its training and operational environment. Distributional shift will 
be inevitable in most open context systems, as the environment constantly changes 
and can adapt to the behaviour of actors within the system.

6. System  
design

© University of York 2020

33Assuring the safety of highly automated driving: state-of-the-art and research perspectives



1. Introduction 8. Conclusions 9. Bibliography
2. Challenges of  

safety assurance in  
the open context

5. Domain analysis  
and the definition  

of safety goals

4. Application of  
the framework

6. System  
design

7. Verification and 
validation evidence

3. A framework for  
safety assurance of highly 

automated driving

For example, car drivers will adjust their behaviour within an environment in which 
autonomous vehicles are present, vehicle and pedestrian appearances change over 
time, etc. Addressing distributional shift will require design measures to monitor 
for distributional shift in the field and to identify when a retraining of the machine 
learning function is required.

Robustness of the trained function

Machine learning techniques are typically chosen for their ability to approximate 
target functions based on a finite set of training data. This has advantages over 
procedural techniques where the function to be implemented may be too complex 
to specify or implement algorithmically due to an open context environment or 
due to the unstructured nature of the input data. In other words, when presented 
with new data, the function will predict a correct answer based on already observed 
input/output pairs. An often cited problem, associated with neural networks, is the 
possibility of adversarial perturbations [ 49], [ 50 ] [ 51 ]. An adversarial perturbation is 
an input sample that is similar (at least to the human eye) to other samples but that 
leads to a completely different categorisation with a high confidence value. It has 
been shown that such examples can be automatically generated and used to “trick” 
the network. Although it is still unclear to what extent adversarial perturbations could 
occur naturally or whether they would be exploited for malicious purposes, from a 
safety validation perspective, they are useful for demonstrating that features can be 
learnt by the network and assigned an incorrect relevance. Therefore, methods are 
required to minimise the probability of such behaviour especially in critical driving 
situations. One of the factors that is often attributed to this class of problems is 
that the set of possible functions is exponentially larger than those that can be 
represented through machine learning techniques. Therefore, the likelihood that 

a machine learning technique would select an appropriate approximation appears 
at first glance very unlikely. The authors in [ 52 ] argue, however, that deep learning 
is nevertheless effective because the function to be approximated is rooted within 
the physical universe and physics favours certain classes of exceptionally simple 
probability distributions that deep learning is uniquely suited to model. The challenge, 
therefore, is how to ensure that the machine learning algorithms focus on those 
physical properties of the inputs relevant to the target function without becoming 
distracted by irrelevant features; in other words, act within the same hierarchical 
dimensions as the target function [ 52 ]. This has an impact on the selection of training 
data as well as the application of “explainable AI” techniques to better understand 
the features used by the machine learning function for the decisions. Additionally, 
constructive measures such as protection of confidentiality and integrity of critical 
data and software components, plausibility checks, diverse sensing functions etc. may 
need to be applied to protect against deliberate manipulation based on adversarial 
perturbations.

Differences between the training and execution platforms

As discussed above, machine learning functions can be sensitive to subtle changes 
in the input data. When using machine learning to represent a function that is 
embedded as part of a wider system as described here, the input to the neural 
network will have typically been processed by a number of elements already [ 48 ], 
such as image filters and buffering mechanisms. These elements may vary between 
the training and target execution environments, leading to the trained function 
becoming dependent on hidden features of the training environment not relevant  
in the target system. 
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In addition, typical reliability issues in the target hardware (e.g. random hardware 
failures) may not manifest themselves directly as obviously erroneous outputs, 
due to the data-driven approach where deviations of individual parameters or 
calculations may have subtle but relevant effects on the overall decision made by  
the neural network.

Contract-based design and monitoring

The use of contract-based design has been proposed [ 53 ] in order to restrict this 
level of uncertainty within the design and provide a clearer specification that 
can be used for verification activities. Assumptions with respect to the ODD 
(e.g. distribution of certain types of objects) and quality of input signals (e.g. 
camera blur) are recorded in the contract. Performance targets on the function, 
systematically derived from the system safety goals (see Section 6.2) are then 
assigned to the guarantees of the contract [ 54 ]. In formulating the guarantees, it  
is important to note that not only positive performance criteria but also typical 
failure modes and their likelihood should be considered. The assumptions and 
guarantees of the safety contract for the machine learning function can then be  
used to analyse the impact of insufficiencies on the overall system behaviour (see 
above) as well as to ensure that the system design fulfils conditions necessary for  
the function to meet its guarantees. Further discussion on verification methods  
for demonstrating that the guarantees are fulfilled can be found in Section 7.

In many cases it may not be possible to provide sufficient verification evidence 
that the machine learning function meets its guarantees under all conditions to 
fulfil its assumptions. In these cases the design-by-contract methodology provides a 
mechanism to reason about the impact of further restrictions on the input space 

and also how additional design measures external to the machine learning function 
– such as redundant calculation based on heterogeneous approaches or plausibility 
checks – can be used to meet the performance guarantees and required level of 
residual uncertainty. Such design measures can be used at run-time to verify that 
the assumptions about the function inputs are met and whether the outputs meet a 
set of given safety constraints [ 55 ]. [ 56 ] describes an approach by which activation 
patterns of a convolutional neural network are observed at run-time and compared 
against typical activations that were caused by training data. In this way, a measure 
of whether the trained function is “outside its comfort zone” can be gained in order 
to determine the level of trust in its output during run-time and to detect issues such 
as distributional shift. 
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7.1 Introduction

This section provides an overview of state-of-the-art research and industrially 
applicable methods for performing the activities related to the verification and 
validation component of the framework. 

The costs and technical challenges associated with demonstrating the absence of risks 
due to performance issues is seen as one of the largest barriers to the market entry 
of HAD systems [ 57 ]. Attempting to demonstrate the safety of autonomous vehicles 
using road tests alone would involve between millions and billions of miles of driving. 
For the occurrence rates required by HAD functions, measuring the probability of 
hazardous events through vehicle testing therefore does not scale, even with large 
fleets of continuously running vehicles. Significantly more testing hours than the 
inverse of the target failure rate are required in order to provide a statistically relevant 
statement about the probability of critical failures. For example, to argue the mean 
distance between collisions of 3.85 million km (based on German crash statistics) with 
a confidence value of 95%, applying Poisson statistics [ 7 ] a total of 11.6 million test 
kilometres must be driven without collisions [ 58 ]. Even when applying such statistical 
extrapolations, a strong argument must still be applied for the representativeness 
of the test scenarios to argue that sufficient coverage of system states and external 
triggering events has been achieved.

Controllability, observability and repeatability also provide additional significant 
challenges when testing highly automated driving systems, in particular with regard 

to the type of functional insufficiencies which are the subject of this report:

•	 Controllability: Due to the complexity and unpredictability of the ODD, it is 
extremely difficult to consistently control all relevant attributes of the domain 
and vehicle state in order to systematically perform tests at the vehicle level, 
for example in order to test robustness against known triggering events. This 
may be due to the complex interactions between a number of domain attributes 
that lead to a triggering event, the rare natural occurrence of such events or 
the inherent danger associated with the situations themselves (e.g. realistically 
testing for false negatives for a pedestrian detection function).

•	 Repeatability: Aleatoric uncertainty in the ODD, epistemic uncertainty in the 
sensors, perception and decision algorithms, as well as the effects of memory 
(e.g. training history), lead to pseudo-non-deterministic behaviour with regard 
to triggering events for functional insufficiencies. Even though for any given set 
of identical inputs and internal state the system may present identical results, it 
is nevertheless nearly impossible to directly reproduce all aspects of any given 
situation. This leads to major challenges when demonstrating the robustness of 
the function within the ODD and reproducing failures which occur in the field 
for further analysis in the lab.

•	 Observability: Due to the lack of a detailed specification of the required system 
behaviour under all possible conditions, there are significant challenges in 
defining the set of testing criteria and therefore also the pass/fail criteria for the 
tests (including a definition of “ground truth”). Additionally, the pass/fail criteria 
might not be able to be defined in a binary manner but instead be defined on 
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a continuous scale that takes into consideration the objective level of danger in 
the situation in combination with the appropriateness of the system's response  
[ 58 ]. The complexity of the domain and difficulties in evaluating the coverage of all 
relevant domain attributes also increase the difficulty of defining and measuring 
test completeness criteria.

As functional insufficiencies are in effect systematic failures of the system, in addition 
to providing a purely statistical argument for a residual level of risk, evidence must be 
gathered that all critical scenarios within the ODD have been covered and that the 
absence of unknown triggering events can be argued. In order to achieve this in an 
economical manner, an optimal strategy is required that combines verification and 
validation methods to achieve an optimal coverage of test goals while maximising the 
possibilities for automation.

7.2 Verification and validation strategy

The objective of a verification and validation strategy is to confirm quality attributes 
of the system under test using an optimal combination of methods distributed across 
the development and deployment process. These quality attributes typically include 
functionality, reliability, usability, efficiency, maintainability and portability, for example 
as defined in the ISO/IEC 9126 Standard “Software engineering – Product quality”  
[ 59 ]. The quality attributes can vary in priority depending on the requirements of the 
system under test and current development phase and are in turn used to derive the 
set of detailed verification and validation (V&V) goals. An assurance case is typically 
formulated as a set of assertions about the product which are backed up by evidence in 
the form of development work products. The contribution of verification and validation 
to the assurance case can therefore be defined in terms of the set of quality attributes 

considered by the V&V strategy that in turn support the assertions in the assurance 
case. This requires a specific interpretation of the quality attributes defined [ 59 ] in the 
safety context: 

•	 In confirming the functionality, it should be ensured that all safety-relevant 
functions (e.g. the algorithm for detecting lane departure) and safety mechanisms 
(e.g. detection of hardware failures) are free from critical errors. To provide the 
necessary level of confidence, the V&V strategy should ensure a greater level of 
test depth compared with non-safety-relevant functions and be reliant on more 
than one method of verification (e.g. a combination of test, review and analysis). 

•	 Confirming the system reliability should involve quantitatively determining that 
the probability of a system failure and insufficiencies leading to a violation of a 
system safety goal is sufficiently low. Analytical approaches to calculating the 
predicted reliability should be validated through empirical evidence in the field 
and large-scale simulation based on realistic distributions of input data. 

The topic of functional insufficiencies can be seen as a combination of the above 
quality attributes, where systematic functional failings of the system may manifest 
themselves in a pseudo-non-deterministic manner more symptomatic of system 
reliability issues. In addition, the following safety-specific attributes need to be 
considered: 

•	 The validity of the safety concept should be confirmed in terms of its adequacy  
to ensure the continued safe operation of the vehicle under all foreseeable 
failure conditions. The argument for the validity of the safety concept will typically 
be based on a combination of vehicle-level testing, fault injection tests, targeted 
safety analyses such as FMEA and FTAs (see Section 6) and expert reviews. 
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•	 When defining the safety concept, a number of assumptions are typically 
made (e.g. regarding driver reactions to cancel inopportune steering impulses, 
distribution of critical scenarios in the domain, etc.). For the safety case to hold, 
the validity of these assumptions must be confirmed. This may involve targeted 
tests at the vehicle level as well as simulations and analysis. 

•	 A quality assurance is required that all activities necessary for sufficiently ensuring 
safety of the product have been adequately performed. This assurance is typically 
achieved not only through testing that has the focus to ensure that errors have not 
been added to the product but also through reviews and analyses that can detect a 
wider range of issues, such as whether critical aspects remain unconsidered during 
the system analysis phase, or whether suitable programming techniques have 
been applied.

ISO 26262 [ 2 ] also contains a number of requirements on the verification and 
validation of the product in terms of analyses, reviews and tests which can be 
summarised as follows:  

•	 Part 2 – Management of functional safety: Confirmation reviews are performed 
to ensure that safety-relevant work products conform to the corresponding ISO 
26262 requirements before being released. 

•	 Part 3 – Concept phase: Verification reviews of the hazard and risk analysis, 
safety goals and functional safety concept are performed. The effectiveness of  
the functional safety concept is evaluated through analysis and test. 

•	 Part 4 – Product development: System level: Verification reviews of the technical 
system safety requirements and system design are performed. The integrated 
system is tested against the technical system safety requirements and verified 

against the system design. Compliance of the integrated system against the 
safety goals is confirmed and the safety goals themselves are validated. 

•	 Part 5 – Product development: Hardware level: Verification reviews of the 
hardware safety requirements and hardware design and hardware safety 
analyses are performed. Evidence of the effectiveness of hardware-level safety 
mechanisms is provided (e.g. based on analysis or test). Compliance of the 
hardware to the hardware safety requirements is confirmed through testing. 

•	 Part 6 – Product development: Software level: Verification reviews of the software 
safety requirements, software architecture design and implementation are 
performed. Analysis is performed at the unit design and code level. Testing is 
performed at the unit, software integration and system integration levels to 
verify conformance to the software safety requirements. 

•	 Part 8 – Supporting processes: All verification activities throughout the 
development process are planned and specified. Verification of reused software 
in its new context is performed. Qualification through test of pre-developed 
hardware components is performed. 

The summary above makes clear the need to fulfil the requirements of the ISO 26262 
standard as a prerequisite for addressing the issues of functional insufficiencies in order 
to ensure that the overall system concept and its implementation is sufficiently robust 
before considering the specific hazards associated with functional insufficiencies. 

Requirements on the verification and validation of the product from the perspective 
of the “Safety of the intended function” as defined by the ISO PAS 21448 [ 4 ] standard 
can be summarised as follows:
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•	 Evaluate the safety of the intended function with regard to known triggering 
events to provide an argument that the residual risk associated with hazards 
caused by known insufficiencies in the system is sufficiently low. The standard 
suggests a number of verification methods that should be used in an appropriate 
combination for performing verification at the sensor, decision algorithm and 
actuation component levels, as well as at the system integration level.

•	 Evaluate the safety of the intended function with regard to unknown triggering 
events to provide an argument that the residual risk associated with hazards 
caused by unknown insufficiencies in the system is sufficiently low. The methods 
proposed by the standard for validation are focused on system-level properties 
and should include a rationale for the amount of testing performed in relation to 
the overall target for residual risk.

In doing so, the V&V strategy shall confirm the following system properties [ 4 ]:  

•	 The ability of sensors and the sensor processing algorithms to model the 
environment;

•	 The ability of the decision algorithms to handle both known and unknown 
situations and to make the appropriate decisions according to the environment 
model and the system architecture; 

•	 The robustness of the system or function; 

•	 The ability of the human-machine interface to prevent reasonably foreseeable 
misuse; and 

•	 The manageability of the handover scenario by the driver. 

For each V&V requirement in both standards, a set of alternative methods is given 
with no guidance as to which combinations thereof should be applied in which 
circumstances. In addition, the relationship between the V&V methods to the safety 
case is not explicitly addressed, i.e. how does applying the prescribed methods 
demonstrate the safety of the end product? A comprehensive strategy is therefore 
required that justifies the selection of the methods and thereby demonstrates a clear 
contribution to increasing the product quality and providing a convincing argument 
for safety. This justification can be decomposed into a number of steps, an example 
test strategy derivation is shown in Figure 14:

•	 A concretisation and prioritisation of the quality attributes to be confirmed is made 
and a partitioning of the V&V effort accordingly, to ensure that the most critical (i.e. 
safety-relevant) attributes are assigned sufficient resources to be covered adequately. 

•	 V&V methods are selected, based on a clear understanding of their effectiveness 
in detecting certain types of errors and quality issues in particular phases of the 
development. The methods are then distributed across development phases and 
combined accordingly. For example, at the software unit implementation phase, 
unit testing is effective at detecting discrepancies in the code with respect to 
the detailed software design but is unlikely to detect subtle programming errors 
leading to run-time exceptions for which static code analysis is more effective. 
Performing such an analysis at a later phase of development, however (e.g. at 
handover from software supplier to system integrator), will lead to an impractical 
amount of rework to correct and re-verify the code. The combination of methods 
should aim to ensure a full coverage of the quality attributes in the focus of the 
test strategy and their associated types of faults, while minimising the level of 
redundancy between the methods.
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•	 For each method selected to confirm a particular quality attribute, a set of 
criteria should be defined that measure as directly as possible the contribution 
of the analysis, review or test method to the associated quality attribute. It is 
the achievement of these criteria that then “make the case” for the associated 
assertions in the safety case. For example, part of the safety case may read: 
“The residual risk associated with unknown triggering events is sufficiently low 
because: field-based testing has covered 100% of the scenario classes identified 
during domain analysis with the detection of 0 critical errors, and targeted testing 
on the test track under a range of conditions and in simulation have covered 
100% of the domain attributes identified as relevant for perception tasks und 
uncovered 0 common cause failures”.

•	 By formulating the assertions in the assurance case as described, it becomes 
possible to validate the strength of the assurance case by questioning whether 
it is possible for the system to nevertheless contain critical errors even if all the 
above-mentioned criteria are met.  

Figure 14: Example test strategy derivation

The application of a structured design process and use of design-by-contract paradigms 
(see Section 6) can be exploited when conceiving the V&V strategy by providing a 
clear definition of the quality attributes that should be applied at each level in the 
system decomposition. The design-by-contract paradigm also provides a definition 
of the assumptions that are to be validated at the interfaces of the components and 
allows for separately focused activities to verify that the integration requirements of 
the components are met. The combination of design-by-contract and systematic V&V 
strategy development supports the development of a modular safety assurance case 
allowing evidence at the component level to be reused within other system contexts. 
The design-by-contract approach does not preclude the need to validate safety at the 
system level, but it does allow for arguments to be made regarding the fundamental 
performance limits of individual components and the robustness of the system in the 
presence of insufficiencies at the component level. System-level validation activities 
can then focus on coverage of the ODD and the confirmation of assumptions made 
on both the ODD and system components during design.

The following subsections of this report assess a number of V&V methods in relation 
to their ability to generate evidence that supports the test goals described above.

7.3 Formal verification

Formal verification covers static analysis approach that prove particular properties 
of a system. It is defined in [ 2 ] as follows: 

“formal verification”: method used to prove the correctness of a system against the 
specification in formal notation of its required behavior.

whereby a formal notation is defined as follows:
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Identify 
assertions (safety 

requirements) 
and assumptions 
in the safety case

e.g. "An average 
driver can detect 

and react to a 
system failure 

within a sufficient 
amount of time"

Define measurable 
criteria for 

achieving each 
test goal

e.g. "All driver 
profiles covered 

during testing, 99% 
of test persons 

could react within 
a sufficient amount 

of time"

Reference review, 
analysis and test 

results in the safety 
case including the 

criteria achievement
e.g. "Reference to driving 

simulator tests and 
evaluation report among 
the evidence to support 
claims regarding safe 

handover"

Select review, 
analysis, simulation 

and test methods 
suited to confirming 

each quality goal
e.g. "Assumptions 

regarding handover 
situations to be 

confirmed through 
driver trials in a 

vehicle simulator"

Derive quality goals 
and document in 

quality and test plan 
for each assertion and 

assumption
e.g. "The following 

assumptions regarding 
typical driver reaction 

during monitoring 
and handover shall be 

confirmed: ..."

1 4 532
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“formal notation”: description technique that has both its syntax and semantics completely 
defined. 

Such techniques that may include symbolic model checking [ 60 ] and theorem proving 
have an advantage over traditional test techniques in that they can provide a complete 
analysis of the entire input space rather than just providing anecdotal evidence 
based on the chosen test data. As such, there has been much interest in the past 
in the application of formal verification methods to demonstrating properties of 
safety-critical systems.

According to the principles of the V&V strategy described above, within the context 
of automated driving it needs to be clear which system properties formal verification 
approaches are well suited to. Formal verification requires a formal specification of 
the properties to be proven as well as a model of the implementation to be verified.

Section 6 described the use of design-by-contract approaches to system design. 
Formal verification can be used to verify that the composition relations between 
formally specified assumptions/guarantees chains in the system decomposition [ 33 ], 
[ 34 ], [ 35 ], [ 36 ] are consistent. 

This allows for an increase in trust in the functionality at the system level, once the 
components have been verified according to their individual contracts, which due to 
controllability and observability issues can be typically performed to a greater depth 
than system-level tests allow for.

An additional application of formal verification within the context of automated driving 
is to verify that the behavioural planning components (decision components within 
the “sense, understand, decide, act” model) adhere to a set of pre-defined safety 

constraints such as those described in [ 13 ]. As discussed in Section 6, it is however 
unclear whether a sufficiently complete specification of safe driving behaviour is 
possible for such techniques to be realistically applied.

In [ 61 ] the authors discuss an approach to analysing autonomous systems using model-
checking. They focus on the agent responsible for decision-making, and firstly model 
its behaviour and describe its interface. They then establish a required property by 
model-checking the agent within a model of the real-world environment. From this 
they can derive properties of the overall system by using theorems or analysis of the 
environment.

Although formal approaches to verification can be very powerful, there are also a 
number of limitations that must be taken into account. The first and perhaps most 
significant is that the formal proof of properties, as has been described, requires 
assumptions to be made about the environment and operation of the system which 
are hard to specify, and even harder to verify. If the assumptions do not hold in the 
operational system, then the analysis performed may be invalid, and it may lead to 
unfounded confidence in the system. Secondly, many formal verification techniques 
can be hard to use for non-experts, providing an impediment to widespread 
adoption. As tool support improves and becomes more user-friendly, it is hoped 
that this impediment may reduce.

7.4 Verification of machine learning functions

The development of methods for demonstrating the performance of machine learning 
functions to the level of integrity required by safety-critical systems is currently an 
emerging field of research.
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It is expected that, analogous to traditional algorithmic-based software approaches, 
a diverse set of complementary evidence based on constructive measures, formal 
analysis and test methods will be required. In this section, we discuss different 
categories of potential evidence that can be used to support such an assurance case. 

When developing a verification strategy for machine learning functions, a set of 
test goals are required against which the effectiveness of the approaches can be 
measured. In [ 62 ], the authors suggested the following dependability attributes of 
neural networks applied to automated driving perception tasks which should be 
covered by a verification strategy:

•	 Robustness against effects such as distortion or adversarial perturbation;

•	 Interpretability related to which features were actually learned by the function;

•	 Completeness related to coverage of important scenarios during training;

•	 Correctness related to the ability of the trained function to perform its task 
without errors. 

The choice of training data has a direct impact on accuracy of a machine learning 
function. Criteria are therefore required in order to determine whether or not the 
training data have the potential to lead to a sufficient level of performance, including:

•	 Training data volume: A sufficient amount of training data is used to provide  
a statistically relevant distribution of scenarios and to ensure a stabilisation of  
a strong coverage of weightings in the neural network.

•	 Coverage of known, critical scenarios: Domain experience based on well-
understood physical properties of the system and environment as well as 

previous validation exercises ensures the identification of classes of scenarios  
that should exhibit similar behaviour in the function.

•	 Minimisation of unknown, critical scenarios: Some critical attributes of the input 
space may not be known during system design [ 63 ]. A combination of systematic 
identification of equivalence classes in the training data and statistical coverage 
during training and validation will therefore be essential to minimise the residual 
risk of insufficiencies due to inadequate training data.

A key component of demonstrating the correctness of traditional safety-critical 
software is introspective techniques that include manual code review, static analysis, 
code coverage and formal verification. These techniques allow for an argument to 
be formulated on the detailed algorithmic design and implementation but cannot 
be easily transferred to the machine learning paradigms. Other arguments must 
therefore be found that make use of knowledge of the internal behaviour of the 
neural networks.

•	 Saliency maps: Based on the back propagation of results in the neural network, 
Saliency maps [ 64 ] highlight those portions of an image that have greatest 
influence on classification results. As such, they can be used to provide a manual 
plausibility check of results as well as to determine potential causes of failed tests. 

•	 Explanations: Another line of research tries to generate natural language 
explanations referring in human understandable terms to the discriminating 
contents of an input image to explain which features were relevant for the 
classification [ 65 ]. 

•	 Distinguishability measures and adversarial perturbations: The robustness of 
the trained function appears to be related to its susceptibility to adversarial 
perturbations.
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[ 66 ] introduces the concept of distinguishability, whereby the difficulty of the 
classification task is calculated as a distinguishability measure. Furthermore, 
it was shown that the robustness of the classifier against random noise is 
proportional to its robustness against adversarial perturbations. The use of 
distinguishability measures could therefore provide an indicator of the potential 
robustness of the trained function.

Due to the inherent restrictions of the applicability of white-box approaches to the 
verification of the trained function, a strong emphasis will remain on testing as 
a means to estimate the achieved performance of the trained function. Standard 
approaches to testing machine learning functions involve reserving a proportion of 
the data collected for training purposes to performing validation tests. These tests 
naturally suffer from the same inadequacies as described above for the training data. 
Several additional test approaches are therefore being developed.

•	 Synthetic data generation and search-based testing: Based on advances 
in computer graphics realism as well as the possibility to generate data with 
specific properties, the use of synthetically generated data may also play 
a role [ 67 ] in the assurance case. Synthetic data can be used to generate 
huge numbers of test cases, in particular to cover critical or rare situations, 
otherwise not adequately represented in naturally occurring data. The use of 
synthetic data also allows test cases to be automatically generated together 
with the corresponding ground truth. This allows for search-based optimisation 
approaches to be applied to automatically generate (physically feasible) images 
which produce incorrect classifications. However, the use of synthetic data also 
implies the introduction of the additional assumption in the assurance case 
that the synthetic data would lead to test results that are indeed representative  
of the operational environment.

•	 White-box coverage tests: At present, there is no clear consensus on which 
stopping criteria to apply when testing machine learning functions. Due to the fact 
that deep neural networks operate in a highly dimensional feature space, choosing 
test cases based on a set of domain-specific equivalence classes is less likely to be 
effective, as there is a high chance that these do not match the feature dimensions 
learnt by the neural network. White-box criteria have been proposed based on the 
concept of neuron coverage to determine the completeness and effectiveness of 
the test data. This involves calculating the ratio of activated neurons (activation 
values above a given threshold) to the total number of neurons for a given set 
of input data [ 68 ], [ 69 ]. These approaches have also been combined with search-
based testing techniques to create variations of test data that achieve coverage. 
These techniques are only applicable in combination with functional criteria and 
it is as yet unclear how effective such white-box techniques are at discovering 
performance issues in the neural networks.

7.5 Simulation

The use of simulation when testing one or more components of a HAD system 
addresses the issues of controllability, observability and repeatability (see Section 
7.1) by simulating the software interfaces of the system within a controlled, synthetic 
environment. By using synthetic test data, a greater coverage of the ODD and scenario 
classes can be achieved, including those conditions that are difficult or dangerous to 
reproduce in the real world. If simulated tests can be demonstrated to be representative 
they can be used to form an argument to reduce the amount of driving hours required 
to form a statistical argument for freedom of unacceptable risk in the final system, 
thereby making the release argument for HAD more economically feasible.
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The use of simulation can be used in the verification of different parts of the system 
and at different levels of system integration.

Simulation for verifying sensing and understanding functions: This form of 
testing aims to verify the robustness of the sensing and understanding functions 
across a wide range of conditions. Synthetic scenes can be generated using photo-
realistic graphics engines that automatically include ground truth data needed for 
either training or verification. Such data sets are also already publicly available 
(e.g. Virtual KITTI [ 70 ], or SYNTHIA [ 71 ]) allowing for the benchmarking of different 
implementations. Due to the need to explicitly generate the input data based on 
a set of pre-defined characteristics (e.g. lighting, weather conditions, etc.) this 
type of testing is well suited to verifying the response of the system to known 
triggering events that can be generated at scale and with well-controlled coverage 
and variation. An alternative approach to using synthetic data is to augment data 
directly recorded in the environment (e.g. using existing images of street scenes). 
In [ 72 ], the authors applied augmentation of image data to verify the robustness 
of pedestrian detection functions against perturbations in images that reflect 
physical conditions such as haze and defocus. While the use of simulated input 
data can be an efficient approach to verifying the sensing and understanding 
functions, questions will remain regarding the representativeness of the data and 
transferability of the results, especially where the processing performed by the 
function is opaque and sensitive to subtle differences in input data unrecognisable 
by humans as is the case with many machine learning approaches. Therefore the 
use of simulation can only support and not replace real-world tests which are 
required to identify previously unknown triggering events.

•	 Physical simulation of sensing functions: An alternative application of simulation 
to sensing and understanding functions is to perform extensive simulation of 

the physical properties of the sensors themselves. This may include, for example, 
investigating optical properties of camera lenses [ 73 ], [ 74 ], simulation of the 
propagation of radar reflections [ 75 ] or the simulation of weather effects on LIDAR 
performance [ 76 ]. This level of simulation can verify that the underlying principles 
of the sensors are sufficient to meet the performance requirements of the HAD 
function. Likewise, they can also shed insight into potential “blind spots” of the 
sensing principles which in turn can be used during system design, when analysing 
the propagation of sensing failures during the system. This method of simulation 
is typically extremely computing resource-intensive and is therefore not typically 
used for performing large-scale testing but instead for analysing specific physical 
properties of the system during the design phase.

•	 Simulation for verifying decision functions: At present, the most common 
form of simulation involves simulating the decision functions using an abstract 
representation of the environment (e.g. in the form of object lists, road models 
and simulated traffic behaviour). This type of testing is used to collect evidence of 
the functional correctness of the driving properties of the system in a wide range 
of simulated traffic scenarios. A key technical challenge to this type of simulation 
is the creation of realistic models of the environment, including the behaviour of 
other traffic participants that can react to decisions of the ego-vehicle in a closed-
loop simulation [ 77 ]. In their publicly available Voluntary Safety Self-Assessments, 
a number of companies have emphasised the use of simulation to create safety 
evidence. Waymo [ 78 ] describes how the use of simulation is used to demonstrate 
that the vehicle masters the 28 core competencies defined by the US Department 
of Transportation. The simulation is based on a high resolution model of a geo-
fenced area in which the vehicles are tested on the roads. Scenarios recorded 
during on-road testing are then digitalised and used to create large numbers of 
variations to explicitly cover the core competencies.
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7.6 Vehicle and field-based testing

As discussed in section 7.5, simulation and component-based tests are well suited 
for collecting large amounts of verification evidence either synthetically generated 
or derived from previously observed situations. As such, the testing is well suited 
to confirming the system behaviour in the presence of known triggering events. In 
order to develop a claim that the probability of previously unknown triggering events  
is sufficiently low, testing in the vehicle under real-world conditions is unavoidable. 
The relationship between field-based testing, controlled vehicle tests (e.g. using 
dummy objects on a test track), and simulation is summarised in Figure 15.

The objectives of in-vehicle and field-based testing are therefore to collect evidence of 
the safe operation of the system within the target domain. Due to the rare occurrence 
of hazardous situations (e.g. linked to unknown triggering events), an infeasibly large 
amount of driving data would be required to quantify the probability of hazards. 

Figure 15: Relationship between simulation, controlled vehicle tests, and field tests as part of a 
comprehensive test strategy

However, if data from the extensive sensor set of the vehicle, in combination with 
observations of the internal system state, can provide information regarding how 
close a vehicle was to a hazardous situation, then this could provide a richer set of 
data that can be extrapolated to estimate the probability of a violation of safety 
goals. One such indicator could be a calculated time-to-collision, or the use of other 
vehicle sensor data as reference value. Extreme value theory (EVT) [ 79 ], [ 80 ], [ 81 ]  
has been proposed as a method for performing such evaluations. In EVT, extreme 
events are modelled using a statistical distribution which is then used to perform 
extrapolation.

Due to the characteristics of the open context domain, it may be misleading to 
discuss testing completeness criteria in this testing phase. Instead criteria must  
be found to form an argument that the residual failure rate is sufficiently low  
(e.g. several orders of magnitude of average accident rates due to human error).  
An estimation of "accident free miles" and the extrapolation of results based on EVT 
could be extended with the following additional criteria:

•	 Disengagement index: This metric describes the number of disengagements 
over time or per distance travelled of an automated driving system where the 
system itself disengages due to detecting the limits of its ODD or a supervising 
driver disengages. The number of disengagements of automated driving vehicles 
is required by the California Code of Regulations and has therefore provided 
insight into the maturity of systems from various companies. The advantage of 
this metric is that it counts more frequent statistical events (potential but avoided 
accidents) than actual accidents. However the actual achieved metric is highly 
sensitive to the difficulty and distribution of the scenarios driven. Furthermore, the 
relationship between avoided accidents and actual accidents is unlikely to hold for  
a number of corner cases (which may be uncontrollable for a human supervisor).
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•	 ODD coverage: Testing coverage of the ODD and validating the completeness 
of the ODD often go hand-in-hand during vehicle testing. Vehicle and field tests 
should demonstrate the coverage of the defined ODD in all its relevant dimensions, 
while simultaneously identifying as yet undiscovered scenario classes or relevant 
domain characteristics. In both cases, a semantic model of the domain in which the 
target ODD is specified and a means of transferring real-world observations into 
this model in order to measure coverage or detect gaps are required. This leads to 
an observability problem whereby as yet unknown triggering events may not be 
directly measured by the vehicle’s target sensor set and decision algorithms and 
whose presence must therefore be indirectly inferred. Aiming for ODD coverage 
also highlights the controllability problem whereby many situations stipulated in 
the ODD model may be extremely rare or difficult and dangerous to reproduce. 
This problem is often solved through testing within controlled environments such 
as in proving grounds under artificially generated conditions (such as water spray 
jets and cardboard cut-out pedestrians). Relevant testing criteria related to ODD 
coverage could therefore be percentage of ODD scenarios/equivalence classes 
covered or number of driving miles between newly discovered ODD requirements.
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This report has described a framework for assuring the safety of highly automated 
driving, with particular focus on the topic of functional insufficiencies caused 
by the inherent complexity and uncertainty in the operating domain, sensing 
technologies and decision algorithms. It was argued that only a holistic approach to 
forming a safety argument based on the systematic analysis and modelling of the 
target domain, a demonstrably robust technical safety concept and diverse set of 
verification and validation evidence will lead to a sufficiently convincing assurance 
case for the system. In particular, the report described how understanding the 
relationship between domain analysis, system design, verification and validation 
evidence and the assurance case is crucial in order to produce economically feasible 
and adequately safe systems. For example, restricting the domain in which the 
system operates may allow for a stronger safety argument to be created with less 
effort than for a wider scope of operation. However, this introduces the need for 
additional arguments that the system will only ever operate within the restricted 
domain and that the boundary of the intended scope of operation can be detected.

The report has identified a number of areas of additional research both at the detailed 
methodological level and regarding the overall assurance strategy that must be 
addressed by academia and industry. These include, among others:

•	 Development of a common, standardised semantic model of the ODD that can 
be used for system specification, simulation, test and field data analysis;

•	 Extension to existing safety analysis approaches to address functional 
insufficiencies and not just traditional fault models;

•	 Approaches for collecting reliable evidence for the robustness of machine learning 
functions over a wide range of situations;

•	 Technical approaches to detecting the boundary of the target operational domain 
in order to transition to a safe state when the vehicle exits the domain scope 
for which it has been released;

•	 Approaches for assessing the safety risk and mitigating against hazards associated 
with the interaction between the automated system and the driver and between 
the system and its environment including pedestrians and other vehicles;

•	 Definition and agreement of a societally acceptable level of residual risk associated 
with different classes of system failures. The acceptable level of residual risk may 
vary with the failure classes and is unlikely to be directly related to the level of risk 
associated with human-operated vehicles.

Due to the complexity and scope of the field of work described here, this report 
is inevitably incomplete. Each component of the assurance case methodology 
described here is in itself an extremely active and often very early field of research. 
The report has therefore not attempted to provide a complete and up-to-date 
description but instead describes the underlying principles of the methodological 
components and their contribution to the overall assurance case. In addition, a 
number of relevant topics have not yet been addressed but should be pursued in 
future releases of this report or related work. 

8. Conclusions 

8. Conclusions

© University of York 2020

47Assuring the safety of highly automated driving: state-of-the-art and research perspectives



1. Introduction 8. Conclusions 9. Bibliography
2. Challenges of  

safety assurance in  
the open context

5. Domain analysis  
and the definition  

of safety goals

4. Application of  
the framework

6. System  
design

7. Verification and 
validation evidence

3. A framework for  
safety assurance of highly 

automated driving

These topics include:

•	 Arguing the safety of human driver/automated system interactions, in particular 
in critical situations and during handover of tasks;

•	 Analysis of emerging properties and associated hazards due to the interaction 
between the automated driving system and its environment such as pedestrians, 
other road users and automated systems;

•	 The use of infrastructure to support the safety of automated driving and additional 
challenges for safety assurance;

•	 Addressing the issue of allocated moral and legal responsibility to automated 
systems and the consequences on the use of machine learning, system design 
and safety assurance.

Finally, the capabilities described in this report will need to be developed over time 
to allow for the effectiveness of the methods to be demonstrated in systems within 
restricted domains or with a lower level of criticality or automation before being 
applied to more sophisticated systems. Consensus must be formed through industry-
wide collaboration (e.g. within publicly funded projects) and a proactive dialogue with 
homologation and legislative authorities. Eventually, best practice must be represented 
in appropriate standards. These standards, however, should focus on the requirements 
to be fulfilled by the assurance strategy rather than the specific methods used, as it is 
likely that these methods will continue to evolve over time as theoretical and tooling 
advances are made, leading to more economical approaches to reaching an equivalent 
level of assurance.
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