CARPQ-
Managing Dynamic Distributed Jini™
Systems*

Max Breitling, Michael Fahrmair, Chris Salzmann, Maurice Schoenmakers

Technische Universitat Miunchen
Institut fir Informatik

D-80290 Miinchen, Germany
{ breitlin| fahrmair| salzmann|schoenma} Qin.tum.de

December 16, 1999

Abstract

Jini™ offers the basic technology to develop distributed systems where the partici-
pating clients, services and their interactions can adapt dynamically to a changing
availability and configuration of the network.!

The tool CARPQ@ (implemented itself as Jini system) is designed to visualize, an-
alyze and control dynamic and distributed Jini systems. The existing reflection
mechanisms emerged to be too weak to supply enough information for a suitable
management of such a system. Therefore these mechanism had to be extended by
realizing a reflective metalevel upon Jini.

This paper describes the tool and its intended usage, and reports the gained expe-
riences together with their implied consequences.

Keywords: Dynamic Systems, Reflection, Distributed Systems, Jini, Tool Support

1 Carp@ — a system to observe Jini services

1.1 Modeling Dynamic Distributed Systems in General

As dynamic distributed systems in general as described in (..) might be realized based
on different Middlewares like Jini, UPNP or Salutation which might furthermore interact

*This work was supported in part by the Deutsche Forschungsgemeinschaft DFG and the BMW-AG.
1Jini and all Jini-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.

together in one system, there is an increased need for a middlerware and implementation
independent abstract description technique for dynamic distributed systems as such.

From an abstract point of view, DDS consist mainly of service components. It is very
important to understand, that these are components on the system level view and may
differ from components on the implementation level of view. Service components usually
provide thematically grouped functionality on application level, whereas implementation
components may realize more than one service with one object. So one can see services
as logical or virtual components in contrast to the physical components that actually
implement them.

Services of course need to be able to communicate with other services in some way in
order to interact in a system kind of way. Communication can be performed in many
different ways. In short communication can be targeted or untargeted, synchronous or
asynchronous. For targeted communication one might also distinguish between 1:1 and
1:n communication. Targeted communication also requires a service to ’know’ its com-
munication partner. This is accomplished by introducing so called channels.

As we want to describe distributed systems there is also a need by specifying locations
that represent a piece of virtual or real hardware on which the services are executed.

Bringing in dynamics we need further elements to describe our system in an abstract
implementation independent way. Foremost services can come and go, which introduces
no new problems as long as we just want to describe an actual appearance of our sys-
tem. Next, the implementation of existing services can change transparent during runtime
which is also no problem, because we only describe our system implementation indepen-
dent, by distinguishing between service components and implementation components.

In a dynamic system in principle but also in consequence of new services appearing or
services leaving the system during runtime in an unspecified way, also communication links
(channels) must be established or cut during runtime, so there should be a possibility to
find the right communication partner during runtime. This problem can be solved by
adding some kind of type information and selection criteria.

Type information to services is added by the new element port. Ports are connectors for
channels. Services can have multiple types for accepting communication i.e. messages
from other services. These ports are called inPorts and further specified according to the
kind of communication they can handle

e interfacelnPorts for single target synchronous communication
e cventInPorts for multi target synchronous communication

o distributed EventInPorts for multi target asynchronous communication

As broadcast communication does not require target information there are no channels
for broadcasting an therefore no ports respectively.

The channels itself are directed which means that there has to be an equivalent to inPorts
on the other end of the channel. This kind of port is called outPort and its existence
(without a channel) indicates, that the service this kind of port is attached to 'knows’
a certain type-information of other services and is able to communicate with them. An
outPort with a channel attached to it indicates, that at the moment this service holds a

target reference of another existing service of a given type and is ready to communicate
or communicating with this other service.

As inPorts outPorts are named according to the kind of communication they are used for
(interfaceOutPorts, eventOutPorts and distributed EventOutPorts).

Services without any inPort and at least one outPort are called clients and services can
have additional specification information which goes beyond type information which al-
lows to further distinguish between services of the same type and therefore the same
external interfaces. This additional service information is called Properties. Properties
can be everything from additional system structure information, like groups up to detailed
functional and non functional specification of a service, e.g. vendor, language, security
certificates, extra abilities like printing color and so on.

Actual communication is done by sending messages over a channel.

1.2 Modeling Jini Systems on System Level

Of course we want to extract and visualize real systems, in the first step Jini systems,
so a concrete mapping between our abstract system model we want to visualize and the
implementation of a jini system is needed.

This is quite easy. Services are the public interfaces of an object that is registered in a
LUS, clients respectively are objects that hold references to services (at least one) and
locations are java VMs.

Channels exists if the attribute reference to a service (outPort) in an object is not null.

InterfacelnPorts are remote interfaces an object registered as a service implements, EventIn-
Ports are implementations of listener interfaces and EventOutPorts a container holding
listeners, DistributedEventInPorts are implementations of RemoteEventListener inter-
faces and DistributedEventOutPorts are containers holding these listeners respectively.

Messages are all method calls that correspond to the interface determined by the inPort.

Properties can be directly mapped to Jini’s attributes.

1.3 Getting the System Model of a Jini System by Reflection

Having a mapping between Jini elements and our abstract system model that we want to
visualize is not enough, because we are in a dynamic environment, so things can change
in not predefined ways which means we have to gather most necessary information at
runtime of the system an constantly 'feed’ our system model.

1.4 System Architecture

The CARP@-system itself has been designed as a dynamic system using Jini services as
its main components, so that it is possible both to manage CARPQ with itself and to
extend it during runtime.

The logical architecture of the CARPQ system is shown in Figure 1 with service dependen-

cies from top to bottom. The mobility layer contains services that provide the possibility
to start services from remote or to move a running service from one location to another.

——

location 1 location 3

‘ Jini

RMI

i ! [|
| ! | o |
| I : | : | —
|
| — i — I |
|| application- application | | application- | : |
. - | N M
| service service I service I {}| managem. structural |81 | gpplication
| e.g. mobile e.q. fax 1y e.g. service : || console view |
: phone G- i browser l :
| i ¥ | c
I ! I I a
t] Pk ! r
T T t T
! i | i i p
I [meta- I | I Q@
|| report [[I'| management/
| - | model | |
|| service | | service)l || metalevel s
i i [I y
| [: | | s
| | | t
T T 1 T L T
| o i I e
m
l H P l
| _ ’ I ! . [!
| basic service 0 basic service Iy basic service | mability
| (relocator) I (relocator) : | (relocator) |
| i il |
! | P! |
'| |
| | | 1 | —
] |
: | 1
| |
I |
T Il
h |
h |
| |
1 !
! |
! |

Java

Figure 1: Layers of CARPQ Services

This is an extra layer, because mobility features might be part of Jini in the near future
and therefore are not part of the core CARPQ system.

The management layer contains all CARP@Q services being involved with gathering, manip-
ulation and storage of information about the observed application system. The CARPQ
core system comes with two services assigned to this layer, the report-service and the
meta-model-service. The report-service gathers basic information pieces, by querying
special meta-level objects, called CARPQ-beans (see Figure 2 and Section 1.5), about
the observed application ranging from very simple ones, like name and attributes of its
services up to complex system structure information like exchanged messages, communi-
cation channels or interface ports. All this pieces are stored in the meta-model service
that contains a CARP@-internal model of the observed application-system built up from
the gathered information. This model might be just displayed by a simple view service
assigned to CARP@Q s application layer or used to actually manage the observed sys-
tem by using an extensive console application which might furthermore use specialized
management-services to actually control the observed application-system’s services e.g.
by setting their attributes, changing their names or doing some configuration (Figure 2).

The layer structure shown in Figure 1 does not reflect the actual structure of existing
CARPQ components. It is merely a logical view of functional units. The physical im-
plementation could differ from that view. In the actual implementation for example, the
report and the meta-model services are grouped together in one service (consisting of two
components) due to performance reasons.

Console 1 Console 1
Structure I g I . I Management I
View List View Tree View Editor X

Meta Model(s)

[ELEN]
uoneolddy

Y

EER R E

Management
Service B

Management

Report Service Service A

Y
Carp@ Enabled Jini-Service LSO:rbiL:g
Service

Figure 2: The model collects and propagates data gained by reflection to the user interface
views.

Carp@ Enabled
Service

[oAaT e

1.5 The Meta Level

The basic technique of CARPQ is to find out as much as possible about the system
by reflection and other system describing sources. We believe that before a system can
be changed at runtime, the first step is to understand and to observe it at runtime.
An administrator can then manipulate the system through the model he retrieved by
introspection (shown in figure 2). These changes on the meta level then are reflected in
the systems runtime behavior.

The model we have chosen to represent the Jini system is not based on classes and
references but is an architectural model based on the idea of components and connectors
[?, ?]. Figure 3 shows a simplified UML class diagram [?] of the meta model that describes
this architectural model. A model on an architectural level allows the use of related sets
of class instances as single components and hides all the detailed auxiliary classes and
objects that are typically used in Java to implement listeners, events and so on. Another
advantage is that a connector, here called channel, is a more abstract item then a simple
interface reference. So it can describe any kind of communication, like method calls or on
distributed events.

Normal Jini-services, clients and standard reflection techniques in Java can not yet deliver
the additional information that is required to observe locations, channels and e.g. memory
usage. Therefore CARPQ contains a special component model, called CARPQ beans.
These bean components have to be created by the programmer and extract as much as
possible through reflection. To make a Jini service or client fully observable by CARPQ,

[Component v 1

[\

1 |source target

Channel
0..% 0.t

Figure 3: A simplified meta model to describe the architectural elements.

[y

Figure 4: The CARPQ System running

the programmer also has to notify them about changes that can not be detected by
standard reflection. So in short some simple programming guidelines have to be fulfilled
by the programmer to get full observation possibilities.

Figure 2 shows an example scenario: The Report-Service collects information from both
CARP@-bean extended Jini-services and standard Jini-services. This information is stored
in the core Meta-Model that contains all basic structure and management information.
The CARPQ-core-system can be extended by specialized management services that gather
additional information being stored either in the core Meta-Model, some additional spe-
cialized Meta-Model, e.g. a metric-model (service B), or not at all.

The meta-information can be displayed in different (may be distributed) application-views
and can also be changed by editors, either directly (service A) or via reflection of changes
in the Meta-Model to the managed system (service B).

1.6 Using CARPQ

CARPQ@ is quite easy to use. In an running Jini-System the user can start the model ser-
vice. It will investigate and collect data about all services, that are found in all reachable
lookup services. The model is constantly updated at runtime.

To see the information about the Jini system that is collected in the model service, the
user starts the graphical user interface client and can browse through the system as Figure
4 shows. Multiple clients may exist and are notified constantly about changes while the
structure of the Jini-system evolves.

The user interface allows the user to browse through the system to watch all relevant data
and to open up different alternative views.

The most intuitive view is the structure view. It shows a graphical representation of the
collaboration in a Jini system in a ROOM [?] like notation. While the Jini system is
running, all the views are constantly updated and show the current situation. When a

new Jini service participates in the system, (for example because somebody started it
in the network watched by CARPQ) it simply pops up as a box. When a Jini service
disappears, for example because the service leaves the network, it will be shown grayed
and will finally be removed. The graphical layout is automatically performed but can be
manually influenced.

Besides the graphical representation in the structure view, CARPQ shows detailed in-
formation in various lists. Here the user can see not only the memory consumed by a
location, but also conventional Jini information. For example there is group list, that
shows the groups, where a service joins at. Jini attributes, that describe the services, are
also visualized.

With CARPQ the user can of course not only show all this information, but can also
administrate the Jini system by adding, changing and removing Jini groups and attributes.

Besides simple administration CARPQ has management functionality like starting or stop-
ping Jini components on remote locations, which is very comfortable when more complex
test scenarios have to be set up or when the performance with multiple clients has to be
tested.

2 Conclusion & Future Work

In this paper we presented CARPQ, a management tool for dynamic Jini systems. Since
CARPQ needs certain information about the Jini components that are meant to be ob-
served, the reflection mechanisms of Java seemed appropriate. Unfortunately, these mech-
anisms turned out to be not powerful enough, since e.g. information about the commu-
nication links cannot be retrieved sufficiently. Therefore an additional meta level was
introduced to make the needed information accessible. A more generalized solution to
this problem would be more satifying.

CARPQ is now available in its first beta version [Car|. Future work includes the creation
of additional views like message sequence charts [?] to visualize the message trace for
dedicated parts of a Jini system. Other work will include more specific administrative
views for lookup services and java spaces. Management of Jini systems, like migration of
services at runtime will be other areas to investigate.

However, making a Jini service or client fully observable by inserting code at the source
code level is too retrictive. Currently we are working on an integration of a class file
transformer that instruments the code at runtime on a bytecode level. Tools like JOIE
[?] will be used for this. The advantage is that also components where no source code
is available can be observed completly. The byte code transformation is done again with
reflective techniques based on a the meta information contained in the class file. Because
the code must be changed before it is loaded, normal Java reflection can not be used.

Acknowledgments We would like to thank the whole CARPQ team for a lot of overtime
work.

References

[Car] CARPQ Homepage. http://www4.in.tum.de/ " carpat/.
[Cor] CoRrBA Homepage. http://www.omg.org/corba/.
[EE98] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft Press, 1998.

[OMG92] OMG. Object management architecture guide — revision 2.0, 1992.

