
Towards a Product Model of Open Source Software in a Commercial
Environment

Jianjun Deng, Tilman Seifert, Sascha Vogel
Software and Systems Engineering

Technical University of Munich
Boltzmannstr. 3, D-85748 Garching, Germany

�deng, seifert, vogels�@in.tum.de

Abstract

Commercial organizations show increasing interest in
using and improving Open Source (OS) software – they
want to participate in the OS community, but still have com-
mercial interests. We believe there is not necessarily a con-
flict of interests, and the OS community can gain from the
participation of commercial organizations. But this spe-
cial situation requires a sound understanding of how open
source development works. In this paper we describe the
process of developing OSS in a commercial environment.
We identify which work products have to be built up and
discuss the differences between traditional open source de-
velopment without financial interest and commercial OS de-
velopment. The described process model also focuses on
licenses, tool support and infrastructures. The concept we
introduce is based on an evaluation of different projects and
case studies.

1. Introduction

There are many reasons for commercial organizations
to be interested in using OS software (OSS), e. g. usually
the quality or the transparency of OSS. Many companies
not only use OSS, but also take advantage of the available
source code and work on the code base to improve it, fix
bugs, or add features or interfaces in order to make it even
more useful for their specific purposes.

1.1. OS Development in a Commercial Environment

The development of OSS in a commercial context rises
interesting questions, including architecture, development
life cycle, tool support, licenses, business models, and their
respective interactions and dependencies.

In this paper we consider the development process. We
analyze the distinct properties of OS projects and commer-
cial projects; we identify requirements for a development
process that is appropriate for developing OSS in a com-
mercial context, and we derive a development life cycle ful-
filling these requirements.

1.2. Mutual Gains

OS is based on a “give and take” approach. This works
not only between the developers themselves, but also be-
tween different types of organizations with different back-
grounds and incentives. The participation of companies in
OS communities offers chances for both sides.

Commercial organizations can profit from using OSS,
but on the other hand, there are concerns for a commer-
cial organization when the OSS is not only used, but also
improved. Some are of a technical nature, e. g.: How well
are OS projects documented? How does maintenance work,
when nobody can be held responsible? There are also legal
concerns, e. g. about licenses, liability, and a business model
that works without conflict with the OS licenses.

As soon as organizational and legal difficulties are
solved, commercial organizations can offer a lot for OS
projects and contribute to the OS community, such as: de-
velopers with defined budget are committed to their as-
signed tasks and make planning more reliable so that
projects can evolve faster, reliable service, thorough doc-
umentation. The OSS is being incorporated into commer-
cially sold products; if the company improves the OS part
by adding features or by removing bugs, these improve-
ments will be given back to the community.

1.3 Paper Structure

This paper is structured as follows: we first focus on the
description of some general aspects which are necessary to

define, categorize and to manage OS projects. Particularly,
management is a precondition for commercialized develop-
ment of OSS (see section 3). These aspects define an OS
project framework.

Based on this framework in the following we derive
different aspects of OSS development. These aspects are
called process views such as software usagefor instance.
Each view is assigned to a set of products including re-
quired activities, results and further conditions. As prod-
ucts strongly relate to each other, we additionally specify a
product network as described in section 4. The relations are
characterized by requiring and producing requirements.

OS projects strongly depend on different types as out-
lined in the project framework. That makes a tailoring
mechanism necessary, to adapt the product network and
thus the development process to a specific project type. One
possible tailoring mechanism is introduced in section 5.

The paper ends with a summary briefly enumerating all
results of this paper.

2. Related Work

When considering OS together with the aspect of tradi-
tional software engineering and project management in a
commercial environment in particular, it is indispensable to
examine on one hand the growing and not yet well docu-
mented field of OS development and on the other hand the
area of traditional process models.

The interface between commercial and OS development
is not yet discussed very deeply. In most cases people focus
more on business concepts such as [3] or [10].

For a more technical view there are traditional software
development processes or assessment methods such as the
V-Model [4], the rational unified process (RUP) [5] or the
capability maturity model [9].

There are some interesting ideas for processes of OS
software development in [8, 11] or [14] but they do not con-
sider OS in a commercial environment.

This paper integrates the idea of building up OSS and
offering possibilities to manage and control an OS project.
This work is strongly related to existing projects such as
Linux [6], Mozilla [7] or Apache [1] to always guarantee
for adequacy and substantiality.

3. Framework for OS Development in a Com-
mercial Environment

Based on observations in the OS community and exist-
ing and valid process models for traditional software devel-
opment projects, in the following we describe some general
and typical conditions for developing OS software in a com-
mercial environment.

3.1. Project Categories

Architecture, development model, license models, busi-
ness models, tool support, and infrastructure are strongly
related – for software development in general and for OS
software development in particular. Especially in a com-
mercial environment, it is crucial to strictly follow the rules
given by the different OS licenses. These different licenses
impose constraints on the development, they even influence
the architecture of a software that includes OS parts as well
as closed source parts.

Architecture Types We introduce a categorization of
projects based on different architecture types:

� First, we distinguish between “tight” and “loose” cou-
pling of OS and non-OS components. Some OS prod-
ucts or libraries allow to change the source code and
to use it even in commercial products, while other OS
products inhibit such a use of their sources. The li-
cense model might therefore have great influence on
the software architecture of the whole product. In fig-
ure 1, the left side with types 1 and 3 shows loose cou-
pling, using only defined interfaces; the right side with
types 2 and 4 shows tight coupling, e. g. when several
components are integrated into one software product.

� Usually, closed source development is based on OS
software, and driven by its features and architecture.
But there are cases when it is the other way around.
This is our second distinction; in figure 1 the upper
half with types 1 and 2 shows that OSS is the basis that
is used with or integrated into closed source develop-
ment. In the lower half (types 3 and 4), OSS is based
on closed source development. Examples for this situ-
ation might be an OS framework that requires a com-
mercial database, or a public interface to a component
that is available only as a “black box”, such as crypto-
graphic libraries.

OS CS

OSOS

Type 1

Type 4Type 3

OS

Type 2

Application,

Usage

Interface,

Extension

Open Source driven

Closed Source driven

CS

CSCS

OS = Open Source

CS = Closed Source (Made or Bought)

Figure 1. Project Classes

2

The reasons for choosing one of the architecture types
might be motivated not only by technical aspects but also
by license models which allow only a specific usage. We
need to understand the different license models before we
can start to build on or to integrate OS software into any
project. Here we clearly see the connection to the business
model.

Software Usage We can further distinguish project types
according to the usage of OSS: On one hand, there is OSS
that is directly integrated into a product that is sold to a
customer, and on the other hand there are OSS tools that are
used in the development process. Here are some examples
for the first case:

� A company wants to use some OSS in order to extend
it or to build on it and sell its own part to a customer.
This situation is very common; it coincides with types
1 and 2 in figure 1.

� A software company has built a reusable piece of soft-
ware and wants to publish this piece as OSS. There can
be several motivations behind:

– to demonstrate competence (in order to acquire
new projects)

– to give something to the OS community, and to
profit from the improvements that are contributed
by the community. Here the company hopes for
the dynamics of an interested community.

– to overcome legal difficulties: The reusable piece
of software is not sold by itself but reused in the
next project for another customer.

The OS development of tools is even more common. For
example, a software company wants to use and enhance a
development tool (e. g. Eclipse, the OS Java development
environment that can be extended by using its plug-in mech-
anism) and contributes some extension (e. g. a useful plug-
in). This is work that is done anyway, it is directly related
to the company’s projects but not part of the project results
(in the sense that it is sold to a customer).

In all cases, commercial organizations participate in an
OS community; they need to integrate the OSS development
into their own development process.

3.2. Bridging the gap between management restric-
tions and OS developing freedom

OS projects work different than commercial projects.
Release planning for OS projects is driven by different
forces: often technical maturity has higher priority than
time-to-market. The development team is highly distributed
and collaborates according to rules defined by the smallest

common denominator (usually source code, administrated
in a repository).

Yet OS projects do not run without goals and plans. The
term “OS Project Management” is no contradiction, but the
project management activities can be reduced to a mini-
mum. They mainly consist of “technical” activities such
as deciding which code to check in and which code not.

In the context of project management it is important to
bridge the gap described in the heading of this section. One
possible way is to introduce a role concept and assign some
responsibilities to each role which than have to be voluntar-
ily accepted by the OS community. In order to keep free-
dom in the development process all roles related to orga-
nizational issues should be assigned to groups of people to
realize a democratic decision and steering processes. This
is indispensable to perform OS project as this helps bearing
lots of individual considerations. However, we introduce a
role model with a democratic steering committee and which
shows how specific roles can participate directly or indi-
rectly in the steering process.

Role Resposibilities
User • Report Errors

• Propose new Requirements and Error-Correction
Developer • Coding and giving feedback for the specification

 • Documentation
 • Test for Releases

Commiter • Review Code of Developer
• Participate on vote for Check-in reviewed Code
• Check-in Code into repository
• Vote for integrating of new commiters

Project board •
• Vote for integrating new board members
• Collect new features and decide which have to be applied
• Identify and define new (sub) projects

Release Manager • Specify new features for future releases
• block finalizing new releases
• Pre release-testing-
• commit new releases

Project steering

Figure 2. Related Project Roles

3.3. Process Requirements

Since we want to integrate OS development into a com-
mercial environment, we consider the most important as-
pects for both sides.

OS projects as well as commercial projects want to pro-
duce high-quality software. But both types of projects face
different constraints. The most obvious one is time: In com-
mercial projects the time is limited by budget constraints
and contracts. For OS developers, available time per week
might also be restricted, but usually there are no hard dead-
lines to meet. Therefore, they can set different priorities
e. g. in release planning.

First, we look at OS development. From section 3.2 we
conclude that we need a lightweight, but still planned pro-

3

cess that takes into account a high degree of distributed col-
laboration:

1. A role conceptthat is powerful enough to distinguish
different tasks, and simple enough to be easily de-
scribed and quickly adopted by the community.

2. A document conceptthat is capable of installing re-
view mechanisms for quality assurance while at the
same time not setting up any barriers that might dis-
courage developers. It needs to canalize the highly
distributed and parallel development. It should allow
for well-structured documents (such as linking source
code to the corresponding documentation).

Second, we consider commercial organizations. They
want to use a defined process that induces quality and effi-
ciency. The postulations for a high-quality process of most
process models as described in section 2 boil down to three
important issues:

3. Planned activities: Every step and every decision is
planned (a priori) and traceable (a posteriori).

4. Transparencyof the process and the current state of the
project for every stake holder in the project.

5. Communication: Many reviews, both “horizontally”
(between developers) and “vertically” (between man-
agers, developers and customers/users), are important
for everyone to have a realistic view of the project and
to keep up a high quality standard.

4. Product Model

Based on the introduced framework, we now define dif-
ferent process views facilitating all aforementioned require-
ments. The views include the specification of products
which sum up activities, results and interrelations between
them. Products are also associated to project roles, project
categories and some general attributes as outlined in section
4.6. Furthermore, products depend on each other as they
produce some output for other products or they require the
output of other products as input. The technique to describe
product networks is based on the concept of work products
which can also be found in [13] and [2]. Based on product
network the activity and result schedule can be derived. In
the following we introduce and precisely characterize the
terms work product and view:

� Work products: Traditional process models in gen-
eral do not suit exactly for OS development processes.
Most process models such as the V-Model or the RUP
are organized by ordered activities requiring or pro-
ducing results. In OS projects in most cases it is not

possible to exactly specify well-defined activities or
results respectively. Instead it is important to spec-
ify process object which can jointly describe these
two elements and their relations. Here these objects
are called work products, whereas the characteristic
includes more than just activities and results as de-
scribed in section 4.6. Work products are integrated
into a complex network of products. This network re-
sults from relations between products describing spe-
cific dependency rules, e. g.: one product needs some
other products as input. This way, parallel activities
can be synchronized.

� Views: As mentioned above the network defines a
very complex structure of development objects. For
methodological reasons it is important to furthermore
structure the network in order to ease understanding.
Thus we introduced views, collating sets of products
with similar concerns. The views are not disjoint
which makes intersections of views possible. Thus
products can occur in more than one view.

In the following we roughly describe all identified views
for the development product network. To demonstrate our
model we additionally refine one specific view before we
continue to show in detail how the different technical and
organizational aspects of OS and traditional software devel-
opment can be combined within products.

4.1 View 1: Software Usage

An important element of OS development is a fast feed-
back loop from end users to the developers. Often this
works pretty well because the developers are users them-
selves, but also users who are not developers need easy ac-
cess to a bug reporting system or possibilities to suggest
new features.

4.2 View 2: Project Initialization

At the project’s beginning each project must set up tech-
nical infrastructures to facilitate storing and sharing of code
and documentation, releasing, logging, bug reporting and
tracing, as well as communicating with each other. Usually,
a web portal will be realized and configured to give access
to these services. To attract people for development and to
make the project popular, the initiator should specify the
main goals, the architecture as well as structural, behavioral
and technological requirements. This information should
be propagated to an adequate OS community, e. g. by news
postings.

4

4.3 View 3: Code Development Cycle

In OS code is a shared resource and each role has the
right to contribute his code for testing or adding new sys-
tem features. To ensure that these contributions are highly
qualified and fit into the whole system an exhaustive quality
assurance cycle has to be established including extensive
test and review scenarios before submitting the final code
into the repository.

4.4 View 4: Release Management

Release Management is a key approach for successful
OS projects. In most cases, the system requirements evolve
over time. Thus, release plans have to be defined that allow
for changes and the gradual introduction of requirement.

Another role of the release planning is to steer the OS
project. This can be achieved by defining milestones for
instance three times a year, when new releases have to be
assembled. This forces the community to contribute their
finalized code to participate in new releases.

4.5 Refining the Release Management View

In the last sections we briefly described the different
views to develop OS software. For all views we defined
product networks in detail as shown in figure 3. In order not
to go beyond this scope we just describe exemplarily the
detailed product network for one specific view that is the
release management.

Usually the release cycle can be defined as follows. In
the beginning of a release cycle, branches are created inde-
pendently from the main trunk. Bug fixes as well as new
features are implemented and tested in separate branches.
The project board decides which changes will be added to
the main branch of the project. At some point, the project
board decides which features will be part of the next release
and assumes only bug fixes for the next release of the main
branch. The goal is to release only reasonably stable ver-
sions of the project.

This way, developers have free choice of what they want
to implement or improve, while the project steering com-
mittee uses the main releases to integrate the different de-
velopment branches and to synchronize all efforts.

4.6 Matching organizational and technical As-
pects for OS

The work products can be refined in order to integrate
the aforementioned project roles, the life cycle requirements
and the dynamic of the development process. A work prod-
uct is instantly illustrated in figure 4. In this figure the char-
acteristic features are listed and described.

update

Review

Codedepot

Identification and
Creation of a Prototype

Branch

Prototype Branch

test / verify

Decision Process

new Release

Parameters:
- Time
- Votes
- Increment

Update / Depot-Access
blocked to others

Figure 3. Product Structure Release Manage-
ment

With work products in mind it is possible to define a
product infrastructure which gives methodological hints as
well as help in developing the needed results in order to ef-
ficiently and effectively run through the life cycle.

A work product is described by the following features:

� Id Work Product: Name and identifier of the work
product such as WP.X.Y and name: Init Project. The
id results from the view number the work product is
part of, followed by a key representing the general al-
phanumeric order the product has in relation to the rest
of the products.

� Visibility: The visibility describes whether a product
is visible in a special project type.

� Intention: The intention classifies whether the prod-
uct is needed in order to develop an interface or an
application, respectively.

� Purpose:Goal of creating this product.

� Description: This feature describes what to do and
what to produce in the context of this work product.
For instance address the OS-Community in the view
of project initialization.

� Pre-Relation: These relations describe necessities
which have to exist in order to perform the included
activities or to generate results. These necessities re-
sult from other products and thus this relation defines
a kind of input/output or consumer/producer relation.
Usually, relations are identified by work product ids.
In case of alternative products, the id is enclosed in
brackets. This also holds for the post-relation.

5

A Codedepot offers the infrastructure to check-in code
ressources such as classes, components as well as
documents for comments.

The Codedepot consists of different elements summarized
by documents. A document can either be a code fragment
of a specific language i.e. Java, C or C++ or a document needed
for comments or specification during the design or analysis
respectively.

WP.{2, 3, 4}.1 Codedepot

* An open source software project has to be initialized. This
 is done in work product WP.{2}.2 Initialization. Particularly,
 a repository has to exist.
* Alternatively the Codedepot can be influenced by updates
 via the developers which is described in work produc t
 [WP {3,4}.3] Update. This does not have to be related.

Associated
Roles

* The resposibility is assigned to the Project Board.
 They can insert, delte or modify elements.
* The Developer can read and modify elements
* The User can read elements

Purpose

Description

Pre Relation

Post Relation

Attributes

Configuration

The product has the state in Progress. All results are not yet
realized and all activitites except installing the Respository are
not yet startet

Activities

Results

* Install tools to support programming
* Install a repository to organize documents
* Install document structure to contently connect
 documents

* Development environment
* Define Document infrastructure
* Initialize right policy to documents
* [Update Document infrastructure]

Operations read, insert, delete, modify, check-in,

check-out documents

* The availability of the Codedepot enables the definition of a
 new version or release respectively. This is done by work
 product WP.{4}.3 Identification and Creation of a Prototype
 Branch.
* Additionally, the Codedepot offers the possibility to code
 which is described in WP{2,3}.5 Modification and Coding
* Furthermore documents can be downloaded and reviewed by
 the download work product WP{3}.5 download

State

Tools are checked-in with version 1.0.0,
 other documents are not existent.

Visibility Open Source = true and Closed Source = true

Intention Interface Definition = true and Application = false

Figure 4. Example of a Work Product

� Properties: This feature contains a list of sub-features.
These are attributes which can be principally assigned
to work products.

1. Associated Role: The role describes a set of
functions which have to be fulfilled either by one
person or a group of persons. This might be a
software developer or the cooperation of a soft-
ware developer an a system user.

2. Configuration: This attribute describes the state
of a configuration of this product, i.e. inserted
into repository or logged, etc..

3. Operations: This feature describes which
changes are possible in order to keep consistency.
For instance substitute variable � by � as well as

check-in result �.

4. State: This attribute specifies the state of a prod-
uct such as: in process, finished, tested, verified,
initiated, etc. These states can arbitrarily be de-
fined by the project executives.

� Post-Relation: This relation documents the impact of
the product according to its current state for associated
work products, that is products which state depends on
the state of this product.

An instance of a work product is given in figure 4. The
example instantiates the given template of work products.

5. Tailoring the Work Products

Type X

Type Y

View 1 View 2

View 3
View 4

Subtype X

Figure 5. Tailoring the Product Model

As mentioned above each product has to define the con-
text the product is needed for. In other words it has to be
stated, whether it is optional or obligatory to fulfill the prod-
uct. This offers possibility to optimize the product structure
according to the identified project type. This way of opti-
mizing the product model is called tailoring.

There is also the possibility to unify different types of
tailored product structures. This can be done by simply uni-
fying the assigned products. Analogously other project con-
stellations can be matched.

The tailoring includes one more possibility to tailor the
product structure. This can be achieved by considering the
pre- and post-relations. For each product which is obligato-
rily required in one of the pre- or post-relation of one spe-
cific tailoring there has to exist one other complementary
product which fulfills this requirement. The optionally re-
quired products offer room for optimization. This additional
tailoring mechanisms can lead to a set of subtypes.

The idea of tailoring is illustrated in a simplified way in
figure 5. In this figure the relations between work products

6

and views as well as the relations between project types and
work products can be seen. The tailoring types have inter-
sections but they focus on and emphasis specific parts of the
product model. This is independent of the different process
views as mentioned above.

6. Summary

In this paper we discussed in detail aspects of OSS de-
velopment for commercial use. In this context we addressed
the research topics of OS development processes, OS pro-
cess models and tailoring mechanisms for OS process mod-
els. In the following the main results in this paper are
summed up:

� We identified different categories of OS projects based
on existing projects such as Mozilla or Linux, etc.

� Roles have been introduced to enable the management
of a distributed and parallel development processes.

� Furthermore, based on the project categories we iden-
tified typical requirements which should be realized by
instances of OSS development processes.

� Additionally, related to existing projects and the rele-
vant literature, we summed up typical and needed pro-
cess activities and built up an OS process model based
on the concept of work products and product networks.

� Moreover, based on product networks we offered a tai-
loring mechanism to assign the product model to one
specific project type.

Acknowledgments

We want to thank Dr. Thomas Wieland for his construc-
tive and valuable input. This work was funded by the re-
search projects “NOW” and “ViSEK”, both granted by the
German Department of Education and Research, BMBF.

References

[1] Apache XML Project.
http://xml.apache.org/guidelines.html, Feb 2003.

[2] B. Deifel, W. Schwerin, and S. Vogel. Work Products for
Integrated Software Development. Technical report, Tech-
nische Universität München, 1999.

[3] M. Fink. The Business and Economics of Linux and Open
Source. Prentice Hall, 2002.

[4] IABG. Willkommen zum v–modell, November 1999.
[5] P. Kruchten. The Rational Unified Process – An Introduc-

tion. Addison Wesley, 1998.
[6] Lonux project. http://www.linux.org/, Feb 2003.
[7] Mozilla project. http://www.mozilla.org, Feb 2003.

[8] Open source as a process.
http://www.computeruser.com/articles/2008,5,36,1,0801,01.html,
Feb 2003.

[9] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis.
The Capability Maturity Model: Guidelines for Improving
the Software Process. Addison-Wesley, 1995.

[10] E. S. Raymond. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolutionary.
O’Reilly and Associates, Sebastopol, California, 1999.

[11] Research on open source software development.
http://www.isr.uci.edu/research-open-source.html, Feb
2003.

[12] W. Scacchi. Is Open Source Software Development Faster,
Better, and Cheaper than Software Engineering? In 2nd
Workshop on Open Source Software Engineering. ICSE 02,
May 2002.

[13] W. Schwerin. Models of Systems, Work Products, and Nota-
tions. In roceedings of Intl. Workshop on Model Engineering
ECOOP, Cannes France, 2000.

[14] Software development practices in open software de-
velopment communities: A comparative case study.
http://opensource.ucc.ie/icse2001/scacchi.pdf, Feb 2003.

7

