1

Unwanted Behavior and its Impact on
Adaptive Systems in Ubiquitous Computing

Michael Fahrmair, Wassiou Sitou, Bernd Spanfelner
Technische Universit Minchen — Department of Informatics
Boltzmannstr. 3, 85748 Garching (Munich), Germany
{fahrmaitsitouspanfel @in.tum.de

Abstract

Many ubiquitous computing applications so far
fail to live up to their expectations. While work-
ing perfectly in controllable laboratory environ-
ments, they seem to be particularly prone to prob-
lems related to a discrepancy between user ex-
pectation and systems behavior when released
into the wild. This kind of unwanted behavior of
course prevents the vision of an emerging trend
of context aware and adaptive applications in mo-
bile and ubiquitous computing to become reality.
In this paper, we present examples from our prac-
tical work and show why for ubiquitous com-
puting unwanted behavior is not just a matter
of enough requirements engineering and good or
bad technical system verification. We further-
more provide a classification of the phenomenon
and an analysis of the causes of its occurrence
and resolvability in context aware and adaptive
systems.

Introduction

behavior could be seen as wrong and even disadvantageous
despite other users might have been perfectly satisfied.

To better distinguish this effect from failures that are
undisputable an error, no matter what perspective or
special situation you look at it from, we introduced
the termunwanted behavio(UB). The main difference
of this unwanted behavior to, for example, specifica-
tion/implementation errors is that unwanted behavior can
not be systematically detected by means of typical verifica-
tion techniques like theorem proofing or model checking.
In other words it is possible to have a 100% correct sys-
tem that is still completely useless for a specific user in
a specific situation. However since the system can work
perfectly for most of all users most of the time, it is also
not just a question of good or bad requirements engineer-
ing. Moreover since this phenomenon especially happens
when releasing an application from the safety of the devel-
opment lab (with its controllable environment) out into an
infinite complex and unpredictable real world, this is also
not a matter of just finding the right test cases during the
development phase.

Context awareness is fine in theory, and the research is-
sue is figuring out how to get it to work. Therefore, two ap-
plications, Grapevine and Rendezvous, developed and de-

The main intention of ubiquitous computing (Ubicomp) is ployed by IBM, have revealed the key challenges in mak-
the use of functionality in as many situations as possibleng context-aware computing a realfi€hristenseret al,,
[Fahrmair, 2005; Dey, 2000; Weiser, 1991; Schmidt, 2002 200d. Grapevine and Rendezvous are services offered to
Context adaptation in this setting is an enabling technplog IBM employees as a means of looking into the promise
for ubiquitous computing since it allows a technical systemand perils of context-aware computing. The majority of
to change its structure, functionality or implementation a users, however, did not find application activity context
runtime to adapt to situation depending conditidBentext useful for a variety of reasons. For example, users often
in this scope means the sufficiently exact characterizatiomvere not comfortable with others knowing what they were
of a system’s situation by means of perceivable informatiordoing. The GrapevinéRichards and Christensen, 2004
that is relevant for the adaptation of the system (a model o§ervice provided complete control over who could observe
a situation).Adaptationagain is a term to describe the gen- which elements of context, and users commonly blocked
eral ability to fit to different conditions or circumstances all others from viewing their computer activity all of the
given by the environment in a certain situatio@ontext time. Although the service allowed observer-by-observer
adaptationis therefore shortly defined as an automated adblocking, it was rarely used. The IBM Rendezvous ser-
justment of the observable behavior or the internal stdtes ovice allows people to talk in small groups using telephones
a system to its contexFahrmairet al., 2004. (to “rendezvous” on the phone) and/or computer applica-
While classic non ubiquitous applications are used liketions that provide a telephone function. This is similar to
hammers and screwdrivers and let the user decide how taudio-conference calls, and the service appears to bera laye
put up a picture, ubiquitous applications are comparable ton top of audio-conferencing. Instead of calling directly
discreet servants. Our experiments clearly showed howinto an audio-conference, however, a user of the IBM Ren-
ever that this paradigm shift seems to intensify problemslezvous service in effect phones his or her corporate calen-
related to user acceptance with such systems and their agar, selects a meeting from it, and enters into a multi party
plications. Identifying and tracking back the causes, we obconversation with the people invited to that meeting.
served that besides technical errors there was a new class ofln this paper we put all these and other observations and
failure type involved. Sometimes the system even behavedssumptions on a firmer theoretical and practical basis and
exactly as intended by the developer, however for a certaidiscuss their technical and methodical resolvability for t
combination of user, his situation and the environmens, thi domain of software and systems engineering:

e We give a brief overview (Section 2) why unwanted 1993 that can help to prevent or compensate for negative
behavior is an intensified problem for ubiquitous ap-UB experience. A spontaneous hull in short is some kind
plications that are realized with context adaptation.of interactive influence sphere around the actual technical
We describe both examples of existing real life as wellsystem core. This user influence can be used to compen-
as academic prototypes and concepts to illustrate theate for known or anticipated UB for example by man-
above mentioned unwanted behavior problems (Secdally modifying input and output values, finding opera-
tion 3) tional workarounds for bugs etc. With increasing automa-

« Although it is superficially possible to classify the tion and decreasing user interaction resources in ubigsiito
described examples into three different types of fail-SyStéms, this mechanism however can no longer compen-
ure reasons, our analysis (Section 4) shows that théate UB below a tolerable level.
real cause for UB is always a divergence between two

models of reality. 3 Examples of Unwanted Behavior

e There are exactly three sources for such model diveri hi . id le of les il .
gences. We explain why such discrepancy can surln this section we provide a couple of examples illustrating

vive most technical quality measures, stay hidden inthe occurrence of unwanted behavior while dealing with

the system for a long time or even spontaneously aris§°ftware systems, particularly if the systems possess cer-
while running the system (Section 5). We also do gtain automatic (i.e. context adaptive behavior). Some of

short discussion on what constructive or methodical"€S€ examples are constructed. Since not many ubiqui-
measure can be taken to avoid unwanted behavior anfUS Systems have been released, the examples aim to il-

how these strategies worked out in our practical appli-ustrate unwanted behavior also in common applications.
cations. g P PP We should point out that in Ubicomp the occurrence of UB

is however amplified by the ubiquitousness of the applica-

2 Impact of Unwanted Behavior (UB) on tions.

Ubiquitous Computing 3.1 Microsoft Office Spell Checking

The main idea behind all these concepts in particular and of .
ubiquitous computing in general is a more flexible systerrg well-known, yet very simple, example of unwanted be-
understanding, whereby the thought of the system as a toQavior is the automatic spell checker incorporated in MS
moves into the background and the needs and wishes &fffice Word. After a full stop, the first letter of the follow-
the user step into the foreground. Generally, these need9 Word is automatically capitalized. In fact, this furesti
and wishes of a given user vary according to his currenfannot dlffergntlate between abbrev[atlons ywth pomt_a}nd
situation. the real ending of a sentence. If this fact is not familiar

During the last six years we have developed and ex{0 a given user, the written text COL:I|d. hold some surprises
perimented with several prototypes of applications base§uring a read-after-write check. This is an example for sit-
on that idea of systems that can automatically recogniz&'@tions, where the system is not able to predict the users
wishes and needs of its users (or other stakeholders) ad@tentions. Of course no one would care about this if it
adapt themselves accordingly by means of reconfiguratiorCCUrS once in a while but, as Ubicomp applications are
Among them were a mobile community based search enT€@nt to support the user in as many situations as possible
gine [Fahrmairet al, 200d, an in-house navigation and with gutomated decisions, such small glitches can sum up
information assistant for a camp{i&mannet al, 2004 (0 & big annoyance.
and a one-year long self experiment with a smart home en-)
vironment[Fahrmair, 2005 3.2 Smart Kitchen

From the introducing descriptipn Qf UB, the.re Seems to, nearly inexhaustible source for effects of unwanted
be no reason why UB cannot arise in non ubiquitous sys

¢ In fact thi tion is t Y biquit behavior are smart home applications as described in
ems. In fact tis assumption IS true. However ubiquItoU eah ymair, 200k This occurs particularly if the user can
applications usually

not understand the exact technical realization of the pyste
C1: are multi functional and more complex, and operate inA typical example concerns smart kitchens with their un-

heterogeneous environments, derlined automatic food order systems. A lowbrow user for
C2: work, at least to some extent, invisibly in the back- instance could develop the impression that the ordered food
ground, and is only based on the editable purchasing list. In fact this ob

. . . servation is however only a coincidence, which arises as a
C3: are technically based on automation (context adaptgeg It of the fact that the user does not transact any addi-
tion) tional purchases, which would be registered by the system

Because of C1, Ubicomp systems are much less transsver the RFID labels and considered for new orders. If the
parent for their users, especially regarding technicai-lim user suddenly changes his relevant behavior, for example
tations of possible functions. Due to C2, there is no suctby adjustment of a weekly poker party, for which the guests
thing like an operating error in Ubicomp. Therefore the bring some food and put it in the refrigerator, this depen-
user rightly insists that a Ubicomp application fulfills his dence hidden so far can lead to terrible surprises. The sys-
wishes and needs as promised and not just does what ltem would register the regular consumption of additional
has explicitly commanded. This difficulty even gets worsegoods and would adapt the automatic order accordingly.
if the system relies on automation (C3) to fulfill its ubiquit This example highlights problems that occur because of a
goal, even in situations with very limited user interaction misunderstanding of the systems inner behavior. More ac-
possibilities (e.g. while driving a car). curate or better understandable documentation in this case

This is because, even if UB can also occur in normalis not necessary sufficient, because Ubicomp systems adapt
systems, they usually have a spontaneous [R#lasch, their structure and functionality at runtime.

3.3 Navigation System role of mental models in the design procdséorman,

Lets consider a common GPS-based navigation systen}988. Norman states that the designer’s goal is to de-
Such a system has as primary task to guide its user frorfign the system image such that the user's mental model of
a location A to another location B. At the beginning of the the system’s operation commdes_wnh the designer’s nienta
guidance, the system computes the route. Thereby it corfodel of the same. The system image represents those as-
siders in addition to the current input of the user, also hig?€ct of the implementation with witch the user interacts.
preferences, and guides him to the desired destination. [fét the above mentioned discrepancy, i.e the observable
the user gets lost during the guidance, the system reconsiivergence between user expectation and system behavior,
putes the route from the current position to the destinationcould not be seen as system construction failure, since the
In our example, a building site that recently began is on théystem exactly behaves as specified by the engineers. The
computed route. This building site however is not yet takerain cause of the occurrence of such unwanted behaviors
up into the street guide. The system is therefore unable t1erefore seems to be a lack in collecting and processing
recognize this new situation and guides the user into thi$he users needs and wishes.

dead-end street. The user is unsatisfied, turns 400m back We derive from these criteria that an unwanted behav-
and takes another way. After a while, the user lets the navior occurs if, on the one hand, the user is not aware of the
igation system guide him again to his destination with thesystem’s abilities and thus develops expectations that are
hope the detour would cause the system to choose anothgprealizable by the system. On the other hand, UB occurs
route. Once again, the system guides the user to the tenff-the needs of the user are altered due to external influ-
porary dead-end street at the building site. The user had t@nces, which are unrecognizable by the system. Over and
go back even further to let the system definitively avoid theabove that, UB could be registered if situations (or coftext
building site. Of course there are already new navigatiorPf use arise at runtime, which were not predictable at devel-
systems that allow the user to exclude specific streets. Thigpment time. The system then proceeds from assumptions
requires additional user interactions in a situation wherghat might not be valid any longer and thus behaves sud-
the user is already busy driving the car. This example il-denly incorrectly from the users point of view. In this way
lustrates unwanted behavior, where the system, in contra$tB-occurrences are events that individually usually ate no
to the user, does not have the necessary abilities to detegfitical for the overall functionality of a system. In large

exceptional situation. guantities, UB can become a growing annoyance though.
_ o This can lead to rejection by the user and therefore to a
3.4 Further Examples: Air-conditioning, Bank replacement of a system.
Service

Other examples for unwanted System behavior would be 4.2 Cause of Occurrence of UB
glr']rgiti:grntt;g![tr:];St gﬁg:tsgr%?; fbtrgzglg:‘lérzhgggﬁ?ﬁg r&%yents that meet our definition of UB can be traced back to
. . ree reasons (see Figure 1).
appointed about the system adapting to the guests, due to
the majority criterion of the adaptation logic, and not to
him. Here the user was used to a certain behavior that ap-
parently changes spontaneously. A further example is an
automatic savings function for the bank account that saves
money above a certain threshold and accidentally saves
money that someone has assigned on the account to pay
a certain anticipated bill.

Situation A Situation B (Part of the reality)

4 Characterization of Unwanted Behavior User perception range System perception range (model)

We use the ternunwanted behavioto designate the phe- R1:User perception range exceeds system capabilities
nomenon where the behavior of a given system, while free
of errors, still differs from the expectations of its curren
user.

4.1 Criteria for the Occurrence of UB

Analyzing the above mentioned motivation and examples,
we summarize that unwanted behavior occurs if the follow-
ing criteria are all together fulfilled:

R2: System perception range exceeds user capabilities

LEGEND

O Reality

e There exists an observable divergence between user
expectation and system behavior.

e The system behaves correctly regarding its specifica- AN 1 Model
tion
e The system specification complies with the collected R3: Different user and system interpretation

requirements.))) . .)
Figure 1: Differences in the Perception of Different Situa-

The existence of the observable divergence between us s

expectation and system behavior is with reference to the

above mentioned observations undisputable. The idea of

drawing a distinction between user model and systems These reasons are sometimes sole responsible for a UB-
model is similar to Norman'’s canonical elucidation of the Phenomenon but can also occur in combination:

R1: The user is able to differentiate two situations, but thetechnical models, which is often done in software verifi-
system is not. cation (e.g. checking design specification model against
R2: The system is able to differentiate two situations, butMPlementation) and is at least theoretically feasiblee Th
the user is not. UB problem is about comparing models with reality, i.e.
_ _ _.checking whether the assumptions that were usedsiate
R3: Both, user and system are able to differentiate the site model in an abstraction process have been valid in the
uations but they have different interpretation or per-first place and are still valid. In ubiquitous computing this
spective of the situation’s changes. means comparing a black box model of yet unknown type
R1is typical for ubiquitous systems that lack needed senand structure inside the users head with a similar model of
sors to identify a certain situation. This can either be thethe developer of the system. While the model of the devel-
case if the situation was not considered during the requireeper is at least partially visible in form of the system imple
ments engineering and hence a required sensor was not imentation, the user model is not. To make it more difficult,
tegrated in the system. Another possibility is that suffitie the developer’'s model representation is frozen at a certain
exact sensors are not available, or even if so, they are toidme during the development phase while the user’s world
expensive etc. In either case the context information that imodel constantly changes and should be updated to reflect
available to the system is not sufficiently exact to characany unforeseeable changes in reality, his growing experi-
terize all relevant situations. Since context is an ab8tnac ence etc. Yet the user's model is still only a projection of
of the reality where irrelevant details are dropped, a thirdreality from a certain perspective and of course this per-
possibility for R1 could be that the system model is too ab-spective is not necessarily the same as the developer's.
stract and details that are important for the user may have
been dropped. spontaneous MD
R2 is the exact opposite of R1. If a system uses sen-
sors that observe the environment in terms that are beyond
the perception of the user, it is possible that the system
will identify a new situation where the user is not aware
of any changes. Another possibility could be that the sys-
tem model is too detailed. Sometimes little changes in the
environment are perceptible by a user per se, but in normal
life these details are filtered out. If the system model ob-
serves such details (for example in discrete rules) it edyik
that the system identifies a change of the situation but the not spontaneous MD
user does not. Also the system designer could be of the
opinion that a certain change in the environment leads to a Figure 2: Three Reasons for Model Discrepancies
different situation but the user does not share this opinion
Since ubiquitous systems are commaodity, it is likely that

some user's opinion about different situations differ from :t fOIIOWtS tfrom Lh:js dthatMI\/IIDDs either aI;eady e)iiSt at de-
the designer’s opinion. In contrast to a too detailed model/€'oPMment ime (hi aen s) or _(spon aneously) emerge
. -Q_urmg the system lifetime (see Figure 2). The latter pos-

ﬁ)lbility is not as obvious so we first take a look at hidden
Ds that are introduced somewhere within the develop-
_ment process. Our analysis of several case studies clearly
aﬁmwed that these hidden MDs can have two possible ori-

not spontaneous MD

RE-
deficiency

frame-
problem

are irrelevant to a user, here there is a basic difference i
identifying situations.

R3 is a bit related to the different interpretation of a sit
uation. Here the user as well as the system designer h
different interpretations of a situation. The main difiece gms. L :
compared to the last reason is that in the former argumeng 1 he first possibility is that the UB is caused by a MD
the difference lies in the importance to distinguish betwee that originated from @onscious decision by the system de-
two situations whereas now both agree that a new situatio9ner For example, the designer realized that among 1000
is recognizable but they differ in the interpretation of the POSSIbIe usage contexts there might be 2 with use cases
new situation. This could be the case if, for instance, the2d requirements conflicts that would need an uneconom-
cultural backgrounds of the designer and the user are difi¢@ amount of effort to be resolved. So the decision was
ferent. made to deliberately drop support for this situation. How-

Despite the reason for UB phenomenon differs, there i€Ve" the first problem with such decisions in a ubiquitous
a common fact that is equal to all three reasons: The useraPPlication is that ubiquitous systems usually are exténde
reality model, from which he derives his wishes and needsl€combined or depended on in an unforeseeable way. Even

differs from the system model that represents the realityff & failure rate of 0.2% seems to be pristinely tolerable,
model of the designer. such effects can propagate and multiply due to service com-

position (typical for Ubicomp systems) rendering later ap-
5 Model Discrepancies (MD) and their plicatiqns of the system pretty useless. It could b(_é argued
.. that this problem is more or less a matter of writing and

Origins reading proper manuals. Yet the problem is that even if
Now that we have identified MDs as the main reason ofthis decision was explicity made, even documented, this
UB in an otherwise technical error free system, the interinformation does not always make it through the develop-
esting question is how and when such MDs are created anaient process. Even if it would in Ubicomp (because of its
whether they can be detected, removed or at least avoidedynamic nature) there is usually no printed manual.
or compensated for. The second possibility for hidden MDs @ficits in re-

To understand the difficulty of this question we have toquirements engineerin@RE). In our terminology we delib-

make clear that this question is not about comparing twaerately speak of deficits instead of errors because we distin

guish between real errors (like registering and documgntin errors at least theoretically possible to dispel at develop
a requirement in a document that is later on overwritten byment time by various means of different verification tech-
another version or skipping that annoying interview etc.)niques.
and “did not know it better at that time” effects. So the rea- Our definition of unwanted behavior therefore purposely
son is that state of the art RE methods seem to be not fullgxcluded such technical errors because we differentiate be
suitable for the construction of complex Ubicomp applica-tween failures that can be prevented by means of verifi-
tions that work in highly heterogeneous dynamic environ-cation and failures that can not be systematically detected
ments. during development time. Basically this is inspired by the
As mentioned before there is a third possible reason fofact that there can be systems that are 100% correct but can
MD. This one is especially though to handle because thetill be completely useless in a certain situation. This is
MD does not exist during development time but arises lateralso why MDs can not always be detected at development
This last condition however is not undisputable. The wholetime. Unlike classical system errors, MDs are hidden in
matter is under heavy discussion for more than 20 years edmplicit assumptions (in other words the abstractions) tha
pecially in the field of Al (known there as the frame prob- were used to create a model in the first place.
lem [Dennett, 198Y). However there seem to be a lot of
good arguments that this problem is not generally, and nov.2 Operating Error

less then ever practically, solvable at least until it is-pos The only other form of errors not covered by this differ-

sible to give a machine at least limited abilities in mind entiation between UB and specification errors are operat-

reading and fortune telling. Another possibility would be jng errors. These describe failure situations where the sys

to avoid using classical model representations (with Bxtri tem would depend on correct user interaction to produce a

sic semantic) at all. Using a model representation basegorrect output behavior. Ubiquitous applications however

on self contained semantic (like the mathematic languag@sually work invisibly in the background, at least to some

is for mathematics) to reflect a significant part of the realextent and therefore have to be foolproof by definition, at

world however would most likely mean constructing a ma-|east regarding any remaining direct user input. This is why

chine with higher complexity than our universe. we neglect operating errors as a source of UB provided that
We therefore assume that there are certain random evenigey are not already covered by MDs in general, for exam-

within reality or the user’s thoughts and ideas that can€ausp|e when the user has developed a wrong idea about the

MDs at a later point in time than the development of thecapabilities of the system.

system (see Figure 3). Moreover because of the symbol

grounding problenfHarnad, 199Dsuch MDs can not be 6.3 Feature Interaction and Automation

detected from inside the model without any outside help. Surprises

This means MDs can stay hidden until they cause UB or ab

least become imminent. esides classical system and operating errors there is yet

another term that is often confused with MD created UB.

RE deficioncy Constraints Feature interactionhowever relates to a large group of

mostly technical issues around interaction and combinatio
O O ‘H).,‘]Di O of features (for a good overview s¢Rulverniiller et al,,

2002). Inside this group especially unwanted feature inter-
" o — » Time actions not caused by specification/implementation errors
come quite close to unwanted behavior, but MDs are not

qopem System limited to a qombina}tion or interaction of features. There-
g fore feature interaction problems that are not related-to er

Model “Model rors are a subset of our definition of UB.
The same is true foautomation surprisesr so called
Figure 3: Model Discrepancies and their Origins mode errors[Hourizi and Johnson, 200).1These are also

small subsets of UB that especially concentrate on user in-

terfacing aspects. Moreover automation surprises only con

centrate, on system behavior non-transparency and makes
6 Related Terms no difference between unexpected and unwanted behavior.

While dealing with the phenomenon described above, th&lode errors again require at least some sort of direct and
question arose of whether we really need a new identifiergonscious user interaction, which is not always the case for
And is there any relation to terms like classical system erubiquitous systems. We therefore regard both terms as very

ror, operating error, feature interaction, automatiopsse ~ SPecial cases of UB. In fact they describe rare cases of non
or software aging? ubiquitous applications where UB can have a larger impact

(e.g. in avionic systems).

6.1 Classical System Error _
An often asked question regarding the whole issue of unb-4 Software Aging
wanted behavior caused by model divergences is, whethdtinally the termsoftware aging while seeming quite re-
this is not just some kind of classic error. Especially be-lated especially to MDs accrued during the system’s life-
cause for instance, an implementation error could also leaime, usually focuses on increasing difficulties to change
to wrong results in a software system, which is of coursean old system to new requirements (or to cope with an
also disliked by the user. increasing number of such changes afterwdfarnas,

The main difference however is that such errors usually1994). The reasons that requirements can become obso-
are unacceptable for all users no matter what situation thelete of course are the same as MDs appearing during run-
are in. Also a system with errors is usually regarded as intime of an ubiquitous system. The main difference between
correct compared to a formal specification, which makedvD based UB and software aging however is that the latter

needs several years or even decades of lifetime to evohvReferences

relatively stable changes in the wishes and needs of thejismannet al, 2004 K. Amann, T. Reichgruber, and M.
users while spontaneous MDs in ubiquitous applications Roming. Personalisierung kontextadaptiver Dienste

can happen during runtime and can be instable. Also they gygent Project, Technische UniveasiMiunchen, 2004.
usually heavily depend on the specific user and his situ- i
ation, while software aging usually refers to a collective [Christensert al, 2006 J. Christensen, J. Sussman, S.

change in requirements (e.g. like supporting a new tech- Levy, W. E. Bennett, T. V. Wolf, W. A. Kellogg.Too

nology, platform or process). Much InformationHCI, ACM Queue 4(6), 2006.
[Dennett, 1984 D. C. Dennett. Cognitive Wheels: The
7 Conclusion Frame Problem of Al Ed.:C. Hookway, Minds, Ma-

chines, and Evolution. Cambridge University Press,
In this paper, the phenomenon of unwanted behavior (UB) Cambridge, 1984. g y

has been characterized and examples from our practical .)
work have been given. We have also provided a classifica P€Y: 2000 A. K. Dey. Providing Architectural Support
tion of the phenomenon and analyzed the causes of its oc- for Building Context-Aware Application®hD Thesis,
currence and resolvability, particularly in the filed of eon College of Computing, Georgia Institute of Technology,
text awareness and ubiquitous computing. 00

While researching user acceptance problems in real lif¢Fahrmair, 200b M. Fahrmair. Kalibrierbare Kontex-
ubiquitous computing applications, there always has been tadaption fir Ubiquitous Computing. Dissertation,
one question at issue: Is the problem of unwanted behav- Department of Informatics, Technische Univeisit
ior really a new kind of problem? Is it a specific draw- Munchen, 2005.

back of ubmuno_usne;sgr a question of good (or bad) regFahrmairet al, 2004 M. Fahrmair, C. Salzmann, and M.
quirements engineering? Unfortunately the answer is more g oo 2r = oo o e rauewahl mobiler Di-

complicated than the question. Can good-enough require- enstelPR DE0010024368A1 [DE], DPMA, 2000
ments engineering prevent from UB? Yes and no. Yes, be- ' ' '

cause the main goal of RE is to analyze the user wishel-ahrmairetal, 2004 M. Fahrmair, W. Sitou, and B.
and needs and prepare them to be translated into a tech- Spanfelner. An Engineering Approach to Adaptation
nical specification for system design. No, because wishes and Calibration Modeling and Retrieval of Context
and needs change over time depending on necessities of MRC 2005, Ed.: T. Roth-Berghofer, S. Schulz and D.
reality. Therefore, while analyzing requirements, atieas Leake, LNCS 3946, 2006.

enough resources, a good clairvoyance and adequate mefiMarnad, 199D S. Harnad. The Symbol Grounding Prob-
ods would be needed. But, what is exactly “good enough” |em Physica D 42, 1990.

RE? What is it all about? For ubiquitous computing this
means the more wide the application domain gets (both i
lifetime and complexity), the more probable it is that there . ;
exist discrepancies between user expectation and system gégft;;ilsléoMEzn&gfce Cockpit Safelyint Proc. HCI
behaviors. Each time this happens, a UB will be created. '

This is a user experience problem in Ubicomp because diNewberger and Dey, 2003A. Newberger and A. K. Dey.
the claim to fulfill user wishes and needs without necessary Designer Support for Context Monitoring and Control
direct or conscious interaction. Unconscious usage means IRB-TR-03-017, Intel Research Berkeley, 2003.

automation and hence less possibility to mediate or realfnorman, 1988 D. A. Norman The Psychology of Every-
time correction by the user. day ThingsBasic Books, New York, 1988.

However the system model could have been wrong fro .
o L - Parnas, 1994D. L. Parnas. Software Aging 16th Int.
the beginning due to deficits in RE, but also MDs can arlsrg Conf. on Software Engineering (ICSE-16), 1994.

later due to framing problems. Because the user is also usu-
ally a customer of some sort, for him it is not his concern if[Pulverniiller et al, 2003 E. Pulverniiller, A. Speck, J.
this UB is caused by a bad RE analyst or a tricky twistinre- O. Coplien, M. D’Hondt, and W. DeMeuterFeature
ality. Therefore it is necessary to at least introduce aroth Interaction in Composed SystehbsICS 2323, 2002.

compensation mechanism to replace any real-time COMYRaasch, 1993J. Raasch Systementwicklung mit Struk-
pensation possibilities the user had in non-automatically ,rierten Methoden. Ein Leitfadenirf Praxis und

acting applications. This mechanism is called calibration gy ,diumHanser. 3. Auflage, Bhchen, Wien, 1993.
and described ifiFahrmair, 2005; Fahrmagt al., 2006; ' i ' ’

Newberger and Dey, 2003 Once again, this mechanism [Richards and Christensen, 2904 Richards and J. Chris-
should be no excuse for relaxed RE. There is a number of €nsen. People in our SoftwareACM Queue 1(10),
reasons why as much effort should be spent on RE as eco-

nomically possible to reduce the number of UB caused byfSchmidt, 200 A. Schmidt. Ubiquitous Computing -
failed RE since the calibration is not a totally preventive Computing in ContexPhD Thesis, Computing Depart-
mechanism (every engineer probably used to sit in an air- ment, Lancester University, U.K., 2002.

plane from time to time). However there are also remarkTWeiser 1991 M. Weiser.The Computer for the 21st Cen-
able indications for not delivering ubiquitous applicatio tury. écientific American. 1991

without calibration support. And last but not least ther ar ' '
also a number of good reasons to not scrap ubiquitous com-
puting all together because for instance it allows comuter
to extend their full potential from direct human machine
interactions to sub- or semi-conscious secondary usage in
almost every situation.

ILHourizi and Johnson, 2001R. Hourizi, and P. Johnson.
Beyond Mode Error: Supporting Strategic Knowledge

