
Unwanted Behavior and its Impact on
Adaptive Systems in Ubiquitous Computing

Michael Fahrmair, Wassiou Sitou, Bernd Spanfelner
Technische Universität München – Department of Informatics

Boltzmannstr. 3, 85748 Garching (Munich), Germany
{fahrmair|sitou|spanfeln}@in.tum.de

Abstract

Many ubiquitous computing applications so far
fail to live up to their expectations. While work-
ing perfectly in controllable laboratory environ-
ments, they seem to be particularly prone to prob-
lems related to a discrepancy between user ex-
pectation and systems behavior when released
into the wild. This kind of unwanted behavior of
course prevents the vision of an emerging trend
of context aware and adaptive applications in mo-
bile and ubiquitous computing to become reality.
In this paper, we present examples from our prac-
tical work and show why for ubiquitous com-
puting unwanted behavior is not just a matter
of enough requirements engineering and good or
bad technical system verification. We further-
more provide a classification of the phenomenon
and an analysis of the causes of its occurrence
and resolvability in context aware and adaptive
systems.

1 Introduction
The main intention of ubiquitous computing (Ubicomp) is
the use of functionality in as many situations as possible
[Fahrmair, 2005; Dey, 2000; Weiser, 1991; Schmidt, 2002].
Context adaptation in this setting is an enabling technology
for ubiquitous computing since it allows a technical system
to change its structure, functionality or implementation at
runtime to adapt to situation depending conditions.Context
in this scope means the sufficiently exact characterization
of a system’s situation by means of perceivable information
that is relevant for the adaptation of the system (a model of
a situation).Adaptationagain is a term to describe the gen-
eral ability to fit to different conditions or circumstances
given by the environment in a certain situation.Context
adaptationis therefore shortly defined as an automated ad-
justment of the observable behavior or the internal states of
a system to its context[Fahrmairet al., 2006].

While classic non ubiquitous applications are used like
hammers and screwdrivers and let the user decide how to
put up a picture, ubiquitous applications are comparable to
discreet servants. Our experiments clearly showed how-
ever that this paradigm shift seems to intensify problems
related to user acceptance with such systems and their ap-
plications. Identifying and tracking back the causes, we ob-
served that besides technical errors there was a new class of
failure type involved. Sometimes the system even behaved
exactly as intended by the developer, however for a certain
combination of user, his situation and the environment, this

behavior could be seen as wrong and even disadvantageous
despite other users might have been perfectly satisfied.

To better distinguish this effect from failures that are
undisputable an error, no matter what perspective or
special situation you look at it from, we introduced
the termunwanted behavior(UB). The main difference
of this unwanted behavior to, for example, specifica-
tion/implementation errors is that unwanted behavior can
not be systematically detected by means of typical verifica-
tion techniques like theorem proofing or model checking.
In other words it is possible to have a 100% correct sys-
tem that is still completely useless for a specific user in
a specific situation. However since the system can work
perfectly for most of all users most of the time, it is also
not just a question of good or bad requirements engineer-
ing. Moreover since this phenomenon especially happens
when releasing an application from the safety of the devel-
opment lab (with its controllable environment) out into an
infinite complex and unpredictable real world, this is also
not a matter of just finding the right test cases during the
development phase.

Context awareness is fine in theory, and the research is-
sue is figuring out how to get it to work. Therefore, two ap-
plications, Grapevine and Rendezvous, developed and de-
ployed by IBM, have revealed the key challenges in mak-
ing context-aware computing a reality[Christensenet al.,
2006]. Grapevine and Rendezvous are services offered to
IBM employees as a means of looking into the promise
and perils of context-aware computing. The majority of
users, however, did not find application activity context
useful for a variety of reasons. For example, users often
were not comfortable with others knowing what they were
doing. The Grapevine[Richards and Christensen, 2004]
service provided complete control over who could observe
which elements of context, and users commonly blocked
all others from viewing their computer activity all of the
time. Although the service allowed observer-by-observer
blocking, it was rarely used. The IBM Rendezvous ser-
vice allows people to talk in small groups using telephones
(to “rendezvous” on the phone) and/or computer applica-
tions that provide a telephone function. This is similar to
audio-conference calls, and the service appears to be a layer
on top of audio-conferencing. Instead of calling directly
into an audio-conference, however, a user of the IBM Ren-
dezvous service in effect phones his or her corporate calen-
dar, selects a meeting from it, and enters into a multi party
conversation with the people invited to that meeting.

In this paper we put all these and other observations and
assumptions on a firmer theoretical and practical basis and
discuss their technical and methodical resolvability for the
domain of software and systems engineering:

• We give a brief overview (Section 2) why unwanted
behavior is an intensified problem for ubiquitous ap-
plications that are realized with context adaptation.
We describe both examples of existing real life as well
as academic prototypes and concepts to illustrate the
above mentioned unwanted behavior problems (Sec-
tion 3)

• Although it is superficially possible to classify the
described examples into three different types of fail-
ure reasons, our analysis (Section 4) shows that the
real cause for UB is always a divergence between two
models of reality.

• There are exactly three sources for such model diver-
gences. We explain why such discrepancy can sur-
vive most technical quality measures, stay hidden in
the system for a long time or even spontaneously arise
while running the system (Section 5). We also do a
short discussion on what constructive or methodical
measure can be taken to avoid unwanted behavior and
how these strategies worked out in our practical appli-
cations.

2 Impact of Unwanted Behavior (UB) on
Ubiquitous Computing

The main idea behind all these concepts in particular and of
ubiquitous computing in general is a more flexible system
understanding, whereby the thought of the system as a tool
moves into the background and the needs and wishes of
the user step into the foreground. Generally, these needs
and wishes of a given user vary according to his current
situation.

During the last six years we have developed and ex-
perimented with several prototypes of applications based
on that idea of systems that can automatically recognize
wishes and needs of its users (or other stakeholders) and
adapt themselves accordingly by means of reconfiguration.
Among them were a mobile community based search en-
gine [Fahrmairet al., 2000], an in-house navigation and
information assistant for a campus[Amann et al., 2004]
and a one-year long self experiment with a smart home en-
vironment[Fahrmair, 2005].

From the introducing description of UB, there seems to
be no reason why UB cannot arise in non ubiquitous sys-
tems. In fact this assumption is true. However ubiquitous
applications usually

C1: are multi functional and more complex, and operate in
heterogeneous environments,

C2: work, at least to some extent, invisibly in the back-
ground, and

C3: are technically based on automation (context adapta-
tion)

Because of C1, Ubicomp systems are much less trans-
parent for their users, especially regarding technical limi-
tations of possible functions. Due to C2, there is no such
thing like an operating error in Ubicomp. Therefore the
user rightly insists that a Ubicomp application fulfills his
wishes and needs as promised and not just does what he
has explicitly commanded. This difficulty even gets worse
if the system relies on automation (C3) to fulfill its ubiquity
goal, even in situations with very limited user interaction
possibilities (e.g. while driving a car).

This is because, even if UB can also occur in normal
systems, they usually have a spontaneous hull[Raasch,

1993] that can help to prevent or compensate for negative
UB experience. A spontaneous hull in short is some kind
of interactive influence sphere around the actual technical
system core. This user influence can be used to compen-
sate for known or anticipated UB for example by man-
ually modifying input and output values, finding opera-
tional workarounds for bugs etc. With increasing automa-
tion and decreasing user interaction resources in ubiquitous
systems, this mechanism however can no longer compen-
sate UB below a tolerable level.

3 Examples of Unwanted Behavior

In this section we provide a couple of examples illustrating
the occurrence of unwanted behavior while dealing with
software systems, particularly if the systems possess cer-
tain automatic (i.e. context adaptive behavior). Some of
these examples are constructed. Since not many ubiqui-
tous systems have been released, the examples aim to il-
lustrate unwanted behavior also in common applications.
We should point out that in Ubicomp the occurrence of UB
is however amplified by the ubiquitousness of the applica-
tions.

3.1 Microsoft Office Spell Checking

A well-known, yet very simple, example of unwanted be-
havior is the automatic spell checker incorporated in MS
Office Word. After a full stop, the first letter of the follow-
ing word is automatically capitalized. In fact, this function
cannot differentiate between abbreviations with point and
the real ending of a sentence. If this fact is not familiar
to a given user, the written text could hold some surprises
during a read-after-write check. This is an example for sit-
uations, where the system is not able to predict the users
intentions. Of course no one would care about this if it
occurs once in a while but, as Ubicomp applications are
meant to support the user in as many situations as possible
with automated decisions, such small glitches can sum up
to a big annoyance.

3.2 Smart Kitchen

A nearly inexhaustible source for effects of unwanted
behavior are smart home applications as described in
[Fahrmair, 2005]. This occurs particularly if the user can
not understand the exact technical realization of the system.
A typical example concerns smart kitchens with their un-
derlined automatic food order systems. A lowbrow user for
instance could develop the impression that the ordered food
is only based on the editable purchasing list. In fact this ob-
servation is however only a coincidence, which arises as a
result of the fact that the user does not transact any addi-
tional purchases, which would be registered by the system
over the RFID labels and considered for new orders. If the
user suddenly changes his relevant behavior, for example
by adjustment of a weekly poker party, for which the guests
bring some food and put it in the refrigerator, this depen-
dence hidden so far can lead to terrible surprises. The sys-
tem would register the regular consumption of additional
goods and would adapt the automatic order accordingly.
This example highlights problems that occur because of a
misunderstanding of the systems inner behavior. More ac-
curate or better understandable documentation in this case
is not necessary sufficient, because Ubicomp systems adapt
their structure and functionality at runtime.

3.3 Navigation System
Lets consider a common GPS-based navigation system.
Such a system has as primary task to guide its user from
a location A to another location B. At the beginning of the
guidance, the system computes the route. Thereby it con-
siders in addition to the current input of the user, also his
preferences, and guides him to the desired destination. If
the user gets lost during the guidance, the system recom-
putes the route from the current position to the destination.
In our example, a building site that recently began is on the
computed route. This building site however is not yet taken
up into the street guide. The system is therefore unable to
recognize this new situation and guides the user into this
dead-end street. The user is unsatisfied, turns 400m back
and takes another way. After a while, the user lets the nav-
igation system guide him again to his destination with the
hope the detour would cause the system to choose another
route. Once again, the system guides the user to the tem-
porary dead-end street at the building site. The user had to
go back even further to let the system definitively avoid the
building site. Of course there are already new navigation
systems that allow the user to exclude specific streets. This
requires additional user interactions in a situation where
the user is already busy driving the car. This example il-
lustrates unwanted behavior, where the system, in contrast
to the user, does not have the necessary abilities to detect
exceptional situation.

3.4 Further Examples: Air-conditioning, Bank
Service

Other examples for unwanted System behavior would be a
climate control that does adapt to the cultural background
and a user that has guests from abroad and suddenly is dis-
appointed about the system adapting to the guests, due to
the majority criterion of the adaptation logic, and not to
him. Here the user was used to a certain behavior that ap-
parently changes spontaneously. A further example is an
automatic savings function for the bank account that saves
money above a certain threshold and accidentally saves
money that someone has assigned on the account to pay
a certain anticipated bill.

4 Characterization of Unwanted Behavior
We use the termunwanted behaviorto designate the phe-
nomenon where the behavior of a given system, while free
of errors, still differs from the expectations of its current
user.

4.1 Criteria for the Occurrence of UB
Analyzing the above mentioned motivation and examples,
we summarize that unwanted behavior occurs if the follow-
ing criteria are all together fulfilled:

• There exists an observable divergence between user
expectation and system behavior.

• The system behaves correctly regarding its specifica-
tion

• The system specification complies with the collected
requirements.

The existence of the observable divergence between user
expectation and system behavior is with reference to the
above mentioned observations undisputable. The idea of
drawing a distinction between user model and systems
model is similar to Norman’s canonical elucidation of the

role of mental models in the design process[Norman,
1988]. Norman states that the designer’s goal is to de-
sign the system image such that the user’s mental model of
the system’s operation coincides with the designer’s mental
model of the same. The system image represents those as-
pect of the implementation with witch the user interacts.
Yet the above mentioned discrepancy, i.e the observable
divergence between user expectation and system behavior,
could not be seen as system construction failure, since the
system exactly behaves as specified by the engineers. The
main cause of the occurrence of such unwanted behaviors
therefore seems to be a lack in collecting and processing
the users needs and wishes.

We derive from these criteria that an unwanted behav-
ior occurs if, on the one hand, the user is not aware of the
system’s abilities and thus develops expectations that are
unrealizable by the system. On the other hand, UB occurs
if the needs of the user are altered due to external influ-
ences, which are unrecognizable by the system. Over and
above that, UB could be registered if situations (or context)
of use arise at runtime, which were not predictable at devel-
opment time. The system then proceeds from assumptions
that might not be valid any longer and thus behaves sud-
denly incorrectly from the users point of view. In this way
UB-occurrences are events that individually usually are not
critical for the overall functionality of a system. In larger
quantities, UB can become a growing annoyance though.
This can lead to rejection by the user and therefore to a
replacement of a system.

4.2 Cause of Occurrence of UB

Events that meet our definition of UB can be traced back to
three reasons (see Figure 1).

Situation A Situation B (Part of the reality)

User perception range System perception range (model)

R2: System perception range exceeds user capabilities

R1: User perception range exceeds system capabilities

R3: Different user and system interpretation

Model

LEGEND

Reality

Figure 1: Differences in the Perception of Different Situa-
tions

These reasons are sometimes sole responsible for a UB-
Phenomenon but can also occur in combination:

R1: The user is able to differentiate two situations, but the
system is not.

R2: The system is able to differentiate two situations, but
the user is not.

R3: Both, user and system are able to differentiate the sit-
uations but they have different interpretation or per-
spective of the situation’s changes.

R1 is typical for ubiquitous systems that lack needed sen-
sors to identify a certain situation. This can either be the
case if the situation was not considered during the require-
ments engineering and hence a required sensor was not in-
tegrated in the system. Another possibility is that sufficient
exact sensors are not available, or even if so, they are too
expensive etc. In either case the context information that is
available to the system is not sufficiently exact to charac-
terize all relevant situations. Since context is an abstraction
of the reality where irrelevant details are dropped, a third
possibility for R1 could be that the system model is too ab-
stract and details that are important for the user may have
been dropped.

R2 is the exact opposite of R1. If a system uses sen-
sors that observe the environment in terms that are beyond
the perception of the user, it is possible that the system
will identify a new situation where the user is not aware
of any changes. Another possibility could be that the sys-
tem model is too detailed. Sometimes little changes in the
environment are perceptible by a user per se, but in normal
life these details are filtered out. If the system model ob-
serves such details (for example in discrete rules) it is likely
that the system identifies a change of the situation but the
user does not. Also the system designer could be of the
opinion that a certain change in the environment leads to a
different situation but the user does not share this opinion.
Since ubiquitous systems are commodity, it is likely that
some user’s opinion about different situations differ from
the designer’s opinion. In contrast to a too detailed model
where the designer did not bear in mind that certain details
are irrelevant to a user, here there is a basic difference in
identifying situations.

R3 is a bit related to the different interpretation of a sit-
uation. Here the user as well as the system designer had
different interpretations of a situation. The main difference
compared to the last reason is that in the former argument
the difference lies in the importance to distinguish between
two situations whereas now both agree that a new situation
is recognizable but they differ in the interpretation of the
new situation. This could be the case if, for instance, the
cultural backgrounds of the designer and the user are dif-
ferent.

Despite the reason for UB phenomenon differs, there is
a common fact that is equal to all three reasons: The user’s
reality model, from which he derives his wishes and needs,
differs from the system model that represents the reality
model of the designer.

5 Model Discrepancies (MD) and their
Origins

Now that we have identified MDs as the main reason of
UB in an otherwise technical error free system, the inter-
esting question is how and when such MDs are created and
whether they can be detected, removed or at least avoided
or compensated for.

To understand the difficulty of this question we have to
make clear that this question is not about comparing two

technical models, which is often done in software verifi-
cation (e.g. checking design specification model against
implementation) and is at least theoretically feasible. The
UB problem is about comparing models with reality, i.e.
checking whether the assumptions that were used tocreate
the model in an abstraction process have been valid in the
first place and are still valid. In ubiquitous computing this
means comparing a black box model of yet unknown type
and structure inside the users head with a similar model of
the developer of the system. While the model of the devel-
oper is at least partially visible in form of the system imple-
mentation, the user model is not. To make it more difficult,
the developer’s model representation is frozen at a certain
time during the development phase while the user’s world
model constantly changes and should be updated to reflect
any unforeseeable changes in reality, his growing experi-
ence etc. Yet the user’s model is still only a projection of
reality from a certain perspective and of course this per-
spective is not necessarily the same as the developer’s.

frame-

problem

constraints

RE-

deficiency

spontaneous MD not spontaneous MD

not spontaneous MD

Figure 2: Three Reasons for Model Discrepancies

It follows from this that MDs either already exist at de-
velopment time (hidden MDs) or (spontaneously) emerge
during the system lifetime (see Figure 2). The latter pos-
sibility is not as obvious so we first take a look at hidden
MDs that are introduced somewhere within the develop-
ment process. Our analysis of several case studies clearly
showed that these hidden MDs can have two possible ori-
gins.

The first possibility is that the UB is caused by a MD
that originated from aconscious decision by the system de-
signer. For example, the designer realized that among 1000
possible usage contexts there might be 2 with use cases
and requirements conflicts that would need an uneconom-
ical amount of effort to be resolved. So the decision was
made to deliberately drop support for this situation. How-
ever the first problem with such decisions in a ubiquitous
application is that ubiquitous systems usually are extended,
recombined or depended on in an unforeseeable way. Even
if a failure rate of 0.2% seems to be pristinely tolerable,
such effects can propagate and multiply due to service com-
position (typical for Ubicomp systems) rendering later ap-
plications of the system pretty useless. It could be argued
that this problem is more or less a matter of writing and
reading proper manuals. Yet the problem is that even if
this decision was explicitly made, even documented, this
information does not always make it through the develop-
ment process. Even if it would in Ubicomp (because of its
dynamic nature) there is usually no printed manual.

The second possibility for hidden MDs isdeficits in re-
quirements engineering(RE). In our terminology we delib-
erately speak of deficits instead of errors because we distin-

guish between real errors (like registering and documenting
a requirement in a document that is later on overwritten by
another version or skipping that annoying interview etc.)
and “did not know it better at that time” effects. So the rea-
son is that state of the art RE methods seem to be not fully
suitable for the construction of complex Ubicomp applica-
tions that work in highly heterogeneous dynamic environ-
ments.

As mentioned before there is a third possible reason for
MD. This one is especially though to handle because the
MD does not exist during development time but arises later.
This last condition however is not undisputable. The whole
matter is under heavy discussion for more than 20 years es-
pecially in the field of AI (known there as the frame prob-
lem [Dennett, 1984]). However there seem to be a lot of
good arguments that this problem is not generally, and now
less then ever practically, solvable at least until it is pos-
sible to give a machine at least limited abilities in mind
reading and fortune telling. Another possibility would be
to avoid using classical model representations (with extrin-
sic semantic) at all. Using a model representation based
on self contained semantic (like the mathematic language
is for mathematics) to reflect a significant part of the real
world however would most likely mean constructing a ma-
chine with higher complexity than our universe.

We therefore assume that there are certain random events
within reality or the user’s thoughts and ideas that can cause
MDs at a later point in time than the development of the
system (see Figure 3). Moreover because of the symbol
grounding problem[Harnad, 1990] such MDs can not be
detected from inside the model without any outside help.
This means MDs can stay hidden until they cause UB or at
least become imminent.

 Time

Design RuntimeRE

RE deficiency Constraints

System

-Model

User-

Model

System

development
System

lifetime

Figure 3: Model Discrepancies and their Origins

6 Related Terms
While dealing with the phenomenon described above, the
question arose of whether we really need a new identifier?
And is there any relation to terms like classical system er-
ror, operating error, feature interaction, automation surprise
or software aging?

6.1 Classical System Error
An often asked question regarding the whole issue of un-
wanted behavior caused by model divergences is, whether
this is not just some kind of classic error. Especially be-
cause for instance, an implementation error could also lead
to wrong results in a software system, which is of course
also disliked by the user.

The main difference however is that such errors usually
are unacceptable for all users no matter what situation they
are in. Also a system with errors is usually regarded as in-
correct compared to a formal specification, which makes

errors at least theoretically possible to dispel at develop-
ment time by various means of different verification tech-
niques.

Our definition of unwanted behavior therefore purposely
excluded such technical errors because we differentiate be-
tween failures that can be prevented by means of verifi-
cation and failures that can not be systematically detected
during development time. Basically this is inspired by the
fact that there can be systems that are 100% correct but can
still be completely useless in a certain situation. This is
also why MDs can not always be detected at development
time. Unlike classical system errors, MDs are hidden in
implicit assumptions (in other words the abstractions) that
were used to create a model in the first place.

6.2 Operating Error
The only other form of errors not covered by this differ-
entiation between UB and specification errors are operat-
ing errors. These describe failure situations where the sys-
tem would depend on correct user interaction to produce a
correct output behavior. Ubiquitous applications however
usually work invisibly in the background, at least to some
extent and therefore have to be foolproof by definition, at
least regarding any remaining direct user input. This is why
we neglect operating errors as a source of UB provided that
they are not already covered by MDs in general, for exam-
ple when the user has developed a wrong idea about the
capabilities of the system.

6.3 Feature Interaction and Automation
Surprises

Besides classical system and operating errors there is yet
another term that is often confused with MD created UB.
Feature interactionhowever relates to a large group of
mostly technical issues around interaction and combination
of features (for a good overview see[Pulverm̈uller et al.,
2002]). Inside this group especially unwanted feature inter-
actions not caused by specification/implementation errors
come quite close to unwanted behavior, but MDs are not
limited to a combination or interaction of features. There-
fore feature interaction problems that are not related to er-
rors are a subset of our definition of UB.

The same is true forautomation surprisesor so called
mode errors[Hourizi and Johnson, 2001]. These are also
small subsets of UB that especially concentrate on user in-
terfacing aspects. Moreover automation surprises only con-
centrate, on system behavior non-transparency and makes
no difference between unexpected and unwanted behavior.
Mode errors again require at least some sort of direct and
conscious user interaction, which is not always the case for
ubiquitous systems. We therefore regard both terms as very
special cases of UB. In fact they describe rare cases of non
ubiquitous applications where UB can have a larger impact
(e.g. in avionic systems).

6.4 Software Aging
Finally the termsoftware aging, while seeming quite re-
lated especially to MDs accrued during the system’s life-
time, usually focuses on increasing difficulties to change
an old system to new requirements (or to cope with an
increasing number of such changes afterwards[Parnas,
1994]). The reasons that requirements can become obso-
lete of course are the same as MDs appearing during run-
time of an ubiquitous system. The main difference between
MD based UB and software aging however is that the latter

needs several years or even decades of lifetime to evolve
relatively stable changes in the wishes and needs of their
users while spontaneous MDs in ubiquitous applications
can happen during runtime and can be instable. Also they
usually heavily depend on the specific user and his situ-
ation, while software aging usually refers to a collective
change in requirements (e.g. like supporting a new tech-
nology, platform or process).

7 Conclusion
In this paper, the phenomenon of unwanted behavior (UB)
has been characterized and examples from our practical
work have been given. We have also provided a classifica-
tion of the phenomenon and analyzed the causes of its oc-
currence and resolvability, particularly in the filed of con-
text awareness and ubiquitous computing.

While researching user acceptance problems in real life
ubiquitous computing applications, there always has been
one question at issue: Is the problem of unwanted behav-
ior really a new kind of problem? Is it a specific draw-
back of ubiquitousness or a question of good (or bad) re-
quirements engineering? Unfortunately the answer is more
complicated than the question. Can good-enough require-
ments engineering prevent from UB? Yes and no. Yes, be-
cause the main goal of RE is to analyze the user wishes
and needs and prepare them to be translated into a tech-
nical specification for system design. No, because wishes
and needs change over time depending on necessities of
reality. Therefore, while analyzing requirements, at least
enough resources, a good clairvoyance and adequate meth-
ods would be needed. But, what is exactly “good enough”
RE? What is it all about? For ubiquitous computing this
means the more wide the application domain gets (both in
lifetime and complexity), the more probable it is that there
exist discrepancies between user expectation and system
behaviors. Each time this happens, a UB will be created.
This is a user experience problem in Ubicomp because of
the claim to fulfill user wishes and needs without necessary
direct or conscious interaction. Unconscious usage means
automation and hence less possibility to mediate or real-
time correction by the user.

However the system model could have been wrong from
the beginning due to deficits in RE, but also MDs can arise
later due to framing problems. Because the user is also usu-
ally a customer of some sort, for him it is not his concern if
this UB is caused by a bad RE analyst or a tricky twist in re-
ality. Therefore it is necessary to at least introduce another
compensation mechanism to replace any real-time com-
pensation possibilities the user had in non-automatically
acting applications. This mechanism is called calibration
and described in[Fahrmair, 2005; Fahrmairet al., 2006;
Newberger and Dey, 2003]. Once again, this mechanism
should be no excuse for relaxed RE. There is a number of
reasons why as much effort should be spent on RE as eco-
nomically possible to reduce the number of UB caused by
failed RE since the calibration is not a totally preventive
mechanism (every engineer probably used to sit in an air-
plane from time to time). However there are also remark-
able indications for not delivering ubiquitous application
without calibration support. And last but not least there are
also a number of good reasons to not scrap ubiquitous com-
puting all together because for instance it allows computers
to extend their full potential from direct human machine
interactions to sub- or semi-conscious secondary usage in
almost every situation.

References
[Amannet al., 2004] K. Amann, T. Reichgruber, and M.

Roming. Personalisierung kontextadaptiver Dienste.
Student Project, Technische Universität München, 2004.

[Christensenet al., 2006] J. Christensen, J. Sussman, S.
Levy, W. E. Bennett, T. V. Wolf, W. A. Kellogg.Too
Much Information.HCI, ACM Queue 4(6), 2006.

[Dennett, 1984] D. C. Dennett. Cognitive Wheels: The
Frame Problem of AI. Ed.:C. Hookway, Minds, Ma-
chines, and Evolution. Cambridge University Press,
Cambridge, 1984.

[Dey, 2000] A. K. Dey. Providing Architectural Support
for Building Context-Aware Applications. PhD Thesis,
College of Computing, Georgia Institute of Technology,
2000.

[Fahrmair, 2005] M. Fahrmair. Kalibrierbare Kontex-
tadaption f̈ur Ubiquitous Computing. Dissertation,
Department of Informatics, Technische Universität
München, 2005.

[Fahrmairet al., 2000] M. Fahrmair, C. Salzmann, and M.
Schoenmakers.Verfahren zur Vorauswahl mobiler Di-
enste. IPR DE0010024368A1 [DE], DPMA, 2000.

[Fahrmairet al., 2006] M. Fahrmair, W. Sitou, and B.
Spanfelner. An Engineering Approach to Adaptation
and Calibration. Modeling and Retrieval of Context
MRC 2005, Ed.: T. Roth-Berghofer, S. Schulz and D.
Leake, LNCS 3946, 2006.

[Harnad, 1990] S. Harnad.The Symbol Grounding Prob-
lem.Physica D 42, 1990.

[Hourizi and Johnson, 2001] R. Hourizi, and P. Johnson.
Beyond Mode Error: Supporting Strategic Knowledge
Structures to Enhance Cockpit Safety. Joint Proc. HCI
2001 and ICM 2001.

[Newberger and Dey, 2003] A. Newberger and A. K. Dey.
Designer Support for Context Monitoring and Control.
IRB-TR-03-017, Intel Research Berkeley, 2003.

[Norman, 1988] D. A. Norman The Psychology of Every-
day Things.Basic Books, New York, 1988.

[Parnas, 1994] D. L. Parnas. Software Aging. 16th Int.
Conf. on Software Engineering (ICSE-16), 1994.

[Pulverm̈uller et al., 2002] E. Pulverm̈uller, A. Speck, J.
O. Coplien, M. D’Hondt, and W. DeMeuter.Feature
Interaction in Composed Systems.LNCS 2323, 2002.

[Raasch, 1993] J. Raasch.Systementwicklung mit Struk-
turierten Methoden. Ein Leitfaden für Praxis und
Studium.Hanser, 3. Auflage, M̈unchen, Wien, 1993.

[Richards and Christensen, 2004] J. Richards and J. Chris-
tensen. People in our Software. ACM Queue 1(10),
2004.

[Schmidt, 2002] A. Schmidt. Ubiquitous Computing -
Computing in Context. PhD Thesis, Computing Depart-
ment, Lancester University, U.K., 2002.

[Weiser, 1991] M. Weiser.The Computer for the 21st Cen-
tury.Scientific American, 1991.

