Programs are Knowledge Bases

Daniel Ratiu and Florian Deissenboeck
Institut fiir Informatik, Technische Universitidt Miinchen
Boltzmannstr. 3, D-85748 Garching b. Miinchen, Germany
{ratiu|deissenb}@in.tum.de

Abstract

Gaining an overview of the concepts represented in large
programs is very demanding as multiple dimensions of
knowledge appear at different abstraction levels through-
out the source code. To reduce the overall comprehension
effort it is therefore desirable to make the knowledge once
gained explicit and shareable. We tackle this problem by
establishing a mapping between source code and concep-
tualizations shared as ontologies. To achieve this we re-
gard programs themselves as knowledge bases built on the
programs’ identifiers and their relations implied by the pro-
gramming language. Making these mappings explicit al-
lows sharing knowledge about the concepts represented in
programs. We exemplify our approach on Java program-
ming language and the WordNet ontology and we report on
our experience with analyzing an open source system.

1. Understanding Large Programs

Program comprehension accounts for about 50% of the
expenses spent during software maintenance [9] which it-
self consumes the bulk of the lifecyle costs of successful,
long-lived software-systems [13].

Most programmers would agree that understanding the
high-level coherences of a program (as opposed to under-
standing localized code fragments like a single method) is
one of the most challenging tasks in program comprehen-
sion. This is can be best exemplified by a (fictional) exper-
iment: compare understanding an unknown program with-
out any prior information to understanding the program af-
ter one of the developers gave you a 10 minute introduction
on the program. Certainly the latter task is considerably
easier than the former. This raises the question about the
nature of the knowledge conveyed to you in the short intro-
duction. As previous research on program comprehension
suggests, this is mainly knowledge about the basic concepts
represented in the program and their inferrelations. In this
context concepts don’t necessarily have to be concepts of

the application domain, e. g. an account number, they can as
well be technical concepts like a stack or sorting algorithm
or a part thereof. Unfortunately the conceptual information
contained in the source code is often of implicit nature as
these concepts are scattered over various locations and dif-
ferent abstraction levels within the source code. Thus the
task of locating known concepts in the program as well as
extracting concepts from the program are equally demand-
ing.

We present a new approach for extracting concepts from
code by mapping the identifiers and the relations between
them to ontologies. As a result, we explicitly link the
sources with the semantics contained in ontologies. We
demonstrate our approach using on the one hand the rela-
tions within Java programs generated by the type and the
module systems and on the other hand the WordNet ontol-
ogy and we exemplify our preliminary experiences with a
medium sized open-source Java system.

2. Related Work

There’s highly valuable work on the program compre-
hension processes [15] and the knowledge required for un-
derstanding programs [3, 6]. To a large extent this knowl-
edge is encoded in programs only in the names used for
its entities. [1] highlights the importance of proper iden-
tifier naming and defines naming rules. [4] advances on
this by providing a formal naming model and treating pro-
gram identifiers as controlled vocabularies. One of the
most important comprehension activities is the assignment
of human-oriented concepts to their implementation in the
source code [2]. This task is usually referred to as concept
location or concept extraction (in the other direction). Most
work agrees that identifier-based concept location strategies
are the most intuitive [14] if the identifiers are chosen prop-
erly.

The LASSIE system [5] uses a knowledge base for in-
telligently indexing reusable components. The approach
makes a distinction between the domain model and the code
model. Although the code model is populated automati-
cally, the domain model and its relation to the code model

must be maintained manually. Such a system proved to sup-
port comprehension tasks but the overhead of manually syn-
chronizing the models reduced the overall benefit.

[11] presents a method for manually reverse engineering
the ontology of an application based on the features acces-
sible through its user-interface. This work does not provide
any link between the ontology and the source code.

3. Knowledge Sharing through Ontologies

To support sharing and reuse of knowledge of a partic-
ular domain one needs to explicitly represent it in a formal
manner. The first step in formally representing a body of
knowledge is to decide on a conceptualization of the do-
main, which contains the set of objects and concepts to-
gether with their properties and interrelationships [7]. An
ontology is defined to be an explicit specification of a con-
ceptualization [8] and is used for sharing the knowledge
about a domain by making explicit the concepts and rela-
tions within it.

In the present work we use an informal meaning of the
term “ontology” - we do not require any consistency check-
ing, restrictions on properties or logical inference to be de-
fined or that the terms obey that inference. In order to rep-
resent an ontology we use a graph language similar to the
RDF graphs [10]. Entities within the ontology are the nodes
of the graph. If there is a relation in the ontology between
two entities then in the graph there is an edge between the
nodes that denote the entities annotated with the name of
the relation in the ontology.

4. Knowledge Representation in Programs

In order to efficiently perform maintenance tasks, one
needs to have both the knowledge about programming lan-
guage(s), paradigm(s), algorithms, libraries, program de-
sign, domain and how is it reflected in the code. We start
from the assumption that an important part of this knowl-
edge is manifested in the names of identifiers and the rela-
tions between them.

Even if from a formal point of view names are simple
labels, from an informal point of view the names are in
the center of program understanding by humans as they
introduce a higher-level, not formally checked, conceptual
layer in a program. To illustrate this we take a simple code
example in which all variables are integers: position
= initialPosition + distance. This example
would be considered acceptable both by the type-checker
and by a human, from a conceptual point of view. If
we modify the example a bit and write: position =
initialPosition + temperature we assume that
everybody would consider this piece of code to be at least

awkward if not wrong, even if it conforms to the program-
ming language semantics. The additional semantics in this
case is given by the names that are at a higher conceptual
level than the level of checkable relations (e.g. types).

Through every declaration, programmers define new
words by making use of the already existing ones. For
example in the code snippet in Figure 2 we defined the
word Parent in terms of the word Person. Once a word is
defined, it enters the vocabulary of the program and can be
subsequently used (e.g. for defining the word mother). The
relation between a defined word and the ones used in its
definition is (many times) similar to the relations between
the concepts represented by these words in the real world.

Thus, we regard programs as knowledge bases where the
knowledge representation language contains (a subset of)
the programming language used. The knowledge itself is
expressed in this language through the names of the identi-
fiers.

5. From Sources to Ontological Entities

Understanding a program implies recovering the con-
cepts that are present in the sources. As we presented in
Section 3, ontologies are used for sharing conceptualiza-
tions. We assume that the concepts that we need to identify
are represented by entities within an ontology. Thus, we
identify concepts within a program by creating mappings
between parts of it and parts of an ontology (i.e. by identi-
fying ontological entities within a program).

As is illustrated in Figure 1, we use ontology mapping
techniques for recovering information from programs. The
input is twofold: on one hand the names of program ele-
ments and their relations and on the other hand the refer-
ence ontologies. The output is given by ontological entities
which can be related to program elements.

Source Code

.

Program hierarchy
between names N {
represented H

as graphs | Identifying concepts = Graph Matching |

]

Ontologies represented
as Graphs

Domain, Design, Libraries
Knowledge shared as
Ontologies

Figure 1. Proposed Approach

Ontologies are represented in different languages and
formats. In order to overcome the syntactic heterogeneity

between the representation of ontologies and programs, we
choose to represent both the sources and the ontologies as
labeled multigraphs (see Section 3).

We restrict our approach for identifying the concepts
within the code to simply mapping parts of the multigraphs
that represent the program to parts of multigraphs that
represent ontologies. This is in fact the classical problem of
finding a sub-graph homomorphism between multigraphs.

By making explicit the mapping between the code
and the ontology, we obtain a new representation of the
program centered on the identified ontological entities.
This representation contains a higher level of knowledge
than the code alone, namely the relations of the identified
ontological entities with other concepts from the ontology.
Furthermore, it provides a more natural decomposition of
the program based on the mapped ontologies as different
concepts scattered in the code can be localized within an
ontology.

6. Mapping WordNet to Java Programs

We exemplify our generic approach for extracting on-
tological entities from programs, by choosing the Word-
Net [12] dictionary as knowledge base and a particular set
of program relations from Java. To facilitate the presenta-
tion, we use a small example of how basic concepts of fam-
ily members and their relations are represented in WordNet,
how could they be represented in a Java program and how
could the mapping between them be recovered.

WordNet WordNet is an online dictionary of English
which organizes the words in function of their meanings,
in sets of synonyms (synsets). The WordNet 2.0 contains
over 150,000 words grouped in over 115,000 sets of syn-
onyms, out of which more than 70% are nouns. Due to the
words polysemy, every word can express more lexicalized
concepts and due to the synonymy every lexicalized con-
cept can be represented through more words. The synsets
are organized hierarchically along the hyponymy / hyper-
nymy (i.e. “is a kind of”’) relation. Every noun definition
consists of its immediate hypernym followed by meronyms
(i.e. “part of”). Meronyms are features that can be inherited
by hyponyms.

6.1. Relations between Java Program Elements

In order to map Java program entities to the WordNet
ontology, we first need to identify program relations that
are similar to the relations within WordNet. We classify
the language defined relations between program elements
according to two criteria: relations induced by the module
system and induced by the type system.

Module system induced relations The module system
enables a structural decomposition of programs. It is also
a mean to model structural relations from the modeled do-
main. Thus, relations between modules and their con-
stituents are good candidates to be similar to meronymy re-
lations from WordNet. We consider packages and classes
the most important modules in Java. They determine the
following relations: memberOfPackage, which holds be-
tween a package and all its containing classes or interfaces;
memberOfClass, which holds between a class and all its
containing attributes.

Type system induced relations The type system repre-
sents a static approximation of the behavior of programs at
run-time. Due to the fact that in Java the type system is
names based, a well-typed program enforces a certain level
of consistency between names (i.e. a certain name in a cer-
tain naming context can be used only for certain actions).
With the help of typing rules, a wide variety of relations
between program elements is enforced. We enumerate be-
low the most important relations: subTypeOf is the rela-
tion between two types, used as the main mechanism in
object-oriented languages to model the “is a kind of " re-
lations between real-world entities; hasType holds between
a variable and its declared type - every variable in a pro-
gram is explicitly declared to have a certain type and the
variable can be used only in the contexts where its type can
be used; assignedTo holds between a named member of an
expression in the right side of an assignment and the as-
signed variable; boundWith holds between a member of
an expression in the place of an actual parameter and the
formal parameter - whenever an actual parameter is bound
to a formal parameter, we have a dependency similar to an
assignment in which the left side is the formal parameter
and the right side is the expression for the actual parameter.
Based on these relations we represent Java programs as
multigraphs. The nodes of the graph are the names of the
identifiers and the edges are the above defined relations be-
tween their corresponding program elements. In the right
part of Figure 2 shows the graph representation of a small
code example that represents relations within a family.

6.2. Defining the Mappings

In the previous subsections we discussed the relations
within the WordNet knowledge base and similar relations
in Java programs generated by the module and the type
system. Based on the current configuration (WordNet and
Java) we define a mapping between the two multigraphs. A
path in the WordNet graph is a sequence of “hypernym” or
“meronym” labels and in the program graph a sequence of
relations defined in the previous section. We consider two
paths to be compatible if within them is an alternation of

WordNet World :
(Person'} '
< | .
hyponym hyponym ~~ "

Program World Code

package edu.tum.cs.family; B

class Parent extends Person{ ...}
class Child extends Person {
Parent mother;

[Parentql'jD [OffspringqD
A R

m WordNet Entity

© (lass

@ Local Variable

® Parameter

Child(Parent aMother) {
mother = aMother;
}
}

Parent mama = new Parent();
Child currentChild =
new Child(mama);

) Field

—» hypernimy-like relation

@ Package

-> meronimy-like relation

J edu.tum.cs.faminCT?

offspring = currentChild;

memberOfPackage

memberOfPackage

Figure 2. An Example of Concepts Identification

compatible relations. A node in the WordNet graph is an
entry in the WordNet dictionary which is based on single
words and a node in the program graph is the name of an
identifier. We consider two nodes to be compatible if they
have a common word.

In Figure 2 we present a hands-on toy-example of our
approach. The left side shows the words representing mem-
bers of a family and their relations as they are given in
WordNet. Accordingly the right side shows the identifiers
which appear in our code fragment and their relations. The
dotted lines represent the links that were identified between
program identifiers and concepts within the ontology. For
clarity’s sake not all links are shown. Through these links
we make explicit not only the concepts but also the location
in the code where they appeared.

A Real World Example

We present partial experimental results of our ap-
proach obtained from mapping the concepts present in the
WordNet ontology to the sources of JFreeChart!, an open
source Java library for drawing charts. In Figure 3, Table
(a) gives an overview of the quantitative aspects of the
example. As tool support we used the Insider? and Bridge?
tools.

In Figure 3 we illustrate some examples of ontologi-
cal entities automatically extracted from JFreeChart. This

'http://www. jfree.org/index.php

Insider is a reverse engineering platform developed at LOOSE
Research Group, Technical University of Timisoara, Romania
(www.loose.utt.ro)

3Bridge is a tool for extraction of concepts from code developed at
Technische Universitidt Miinchen, Germany

figure presents the concepts’ names and relations between
them: the “is a” relation is illustrated through a line be-
tween two concepts and the “part of” relation through a
line with a label attached. There are also Java code frag-
ments to illustrate how do the identified entities and their
relations appear in the code. As we can observe in this fig-
ure, there are several words that denote different concepts in
the code. Such an example is the word “line”” which is used
to denote both a shape and a piece of text; another one is
the word “day” which is used to refer both a period of time
and a point in time. By identifying these words within an
ontology we distinguish between their senses and thus elim-
inate the ambiguity generated by polysemy. Providing this
information together with ontology enables disambiguation
in communication between developers.

Minute.java
73: public class Minute extends RegularTimePeriod. . .
Period —————Year

Location
e
Bottom” /" \ \\Axis
Left Right Center

T W k\M p_ Quarter Jable
ime eel ontl hasPart, hasPart

Minite Instant Day Jan Feb Nov Dec ~ Row Column Event
Progress \ Action
Change Motion

TimeSeries(oIlectionTest.java% Day

165: Day today; / / \

Shape
Today Tomorrow Yesterday _ S
Arc \ \
/POi"t\ Text Circle Polygon Rectangle
Source / | \Center N

End Hotspot Position Title Line Box
\ SubtiGe\Le é d StandardXYltemRenderer java

Left Right 9 530: this.legendLine=line;

Figure 3. Examples of Identified Concepts

In Tables (b,c) from Figure 3 we present the quantita-
tive results obtained after we performed a manual inspec-

tion of the automatically extracted concepts and we filtered
out the false positives. The number of ontological entities
that were identified in the code (172 in our case) represents
the knowledge that the tool extracted from the system. It is
worth observing that a considerable number of entities were
discovered even though only a general ontology was used.
However, this number taken alone does not say much about
the results. As we can see in the concepts examples figure,
we could identify many of the core concepts of the modeled
domain (graphics and charts drawing). To roughly evaluate
coverage we compare the number of words that were iden-
tified as WordNet entities and relate it with the total number
of words - this gives a ratio of circa 10%. Interestingly these
10% of words appear in over 20% of the programs’ identi-
fiers, which is another sign that these words are central to
the analyzed systems. The Relations in Code row in Ta-
ble (b) shows the exact number of places in the code where
instances of these concepts were identified (every code rela-
tion is determined by two concepts). In Table (c) we present
a detailed view over the individual types of relations that ap-
pear in the code. It is worth to emphasize the high number
of relations at the level of assignments and parameter bind-
ing as these capture conceptual coherences in operational
contexts.

The last row of Table (b) shows the number of concepts
that were identified at low levels of abstraction, i.e. whose
names are not part of any class or package names. This cat-
egory of concepts would be the most hard to identify man-
ually because they are hidden deep in the code and thus re-
quire exhaustive search. These concepts are usually not at
the core of the modeled domain, they rather represent mar-
ginal properties (e.g., colors: green, orange). Furthermore,
documenting such concepts with JavaDoc-like tools would
not help either because they are usually scattered through
the code and so would their documentation be.

| # | # #

Classes 738 Ontological Entities | 172 memberOfPackage 0

Identifiers | 7220 Affected identifiers | 1503 memberOfClass 2
Words 1570 Relations in Code 826 subclassOf 70
kLoC 211 Low level Concepts 65 hasType 282
assignedTo 436

boundWith 36

Overview (a) Coverage (b) Relation Types (c)

Figure 4. Case Study Results

7. Conclusions and Future Work

We presented a novel approach for extracting the con-
cepts from source code by mapping the sources on concep-
tualizations shared as ontologies. The core of our approach
is the fact that programs can be regarded themselves as
knowledge bases that contain the information in the names

of program entities (identifiers) which are related through
programming language specific relations. By establishing a
mapping from a part of the program to an ontology we iden-
tify the part of the conceptualization that is expressed in the
particular program fragment. The concepts that we extract
are made explicit (part of a common accepted conceptual-
ization) and shareable (through the conceptualization itself)
and thus help to reduce further comprehension effort.

We believe that what we presented here is only the first
step in the extraction of a conceptual decomposition from
programs. The next enhancements will be targeted towards
using more knowledge bases and more sophisticated map-
ping techniques. One application we’re working on is the
detection of synonymy and polysemy in identifier naming.

References

[1] N. Anquetil and T. Lethbridge. Assessing the relevance of
identifier names in a legacy software system. In CASCON

'98, page 4. IBM Press, 1998.
[2] T.J. Biggerstaff, B. G. Mitbander, and D. Webster. The con-

cept assignment problem in program understanding. In /CSE

’93. IEEE CS Press, 1993.
[3] R. Clayton, S. Rugaber, and L. Wills. On the knowledge

required to understand a program. In WCRE °98, page 69,

Washington, DC, USA, 1998. IEEE Computer Society.
[4] F. Deissenboeck and M. Pizka. Concise and consistent nam-

ing. In IWPC ’05, pages 97-106, Washington, DC, USA,

2005. IEEE Computer Society.
[5] P. T. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W.

Ballard. Lassie: a knowledge-based software information
system. In ICSE ’90, pages 249-261, Los Alamitos, CA,

USA, 1990. IEEE Computer Society Press.
[6] M. B. Dias, N. Anquetil, and K. de Oliveira. Organizing the

knowledge used in software maintenance. Journal of Uni-

versal Computer Science, 9(7):641-658, 2003.
[7] M. R. Genesereth and N. J. Nilsson. Logical foundations

of artificial intelligence. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1987.
[8] T. R. Gruber. Toward principles for the design of ontolo-

gies used for knowledge sharing. Int. J. Hum.-Comput. Stud.,
43(5-6):907-928, 1995.

[9] C. S. Hartzman and C. F. Austin. Maintenance productiv-
ity: Observations based on an experience in a large system

environment. In CASCON ’93. IBM Press, 1993.
[10] P. E. Hayes. Rdf semantics. Technical report, W3C Recom-

mendation, 2004.

[11] I Hsi and C. Potts. Ontological excavation: Unearthing the
core concepts of an application. In Proceedings of the 2003
10th Working Conference on Reverse Engineering, pages

345-352, Nov. 2003.

[12] G. A. Miller. Wordnet: a lexical database for english. Com-
mun. ACM, 38(11):39-41, 1995.

[13] T. M. Pigoski. Practical Software Maintenance. Wiley Com-
puter Publishing, 1996.

[14] V. Rajlich and N. Wilde. The role of concepts in program
comprehension. In IWPC 02, page 271. IEEE CS, 2002.

[15] A. von Mayrhauser and A. M. Vans. Program comprehen-
sion during software maintenance and evolution. Computer,

28(8):44-55, 1995.

